Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (70)

Search Parameters:
Keywords = morphology of separation zone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 22159 KB  
Article
Phylogeographic Insights into Pipistrellus Species from Türkiye: Diversity, Divergence, and Regional Lineage Structure
by Emin Seyfi, Şafak Bulut and Gül Olgun Karacan
Biology 2025, 14(11), 1549; https://doi.org/10.3390/biology14111549 - 4 Nov 2025
Viewed by 507
Abstract
This study investigates the phylogenetic relationships, genetic diversity, and biogeographic structure of Pipistrellus species in Türkiye using mitochondrial cytochrome b (Cytb) sequences from 156 specimens collected across 26 localities. Our primary aim was to clarify taxonomic boundaries of morphologically cryptic species [...] Read more.
This study investigates the phylogenetic relationships, genetic diversity, and biogeographic structure of Pipistrellus species in Türkiye using mitochondrial cytochrome b (Cytb) sequences from 156 specimens collected across 26 localities. Our primary aim was to clarify taxonomic boundaries of morphologically cryptic species and elucidate the evolutionary role of Anatolia in the Western Palearctic. Analyses strongly confirmed that molecular data are mandatory for defining taxonomic boundaries. Crucially, all individuals morphologically identified as P. pygmaeus were genetically determined to be P. pipistrellus, highlighting the inadequacy of external traits for cryptic species. We resolved deep intraspecific divergence across the genus. In P. pipistrellus, two major lineages (Eastern and Western) were identified, partially separated by the Anatolian Diagonal. Their co-occurrence in multiple localities confirms Anatolia’s function as a secondary contact zone. Similarly, P. kuhlii populations represent a transition zone where two distinct lineages, one of Asiatic origin (P. k. lepidus) and one Mediterranean-Levantine (P. k. kuhlii), meet. Furthermore, while P. nathusii is largely associated with migratory European lineages; a genetically distinct, potentially resident lineage was revealed in southwestern Anatolia. Divergence time estimations indicate that this diversification was shaped by major climatic events from the Miocene to the Pleistocene. This study demonstrates that Anatolia is more than just a geographic bridge; it is a dynamic center of evolution, functioning critically as both a glacial refugium and a secondary contact zone for Palearctic bat fauna. Full article
(This article belongs to the Section Zoology)
Show Figures

Figure 1

21 pages, 6588 KB  
Article
Multiscale Simulation of Crack Propagation in Impact-Welded Al4Cu9 Alloy Based on Cohesive Zone Model
by Rongqing Luo, Dingjun Xiao, Guangzhao Pei, Haixia Yan, Sen Han, Jiajie Jiang and Miaomiao Zhang
Materials 2025, 18(21), 4862; https://doi.org/10.3390/ma18214862 - 23 Oct 2025
Viewed by 492
Abstract
The fracture behavior of the Al4Cu9 intermetallic compound at the interface of impact-welded Cu/Al joints remains insufficiently explored through integrated multiscale modeling and experimental validation. In this study, molecular dynamic (MD) simulations, finite element (FE) analysis implemented in ABAQUS (version [...] Read more.
The fracture behavior of the Al4Cu9 intermetallic compound at the interface of impact-welded Cu/Al joints remains insufficiently explored through integrated multiscale modeling and experimental validation. In this study, molecular dynamic (MD) simulations, finite element (FE) analysis implemented in ABAQUS (version 2020) and a cohesive zone model (CZM) were combined with optical microscopy (OM) and scanning electron microscopy (SEM) observations of the interface and crack initiation zones in impact-welded Cu/Al specimens to investigate crack propagation mechanisms under different defect configurations. The experimental specimens consisted of 1060 aluminum (Al) and oxygen-free high-conductivity (OFHC) copper, fabricated via impact welding and subsequently annealed at 250 °C for 100 h. The interfacial morphology and crack initiation features obtained from OM and SEM provided direct validation for the traction–separation (T-S) parameters extracted from MD and mapped into the FE model. The results indicate that composite defects (blunt crack + void) cause a significantly greater reduction in fracture energy and stress intensity factor than single defects and that defect effects outweigh temperature effects within the range of 200–500 K. The experimentally observed crack initiation locations were in strong agreement with simulation predictions. This integrated simulation–experiment approach not only elucidates the multiscale fracture mechanisms of the Al4Cu9 interface but also provides a physically validated basis for the reliability assessment and optimization of aerospace Cu/Al welded structures. Full article
(This article belongs to the Special Issue Advances in Microstructure and Properties of Welded–Brazed Joints)
Show Figures

