Active Control of Greenhouse Climate Enhances Papaya Growth and Yield at an Affordable Cost
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site and Plant Material
2.2. Climate Measurements: Plant Growth Conditions
2.3. Plant and Fruit Measurements: Plant Growth, Yields, and Fruit Quality
2.4. Profitability Analysis
2.5. Statistical Analysis
3. Results
3.1. Climate Measurements: Plant Growth Conditions
3.2. Plant and Fruit Measurements: Growth, Yields, and Fruit Quality
3.3. Profitability Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAOSTAT. Available online: http://www.fao.org/faostat/en/#data/QC/visualize (accessed on 11 February 2021).
- Nakasone, H.Y.; Paull, R.E. Papaya. In Tropical Fruits, Crop Production Science in Horticulture; CAB International: Wallingford, UK, 1998; pp. 239–269. [Google Scholar]
- Crane, J.H. Papaya Growing in the Florida Home Landscape; Institute of Food and Agricultural Sciences, University of Florida: Gainesville, FL, USA, 2005. [Google Scholar]
- Campostrini, E.; Glenn, D.M. Ecophysiology of papaya: A review. Braz. J. Plant Physiol. 2007, 19, 413–424. [Google Scholar] [CrossRef] [Green Version]
- Abato-Zárate, M.; Villanueva-Jiménez, J.A.; Otero-Colina, G.; Ávila-Reséndiz, C.; Reyes-Pérez, N. Population dynamics of mites of the families Tetranychidae and Phytoseiidae associated to Carica Papaya L., 1753. Acta Zoológica Mex. 2018, 34, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Damasceno, P.C.; Santana, T.N.; Gonzaga, M. Estimation of genetic parameters for flower anomalies in papaya. Crop Breed. Appl. Biotechnol. 2018, 18, 9–15. [Google Scholar] [CrossRef]
- Cunningham, B.; Nelson, S. Powdery Mildew of Papaya in Hawai’i. Plant Dis. 2012, 90, 1–4. [Google Scholar]
- Wang, R.H.; Chang, J.C.; Li, K.T.; Lin, T.S.; Chang, L.S. Leaf age and light intensity affect gas exchange parameters and photosynthesis within the developing canopy of field net-house-grown papaya trees. Sci. Hort. 2014, 165, 365–373. [Google Scholar] [CrossRef]
- Rosa, M.; De Souza, L.; Martins, T.M.; Simões, L.F.; De Souza, M. Effect of papaya (Carica papaya L.) cultivated in a protected environment on the occurrence of phytophagous mites and whiteflies. Rev. Bras. Frutic. 2004, 26, 441–445. [Google Scholar] [CrossRef]
- Gunes, E.; Gübbük, H. Growth, yield and fruit quality of three papaya cultivars grown under protected cultivation. Fruits 2011, 67, 23–29. [Google Scholar] [CrossRef]
- Honoré, M.N.; Belmonte-Ureña, L.J.; Navarro-Velasco, A.; Camacho-Ferre, F. Profit analysis of papaya crops under greenhouses as an alternative to traditional intensive horticulture in Southeast Spain. Int. J. Environ. Res. Public Health 2019, 16, 2908. [Google Scholar] [CrossRef] [Green Version]
- Hueso, J.J.; Salinas, I.; Pinillos, V.; Cuevas, J. Papaya greenhouse cultivation in south-east Spain. Acta Hortic. 2019, 1250, 1–6. [Google Scholar] [CrossRef]
- Salinas, I.; Pinillos, V.; Hueso, J.J.; Cuevas, J. Protected cultivation of ‘BH-65’, ‘Siluet’, ‘Sensation’, ‘Intenzza’ and ‘Red Lady’ papaya cultivars in South East Spain. Rev. Bras. Frutic. 2020, 42, e580. [Google Scholar] [CrossRef]
- Storey, W.B. Genetics of sex determination in papaya. Hawaii Agric. Exp. Sta. Ann. Rep. 1941, 1940, 52–53. [Google Scholar]
- Pinillos, V.; López, A.; Salinas, I.; Hueso, J.J.; Cuevas, J. Efecto del estado de maduración y época de recolección en la calidad de la papaya cultivada en invernadero en el Sureste español. Agric. Vergel 2017, 399, 95–99. [Google Scholar]
- Fraga, K.; Rangel, J.; Campostrini, E.; Salinas, I.; Hueso, J.J.; Cuevas, J. Leaf age does not justify its early removal in Carica papaya L. Ann. Appl. Biol. 2019, 176, 26–35. [Google Scholar] [CrossRef]
- Da Silva, F.F.; Gonzaga, M.; Cancela, H.C.; Corrêa, P.; Santana, T.N.; Ide, C.D. Genotypic correlations of morpho-agronomic traits in papaya and implications for genetic breeding. Crop. Breed. Appl. Biotechnol. 2007, 7, 345–352. [Google Scholar] [CrossRef] [Green Version]
- Permanhane, W.; Gontijo, I.; Souza, A.; Soares, J. Variability and spatial correlation between phenotypic attributes and productivity in papaya. JEAI 2018, 25, 1–13. [Google Scholar] [CrossRef]
- Chango, F. Desarrollo Floral y Calidad del Fruto en Papaya (Carica papaya L.). Master’s Thesis, University of Almería, Almería, Spain, 2018. [Google Scholar]
- Lorenzo, P. El cultivo en invernadero y su relación con el clima. In Innovación en Estructuras Productivas y Manejo de Cultivos en Agricultura Protegida; García-Torrente, R., López, J.C., Eds.; Cuadernos de Estudios Agroalimentarios Cajamar Caja Rural: Almería, Spain, 2012; Volume 3, pp. 23–43. [Google Scholar]
- Semillas del Caribe. Available online: https://www.semillasdelcaribe.com.mx/producto/siluet/?en (accessed on 12 December 2020).