Figure 1

28 pages, 678 KB  
Systematic Review
OCTA Biomarkers Underlying Structure–Function Correlations in Idiopathic Epiretinal Membrane: A Systematic Review
by Anca Mădălina Sere, George Adrian Muntean, Andreea Petra Cristea and Simona Delia Nicoară
Diagnostics 2025, 15(20), 2596; https://doi.org/10.3390/diagnostics15202596 - 15 Oct 2025
Viewed by 851
Abstract
Background: Idiopathic epiretinal membrane (iERM) is a common retinal pathology in elderly patients, thought to originate primarily from an anomalous process of posterior vitreous detachment. The standard treatment is pars plana vitrectomy (PPV) with membrane peeling. No consensus exists regarding the optimal timing [...] Read more.
Background: Idiopathic epiretinal membrane (iERM) is a common retinal pathology in elderly patients, thought to originate primarily from an anomalous process of posterior vitreous detachment. The standard treatment is pars plana vitrectomy (PPV) with membrane peeling. No consensus exists regarding the optimal timing of surgery, nor is it clear which patients are most likely to benefit. Given that iERM profoundly affects retinal vascular morphology and function, optical coherence tomography angiography (OCTA) has emerged as a valuable tool for identifying potential biomarkers. This systematic review aimed to synthesize the available evidence on OCTA-derived biomarkers and their correlations with visual function before and/or after surgical intervention in iERM, with a particular focus on their prognostic value for postoperative outcomes. Methods: A systematic search of PubMed/MEDLINE and Scopus was conducted on the 20th of May 2025 in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Eligible studies included patients with iERM undergoing vitreoretinal surgery, used OCTA for pre- and/or postoperative assessment, investigated structure–function correlations, and were designed as clinical trials, observational studies, or case series with more than 10 patients. Exclusion criteria were studies with ≤10 cases, absence of separate iERM analysis, lack of surgical intervention, or non-English language. Data extraction covered study design, demographics, surgical approach, OCTA device, follow-up, OCTA biomarkers, and structure–function outcomes. Risk of bias in observational studies was assessed using the National Institute of Health (NIH) Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. Results: The search yielded 1053 records, of which 71 underwent full-text review and 43 met eligibility criteria. All included studies were observational, encompassing 1958 eyes from 1953 patients. The most frequently investigated biomarkers were the foveal avascular zone (FAZ) area and related parameters, vessel density (VD), and foveal density 300 (FD-300). Additional studies evaluated average vessel length (VL), blood flow area, vessel length density (VLD), vessel tortuosity (VT), fractal dimension (FD), and perfusion capacity (PC). Conclusions: By consolidating current evidence, this systematic review provides a comprehensive overview of structure–function correlations in iERM and highlights the potential of OCTA-derived metrics as biomarkers of disease severity and surgical prognosis. These findings help clarify underlying mechanisms of visual decline and establish the context for further research. Nonetheless, interpretation is limited by the observational design of all included studies and by heterogeneity in OCTA methodology and nomenclature, underscoring the need for standardization to improve comparability and foster greater coherence across studies. No funding was provided for this review. Full article
(This article belongs to the Special Issue Optical Coherence Tomography in Diagnosis of Ophthalmology Disease)
Show Figures

Figure 1

22 pages, 4897 KB  
Article
Fabrication of Next-Generation Skin Scaffolds: Integrating Human Dermal Extracellular Matrix and Microbiota-Derived Postbiotics via 3D Bioprinting
by Sultan Golpek Aymelek, Billur Sezgin, Ahmet Ceylan and Fadime Kiran
Polymers 2025, 17(19), 2647; https://doi.org/10.3390/polym17192647 - 30 Sep 2025
Cited by 1 | Viewed by 1071
Abstract
This study presents the development of an advanced three-dimensional (3D) bioprinted skin scaffold integrating sodium alginate (SA), gelatin (Gel), human skin-derived decellularized extracellular matrix (dECM), and microbiota-derived postbiotics. To ensure a biocompatible and functional ECM source, human skin samples collected during elective aesthetic [...] Read more.
This study presents the development of an advanced three-dimensional (3D) bioprinted skin scaffold integrating sodium alginate (SA), gelatin (Gel), human skin-derived decellularized extracellular matrix (dECM), and microbiota-derived postbiotics. To ensure a biocompatible and functional ECM source, human skin samples collected during elective aesthetic surgical procedures were utilized. Following enzymatic treatment, the dermal layer was carefully separated from the epidermis and subjected to four different decellularization protocols. Among them, Protocol IV emerged as the most suitable, achieving significant DNA removal while maintaining the structural and biochemical integrity of the ECM, as confirmed by Fourier-transform infrared spectroscopy. Building on this optimized dECM-4, microbiota-derived postbiotics from Limosilactobacillus reuteri EIR/Spx-2 were incorporated to further enhance the scaffold’s bioactivity. Hybrid scaffolds were then fabricated using 7% Gel, 2% SA, 1% dECM-4, and 40 mg/mL postbiotics in five-layered grid structures via 3D bioprinting technology. Although this composition resulted in reduced mechanical strength, it exhibited improved hydrophilicity and biodegradability. Moreover, antimicrobial assays demonstrated inhibition zones of 16 mm and 13 mm against methicillin-resistant Staphylococcus aureus (MRSA, ATCC 43300) and Pseudomonas aeruginosa (ATCC 27853), respectively. Importantly, biocompatibility was confirmed through in vitro studies using human keratinocyte (HaCaT) cells, which adhered, proliferated, and maintained normal morphology over a 7-day culture period. Taken together, these findings suggest that the engineered hybrid scaffold provides both regenerative support and antimicrobial protection, making it a strong candidate for clinical applications, particularly in the management of chronic wounds. Full article
(This article belongs to the Special Issue Polymers for Aesthetic Purposes)
Show Figures

Graphical abstract

9 pages, 640 KB  
Article
Possibilities of Titanium Nickelide Implant Application in Radical Trachelectomy in Patients of Reproductive Age with Invasive Cervical Cancer
by Alyona Chernyshova, Michael Krylyshkin, Alexander Chernyakov, Julia Truschuk, Ekaterina S. Marchenko, Sergey Fursov, Olga Tkachuk and Svetlana Tamkovich
Reprod. Med. 2025, 6(3), 24; https://doi.org/10.3390/reprodmed6030024 - 10 Sep 2025
Viewed by 619
Abstract
Objectives: The aim of this study is to demonstrate the efficacy of the modified technique of radical organ-preserving surgery of invasive cervical cancer (CC) in patients of reproductive age. Methods: This study included 118 patients of reproductive age (34.9 ± 4.8 [...] Read more.
Objectives: The aim of this study is to demonstrate the efficacy of the modified technique of radical organ-preserving surgery of invasive cervical cancer (CC) in patients of reproductive age. Methods: This study included 118 patients of reproductive age (34.9 ± 4.8 years) with a morphologically verified diagnosis of invasive CC (T1a-1bNxM0). All patients underwent organ-preserving surgery in the scope of radical trachelectomy. A shape memory mesh implant woven in the form of a stocking from superelastic nickelide titanium thread with subsequent fixation with separate sutures around the perimeter was used to form the uterine closure apparatus and to strengthen the utero-vaginal anastomosis. The mesh implant was made of superelastic thin nickelide titanium threads with a diameter of 60–40 microns on a metal knitting machine. All patients were prospectively followed up for a mean of 120 months. Results: No intraoperative or postoperative complications were revealed when using a shape memory implant made of titanium nickelide during radical trachelectomy to form a locking apparatus and strengthen the anastomosis zone. No cervical stenoses or mesh failures were noted in any case. The 5-year overall and recurrence-free survival rates were 100% and 98%, respectively. Two patients indicated recurrence; it occurred in 3 and 36 months. There were 42 spontaneous pregnancies, and 29 resulted in full-term delivery, whereas 2 and 11 ended in miscarriage and early abortion, respectively. Currently, 18 patients are at different stages of the use of assisted reproductive technologies. Conclusions: The shape memory implant made of titanium nickelide integrates well into the surrounding tissues and successfully imitates the effect of the cervix. The use of this sparing-surgery technique has shown reasonably good results in carrying the pregnancy to term and good reproductive outcomes. Full article
Show Figures

Figure 1

14 pages, 2126 KB  
Article
Influence of Cooling Methods on Microstructure and Mechanical Properties of TiB2@Ti/AlCoCrFeNi2.1 Eutectic High-Entropy Alloy Matrix Composites
by Fuqiang Guo, Yajun Zhou, Yayun Shao, Qinggang Jiang and Bo Ren
Coatings 2025, 15(9), 1002; https://doi.org/10.3390/coatings15091002 - 29 Aug 2025
Cited by 1 | Viewed by 583
Abstract
The present study focused on 10 wt.% TiB2@Ti/AlCoCrFeNi2.1 eutectic high-entropy alloy matrix composites (EHEAMCs), which were treated with furnace cooling (FC), air cooling (AC), and water cooling (WC) after being held at 1000 °C for 12 h, aiming to investigate [...] Read more.
The present study focused on 10 wt.% TiB2@Ti/AlCoCrFeNi2.1 eutectic high-entropy alloy matrix composites (EHEAMCs), which were treated with furnace cooling (FC), air cooling (AC), and water cooling (WC) after being held at 1000 °C for 12 h, aiming to investigate the effect of cooling methods on their microstructure and mechanical properties. The results showed that the composites in all states consisted of FCC phase, BCC phase, TiB2 phase, and Ti phase. The cooling methods did not change the phase types but affected the diffraction peak characteristics. With the increase in cooling rate, the diffraction peaks of FCC and BCC phases gradually separated from overlapping, and the diffraction peak of the FCC (111) crystal plane shifted to a lower angle (due to the increase in lattice constant caused by Ti element diffusion), while the diffraction peak intensity showed a downward trend. In terms of microstructure, all composites under the three cooling conditions were composed of eutectic matrix, solid solution zone, and grain boundary zone. The cooling rate had little effect on the morphology but significantly affected the element distribution. During slow cooling (FC, AC), Ti and B diffused sufficiently from the grain boundary to the matrix, resulting in higher concentrations of Ti and B in the matrix (Ti in FCC phase: 7.4 at.%, B in BCC phase: 8.1 at.% in FC state). During rapid cooling (WC), diffusion was inhibited, leading to lower concentrations in the matrix (Ti in FCC phase: 4.6 at.%, B in BCC phase: 4.3 at.%), but the element distribution was more uniform. Mechanical properties decreased with the increase in cooling rate: the FC state showed the optimal average hardness (627.0 ± 26.1 HV), yield strength (1574 MPa), fracture strength (2824 MPa), and fracture strain (24.2%); the WC state had the lowest performance (hardness: 543.2 ± 35.4 HV and yield strength: 1401 MPa) but was still better than the as-sintered state. Solid solution strengthening was the main mechanism, and slow cooling promoted element diffusion to enhance lattice distortion, achieving the synergistic improvement of strength and plasticity. Full article
(This article belongs to the Special Issue Innovations, Applications and Advances of High-Entropy Alloy Coatings)
Show Figures