- Allan, P. Out-of-season production of papaws (Carica papaya L.) in cool subtropical areas. Acta Hort. 1976, 57, 97–103. [Google Scholar] [CrossRef]
- Zhou, L.; Christopher, D.A.; Paull, R.E. Defoliation and fruit removal effects on papaya fruit production, sugar accumulation, and sucrose metabolism. J. Amer. Soc. Hort. Sci. 2000, 125, 644–652. [Google Scholar] [CrossRef] [Green Version]
Climate Control Strategy | Distance to First Flower (cm) * | Distance to First Fruit (cm) * |
---|---|---|
PCC | 58.5 a | 104.1 a |
ACC | 58.7 a | 80.9 b |
Climate Control Strategy | Total Yield (kg m−2) | Commercial Yield (kg m−2) | Discards (%) | Fruits Per Plant | Fruit Weight (g) |
---|---|---|---|---|---|
PCC | 14.1 b | 13.6 b | 3.5 a | 52 b | 983 b |
ACC | 33.5 a | 32.1 a | 4.4 a | 101 a | 1173 a |
Weight (g) | Length (cm) | Diameter (cm) | Cavity Width (cm) | |||||
---|---|---|---|---|---|---|---|---|
PCC | ACC | PCC | ACC | PCC | ACC | PCC | ACC | |
Summer | 724 b | 1100 a | 18.6 b | 21.6 a | 8.8 b | 10.4 a | 3.9 b | 5.4 a |
Winter | 1241 a | 1210 a | 23.4 a | 21.5 b | 11.0 a | 10.9 a | 6.3 a | 5.8 a |
Spring | 956 b | 1224 a | 19.4 b | 21.1 a | 11.4 a | 12.0 a | 5.8 a | 6.2 a |
Firmness (N) | TSS (°Brix) | TA (g Citric Acid L−1) | Skin Color (hue°) | Pulp Color (hue°) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
PCC | ACC | PCC | ACC | PCC | ACC | PCC | ACC | PCC | ACC | |
Summer | 30.0 a | 27.1 b | 11.1 a | 11.5 a | 1.0 a | 1.0 a | 83.6 a | 86.3 a | 50.0 a | 46.1 b |
Winter | 66.8 a | 65.6 a | 9.9 a | 9.6 a | 0.7 a | 0.8 a | 107.0 a | 107.8 a | 69.3 a | 65.4 a |
Spring | 49.4 a | 43.6 a | 10.7 a | 10.9 a | 0.8 b | 1.0 a | 102.9 a | 101.9 a | 52.2 a | 51.3 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salinas, I.; Hueso, J.J.; Cuevas, J. Active Control of Greenhouse Climate Enhances Papaya Growth and Yield at an Affordable Cost. Agronomy 2021, 11, 378. https://doi.org/10.3390/agronomy11020378
Salinas I, Hueso JJ, Cuevas J. Active Control of Greenhouse Climate Enhances Papaya Growth and Yield at an Affordable Cost. Agronomy. 2021; 11(2):378. https://doi.org/10.3390/agronomy11020378
Chicago/Turabian StyleSalinas, Irene, Juan José Hueso, and Julián Cuevas. 2021. "Active Control of Greenhouse Climate Enhances Papaya Growth and Yield at an Affordable Cost" Agronomy 11, no. 2: 378. https://doi.org/10.3390/agronomy11020378
APA StyleSalinas, I., Hueso, J. J., & Cuevas, J. (2021). Active Control of Greenhouse Climate Enhances Papaya Growth and Yield at an Affordable Cost. Agronomy, 11(2), 378. https://doi.org/10.3390/agronomy11020378