Figure 1

14 pages, 35427 KB  
Article
Grewia tembensis Fresen and Grewia trichocarpa Hochst. ex A.Rich. (Grewioideae Hochr; Malvaceae Juss.) Micromorphological Study and Comparison via Electron Microscopy
by Widad S. Aljuhani
Diversity 2025, 17(5), 340; https://doi.org/10.3390/d17050340 - 9 May 2025
Cited by 1 | Viewed by 777
Abstract
Grewia tembensis and Grewia trichocarpa inhabit dry tropical zones and arid environments, adapting to extreme climatic conditions and limited moisture supplies. Overall, Grewia L. possesses a significant variety of bioactive chemical constituents of great therapeutic importance. Indeed, for these species, precise morphological analyses [...] Read more.
Grewia tembensis and Grewia trichocarpa inhabit dry tropical zones and arid environments, adapting to extreme climatic conditions and limited moisture supplies. Overall, Grewia L. possesses a significant variety of bioactive chemical constituents of great therapeutic importance. Indeed, for these species, precise morphological analyses are poor, and their detailed characterization is almost non-existent. This research attempts to investigate and compare the micromorphological traits of G. tembensis and G. trichocarpa species through scanning electron microscopy (SEM). Micromorphological characteristics of the leaf and fructiferous structures turned out to be highly effective in separating the two species, G. tembensis and G. trichocarpa, especially regarding the type, density, and distribution of trichomes on the lower and upper surfaces of the leaves, along with the stomatal and trichome types on the surfaces of the fruits. Statistical analyses using principal component analysis, t-tests, and hierarchical clustering conducted on micromorphological data of the leaves, flowers, and fruits showed considerable variation within samples of G. tembensis and samples of G. trichocarpa. On the basis of their morphological assessment characteristics, the samples of both species were distinct and clustered into separate groups. This study emphasizes the necessity of performing detailed morphological studies of species by means of an electron microscope and proves that the leaf features are important for separating species. Such morphological traits of trichomes would offer an efficient tool to distinguish the species. Within the findings, this suggests that such diagnostics are likely to be highly useful for species identification in Grewia, especially in cases where there are no fruits available. Full article
(This article belongs to the Section Plant Diversity)
Show Figures

Figure 1

26 pages, 3878 KB  
Article
Turbulence Theory for the Characterization of the Surface Urban Heat Island Signature
by Gabriel I. Cotlier, Juan Carlos Jimenez and José Antonio Sobrino
Land 2025, 14(3), 620; https://doi.org/10.3390/land14030620 - 14 Mar 2025
Cited by 1 | Viewed by 1943
Abstract
Urban heat islands (UHIs) constitute one of the most conspicuous anthropogenic impacts on local climates, characterized by elevated land surface temperatures in urban areas compared to surrounding rural regions. This study represents a novel and comprehensive effort to characterize the spectral signature of [...] Read more.
Urban heat islands (UHIs) constitute one of the most conspicuous anthropogenic impacts on local climates, characterized by elevated land surface temperatures in urban areas compared to surrounding rural regions. This study represents a novel and comprehensive effort to characterize the spectral signature of SUHI through the lens of the two-dimensional (2D) turbulence theory, with a particular focus on identifying energy cascade regimes and their climatic modulation. The theory of two-dimensional (2D) turbulence, first described by Kraichnan and Batchelor, predicts two distinct energy cascade regimes: an inverse energy cascade at larger scales (low wavenumbers) and a direct enstrophy cascade at smaller scales (high wavenumbers). These cascades can be detected and characterized through spatial power spectra analysis, offering a scale-dependent understanding of the SUHI phenomenon. Despite the theoretical appeal, empirical validation of the 2D turbulence hypothesis in urban thermal landscapes remains scarce. This study aims to fill this gap by analyzing the spatial power spectra of land surface temperatures across 14 cities representing diverse climatic zones, capturing varied urban morphologies, structures, and materials. We analyzed multi-decadal LST datasets to compute spatial power spectra across summer and winter seasons, identifying spectral breakpoints that separate large-scale energy retention from small-scale dissipative processes. The findings reveal systematic deviations from classical turbulence scaling laws, with spectral slopes before the breakpoint ranging from ~K−1.6 to ~K−2.7 in winter and ~K−1.5 to ~K−2.4 in summer, while post-breakpoint slopes steepened significantly to ~K−3.5 to ~K−4.6 in winter and ~K−3.3 to ~K−4.3 in summer. These deviations suggest that urban heat turbulence is modulated by anisotropic surface heterogeneities, mesoscale instabilities, and seasonally dependent energy dissipation mechanisms. Notably, desert and Mediterranean climates exhibited the most pronounced small-scale dissipation, whereas oceanic and humid subtropical cities showed more gradual spectral transitions, likely due to differences in moisture availability and convective mixing. These results underscore the necessity of incorporating turbulence theory into urban climate models to better capture the scale-dependent nature of urban heat exchange. The observed spectral breakpoints offer a diagnostic tool for identifying critical scales at which urban heat mitigation strategies—such as green infrastructure, optimized urban ventilation, and reflective materials—can be most effective. Furthermore, our findings highlight the importance of regional climatic context in shaping urban spectral energy distributions, necessitating climate-specific urban design interventions. By advancing our understanding of urban thermal turbulence, this research contributes to the broader discourse on sustainable urban development and resilience in a warming world. Full article
Show Figures

Figure 1

14 pages, 4235 KB  
Article
A New Species in the Canthon indigaceus Species Group (Coleoptera: Scarabaeidae: Scarabaeinae) from the Mexican Pacific Coast
by Sara Lariza Rivera-Gasperín, Fernando Escobar-Hernández and Lucrecia Arellano
Taxonomy 2025, 5(1), 11; https://doi.org/10.3390/taxonomy5010011 - 20 Feb 2025
Cited by 2 | Viewed by 1452
Abstract
The Canthon indigaceus species group represents a Typical Neotropical distributional pattern with wide penetration into the Mexican Transition Zone. This group consists of three species: C. (C.) indigaceus LeConte; C. (C.) chiapas Robinson; and C. (C [...] Read more.
The Canthon indigaceus species group represents a Typical Neotropical distributional pattern with wide penetration into the Mexican Transition Zone. This group consists of three species: C. (C.) indigaceus LeConte; C. (C.) chiapas Robinson; and C. (C.) chevrolati Harold. In this study, a new species for the group is described, C. (C.) cuixmala, collected along the tropical region of the Pacific coast and the Balsas River basin. The taxonomic status of members of the group were evaluated by comparing morphological characteristics and their biogeographic distributions. An updated dichotomous key is provided to separate members of this species group. Full article
Show Figures

Figure 1

57 pages, 13137 KB  
Article
Compositional and Numerical Geomorphology Along a Basement–Foreland Transition, SE Germany, with Special Reference to Landscape-Forming Indices and Parameters in Genetic and Applied Terrain Analyses
by Harald G. Dill, Andrei Buzatu, Sorin-Ionut Balaban and Christopher Kleyer
Geosciences 2025, 15(2), 37; https://doi.org/10.3390/geosciences15020037 - 23 Jan 2025
Cited by 2 | Viewed by 2267
Abstract
The Münchberg Gneiss Complex (Central European Variscides, Germany) is separated by a deep-seated lineamentary fault zone, the Franconian Lineamentary Fault Zone, from its Mesozoic foreland. The study area offers insight into a great variety of landforms created by fluvial and mass wasting processes [...] Read more.
The Münchberg Gneiss Complex (Central European Variscides, Germany) is separated by a deep-seated lineamentary fault zone, the Franconian Lineamentary Fault Zone, from its Mesozoic foreland. The study area offers insight into a great variety of landforms created by fluvial and mass wasting processes together with their bedrocks, covering the full range from unmetamorphosed sediments to high-grade regionally metamorphic rocks. It renders the region an ideal place to conduct a study of compositional and numerical geomorphology and their landscape-forming indices and parameters. The landforms under consideration are sculpted out of the bedrocks (erosional landforms) and overlain by depositional landforms which are discussed by means of numerical landform indices (LFIs), all of which are coined for the first time in the current paper. They are designed to be suitable for applied geosciences such as extractive/economic geology as well as environmental geology. The erosional landform series are subdivided into three categories: (1) The landscape roughness indices, e.g., VeSival (vertical sinuosity—valley of landform series) and the VaSlAnalti (variation in slope angle altitude), which are used for a first order classification of landscapes into relief generations. The second order classification LFIs are devoted to the material properties of the landforms’ bedrocks, such as the rock strength (VeSilith) and the bedrock anisotropy (VaSlAnnorm). The third order scheme describes the hydrography as to its vertical changes by the inclination of the talweg and the different types of knickpoints (IncTallith/grad) and horizontal sinuosity (HoSilith/grad). The study area is subjected to a tripartite zonation into the headwater zone, synonymous with the paleoplain which undergoes some dissection at its edge, the step-fault plain representative of the track zone which undergoes widespread fluvial piracy, and the foreland plains which act as an intermediate sedimentary trap named the deposition zone. The area can be described in space and time with these landform indices reflecting fluvial and mass wasting processes operative in four different stages (around 17 Ma, 6 to 4 Ma, <1.7 Ma, and <0.4 Ma). The various groups of LFIs are a function of landscape maturity (pre-mature, mature, and super-mature). The depositional landforms are numerically defined in the same way and only differ from each other by their subscripts. Their set of LFIs is a mirror image of the composition of depositional landforms in relation to their grain size. The leading part of the acronym, such as QuantSanheav and QuantGravlith, refers to the process of quantification, the second part to the grain size, such as sand and gravel, and the subscript to the material, such as heavy minerals or lithological fragments. The three numerical indices applicable to depositional landforms are a direct measurement of the hydrodynamic and gravity-driven conditions of the fluvial and mass wasting processes using granulometry, grain morphology, and situmetry (clast orientation). Together with the previous compositional indices, the latter directly translate into the provenance analysis which can be used for environmental analyses and as a tool for mineral exploration. It creates a network between numerical geomorphology, geomorphometry, and the E&E issue disciplines (economic/extractive geology vs. environmental geology). The linguistics of the LFIs adopted in this publication are designed so as to be open for individual amendments by the reader. An easy adaptation to different landform suites worldwide, irrespective of their climatic conditions, geodynamic setting, and age of formation, is feasible due to the use of a software and a database available on a global basis. Full article
(This article belongs to the Section Sedimentology, Stratigraphy and Palaeontology)
Show Figures

Figure 1

138 pages, 31774 KB  
Review
Green Ammonia, Nitric Acid, Advanced Fertilizer and Electricity Production with In Situ CO2 Capture and Utilization by Integrated Intensified Nonthermal Plasma Catalytic Processes: A Technology Transfer Review for Distributed Biorefineries
by Galip Akay
Catalysts 2025, 15(2), 105; https://doi.org/10.3390/catal15020105 - 22 Jan 2025
Cited by 8 | Viewed by 5904
Abstract
An Integrated Process Intensification (IPI) technology-based roadmap is proposed for the utilization of renewables (water, air and biomass/unavoidable waste) in the small-scale distributed production of the following primary products: electricity, H2, NH3, HNO3 and symbiotic advanced (SX) fertilizers [...] Read more.
An Integrated Process Intensification (IPI) technology-based roadmap is proposed for the utilization of renewables (water, air and biomass/unavoidable waste) in the small-scale distributed production of the following primary products: electricity, H2, NH3, HNO3 and symbiotic advanced (SX) fertilizers with CO2 mineralization capacity to achieve negative CO2 emission. Such a production platform is an integrated intensified biorefinery (IIBR), used as an alternative to large-scale centralized production which relies on green electricity and CCUS. Hence, the capacity and availability of the renewable biomass and unavoidable waste were examined. The critical elements of the IIBR include gasification/syngas production; syngas cleaning; electricity generation; and the conversion of clean syngas (which contains H2, CO, CH4, CO2 and N2) to the primary products using nonthermal plasma catalytic reactors with in situ NH3 sequestration for SA fertilizers. The status of these critical elements is critically reviewed with regard to their techno-economics and suitability for industrial applications. Using novel gasifiers powered by a combination of CO2, H2O and O2-enhanced air as the oxidant, it is possible to obtain syngas with high H2 concentration suitable for NH3 synthesis. Gasifier performances for syngas generation and cleaning, electricity production and emissions are evaluated and compared with gasifiers at 50 kWe and 1–2 MWe scales. The catalyst and plasma catalytic reactor systems for NH3 production with or without in situ reactive sequestration are considered in detail. The performance of the catalysts in different plasma reactions is widely different. The high intensity power (HIP) processing of perovskite (barium titanate) and unary/binary spinel oxide catalysts (or their combination) performs best in several syntheses, including NH3 production, NOx from air and fertigation fertilizers from plasma-activated water. These catalysts can be represented as BaTi1−vO3−x{#}yNz (black, piezoelectric barium titanate, bp-{BTO}) and M(1)3−jM(2)kO4−m{#}nNr/SiO2 (unary (k = 0) or a binary (k > 0) silane-coated SiO2-supported spinel oxide catalyst, denoted as M/Si = X) where {#} infers oxygen vacancy. HIP processing in air causes oxygen vacancies, nitrogen substitution, the acquisition of piezoelectric state and porosity and chemical/morphological heterogeneity, all of which make the catalysts highly active. Their morphological evaluation indicates the generation of dust particles (leading to porogenesis), 2D-nano/micro plates and structured ribbons, leading to quantum effects under plasma catalytic synthesis, including the acquisition of high-energy particles from the plasma space to prevent product dissociation as a result of electron impact. M/Si = X (X > 1/2) and bp-{BTO} catalysts generate plasma under microwave irradiation (including pulsed microwave) and hence can be used in a packed bed mode in microwave plasma reactors with plasma on and within the pores of the catalyst. Such reactors are suitable for electric-powered small-scale industrial operations. When combined with the in situ reactive separation of NH3 in the so-called Multi-Reaction Zone Reactor using NH3 sequestration agents to create SA fertilizers, the techno-economics of the plasma catalytic synthesis of fertilizers become favorable due to the elimination of product separation costs and the quality of the SA fertilizers which act as an artificial root system. The SA fertilizers provide soil fertility, biodiversity, high yield, efficient water and nutrient use and carbon sequestration through mineralization. They can prevent environmental damage and help plants and crops to adapt to the emerging harsh environmental and climate conditions through the formation of artificial rhizosphere and rhizosheath. The functions of the SA fertilizers should be taken into account when comparing the techno-economics of SA fertilizers with current fertilizers. Full article
(This article belongs to the Special Issue Catalysis for CO2 Conversion, 2nd Edition)
Show Figures

Graphical abstract

16 pages, 6979 KB  
Article
Diversity of Cyanobacterial Genera Present in Cabo Verde Marine Environments and the Description of Gibliniella gelatinosa sp. nov
by João Morais, Pedro Cruz, Guilherme Scotta Hentschke, Bruna Silva, Flavio Oliveira, Jorge Neves, Raquel Silva, Vitor Ramos, Pedro N. Leão and Vitor M. Vasconcelos
Plants 2025, 14(3), 299; https://doi.org/10.3390/plants14030299 - 21 Jan 2025
Cited by 2 | Viewed by 3887
Abstract
The aim of this study was to document the biodiversity of cyanobacteria genera isolated from intertidal and subtidal zones in Cabo Verde. The identification of the strains was conducted using a polyphasic study, comprising 16S rRNA gene maximum likelihood and Bayesian inference phylogeny, [...] Read more.
The aim of this study was to document the biodiversity of cyanobacteria genera isolated from intertidal and subtidal zones in Cabo Verde. The identification of the strains was conducted using a polyphasic study, comprising 16S rRNA gene maximum likelihood and Bayesian inference phylogeny, 16S rRNA identity (p-distance), 16S–23S ITS secondary structure, morphological, and habitat analyses. A total of 51 strains were isolated by micromanipulation and by streaking biomass onto Petri dishes with a solid medium. Seventeen strains were identified as belonging to the Salileptolyngbya genus and five to Leptothoe; sixteen strains were distributed across twelve genera. Thirteen strains were grouped into eight distinct clades, but could not be assigned to any cyanobacterial genus, indicating that they could be described as new cyanobacterial genera in the future. The phylogenies also exhibited isolates LEGE 181157, LEGE 181224, and LEGE 181227 clustered with Gibliniella, but in a separate clade from the G. alaskensis type. The 16S rRNA gene identity values among these new isolates and G. alaskensis ranged from 94.4% to 95.5%. The 16S–23S ITS dissimilarity between LEGE 181224 and G. alaskensis was 9.4%. Morphologically, these three LEGE strains differ from G. alaskensis in that they have trichomes that are never coiled and have diffluent mucilaginous envelopes, whereas G. alaskensis has coiled trichomes with firm sheaths. Based on these strains, we describe here a new species of Gibliniella. Full article
(This article belongs to the Special Issue Microalgae Genomics and Metagenomics)
Show Figures

Figure 1

23 pages, 5026 KB  
Article
The Influence of Edaphic and Climatic Factors on the Morphophysiological Behavior of Young Argan Plants Cultivated in Orchards: A Comparative Analysis of Three Regions in Southwest Morocco
by Fatima Ezzahra Tiouidji, Assma Oumasst, Salma Tabi, Naima Chabbi, Abdelaziz Mimouni, Meriyem Koufan, Naima Ait Aabd, Abdelghani Tahiri, Youssef Karra, Jamal Hallam, Redouan Qessaoui, Rachid Bouharroud, Fouad Elame, Nadya Wahid and Ahmed Wifaya
Plants 2025, 14(1), 126; https://doi.org/10.3390/plants14010126 - 4 Jan 2025
Viewed by 2055
Abstract
Argania spinosa (L.) Skeels is a unique endemic species in Morocco, renowned for its ecological characteristics and socio-economic importance. In Morocco, recent years have seen an exacerbation of the harmful effects of climate change, leading to an alarming decline in the natural regeneration [...] Read more.
Argania spinosa (L.) Skeels is a unique endemic species in Morocco, renowned for its ecological characteristics and socio-economic importance. In Morocco, recent years have seen an exacerbation of the harmful effects of climate change, leading to an alarming decline in the natural regeneration of this species in its original habitats. It seems that the only viable solution lies in the domestication of this genetic heritage. This study marks the first in-depth investigation of the impact of various climatic and edaphic factors on the morphological and physiological traits of Argania spinosa young plants, assessed in six separate orchards and observed over four seasons (March 2022 (Winter), June 2022 (Summer), November 2022 (Autumn), and March 2023 (Winter)). A climatic assessment was carried out at each site, including measurements of rainfall, maximum and minimum temperatures, mean temperature, air temperature, and wind speed. The soil was analyzed for the pH, electrical conductivity (EC), water content, limestone (CaCO3), Kjeldahl nitrogen (N), available phosphorus (P2O5), organic matter (OM), and carbon/nitrogen ratio (C/N). To gain a better understanding of the morphophysiological characteristics of young argan seedlings, we carried out various observations, such as measuring the height and diameter of aerial parts, and the water content of leaves (WCL) and branches (WCB), quantifying chlorophyll (mg/m2) and leaf area. The results revealed a significant impact of edaphic and climatic factors on the morphophysiological parameters of young argan trees. Results revealed significant correlations of young argan plants between edaphic and climatic factors and morphophysiological parameters. The Tamjloujt site, characterized by protective vegetation cover, showed optimal growth conditions with the highest leaf and branch water content (46.89 ± 4.06% and 37.76 ± 3.51%, respectively), maximum height growth (91.33 ± 28.68 mm), trunk diameter (24.85 ± 3.78 mm), and leaf surface area (69.33 ± 19.28 mm2) during Summer 2022. The Saharan zone of Laqsabi exhibited peak chlorophyll concentrations (506.9 ± 92.25 mg/m2) during Autumn 2022, due to high temperatures. The mountainous environment of Imoulass negatively impacted plant growth (mean height: 52.61 ± 12.37 mm; diameter: 6.46 ± 1.57 mm) due to harsh climatic and edaphic conditions. This research provides vital knowledge regarding the environmental factors influencing the establishment of young argan plants within the Argan Biosphere Reserve. This contributes to the development of more effective domestication strategies and the restoration of agroecosystems. The aim is to use this knowledge to promote the rehabilitation and sustainability of argan agroecosystems. Full article
(This article belongs to the Collection Forest Environment and Ecology)
Show Figures

Figure 1

16 pages, 15890 KB  
Article
Patterns of Genetic and Morphological Variability of Teucrium montanum sensu lato (Lamiaceae) on the Balkan Peninsula
by Miloš Zbiljić, Dmitar Lakušić, Zlatko Šatović, Zlatko Liber and Nevena Kuzmanović
Plants 2024, 13(24), 3596; https://doi.org/10.3390/plants13243596 - 23 Dec 2024
Cited by 3 | Viewed by 1280
Abstract
The Balkan Peninsula represents an important center of plant diversity, exhibiting remarkable ecological heterogeneity that renders it an optimal region for studying the diversification patterns of complex taxa such as Teucrium montanum. In the Balkan Peninsula, T. montanum is a highly plastic [...] Read more.
The Balkan Peninsula represents an important center of plant diversity, exhibiting remarkable ecological heterogeneity that renders it an optimal region for studying the diversification patterns of complex taxa such as Teucrium montanum. In the Balkan Peninsula, T. montanum is a highly plastic and morphologically variable species with unresolved taxonomic status. To ascertain the patterns of genetic and morphological diversification, a comparative genetic and morphological analysis was conducted. In total, 57 populations were subjected to analysis using AFLP and a multivariate morphometric approach. A Bayesian analysis of population structure distinguished two main genetic clusters, labelled A and B. Cluster B was found to be geographically restricted to the northwestern Dinarides, while cluster A occurred in the rest of the Balkans. Genetic cluster A was further subdivided into four subclusters that were spatially separated from each other. The contact populations between the subclusters exhibited a mixed genetic structure. There was a partial correlation between genetic and morphological diversification. The peripheral populations of the genetic clusters displayed morphological differences, while both genetic and morphological differences decreased in the contact zones. The observed genetic structure can be attributed to the reproductive biology of this species and the complex geological history of the Balkan Peninsula. Full article
(This article belongs to the Special Issue Taxonomy and Nomenclature of Euro + Mediterranean Vascular Plants)
Show Figures

Figure 1

16 pages, 2518 KB  
Article
Application of Environmental DNA Metabarcoding to Differentiate Algal Communities by Littoral Zonation and Detect Unreported Algal Species
by Sergei Bombin, Andrei Bombin, Brian Wysor and Juan M. Lopez-Bautista
Phycology 2024, 4(4), 605-620; https://doi.org/10.3390/phycology4040033 - 18 Dec 2024
Viewed by 2119
Abstract
Coastal areas are the most biologically productive and undoubtedly among the most complex ecosystems. Algae are responsible for most of the gross primary production in these coastal regions. However, despite the critical importance of algae for the global ecosystem, the biodiversity of many [...] Read more.
Coastal areas are the most biologically productive and undoubtedly among the most complex ecosystems. Algae are responsible for most of the gross primary production in these coastal regions. However, despite the critical importance of algae for the global ecosystem, the biodiversity of many algal groups is understudied, partially due to the high complexity of morphologically identifying algal species. The current study aimed to take advantage of the recently developed technology for biotic community assessment through the high-throughput sequencing (HTS) of environmental DNA (eDNA), known as the “eDNA metabarcoding”, to characterize littoral algal communities in the Northern Gulf of Mexico (NGoM). This study demonstrated that eDNA metabarcoding, based on the universal plastid amplicon (UPA) and part of the large nuclear ribosomal subunit (LSU) molecular markers, could successfully differentiate coastal biotic communities among littoral zones and geographical locations along the shoreline of the NGoM. The statistical significance of separation between biotic communities was partially dependent on the dissimilarity calculation metric; thus, the differentiation of algal community structure according to littoral zones was more distinct when phylogenetic distances were incorporated into the diversity analysis. Current work demonstrated that the relative abundance of algal species obtained with eDNA metabarcoding matches previously established zonation patterns for these species. In addition, the present study detected molecular signals of 44 algal species without previous reports for the Gulf of Mexico, thus providing an important, molecular-validated baseline of species richness for this region. Full article
Show Figures

Figure 1

Back to TopTop