Drainage Conditions Influence Corn-Nitrogen Management in the US Upper Midwest
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Weather and Soil Conditions
3.2. Grain Yield and Grain Nitrogen Recovery
3.3. Nitrogen Requirement
3.4. Residual Soil Nitrogen
3.5. In-Season Soil Nitrogen
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beauchamp, K.H. A history of drainage and drainage methods. In Farm Drainage in the United States. History, Status, and Prospects; Miscellaneous Publication Number 1455; Pavelis, G.A., Ed.; Economic Research Service (DOA): Washington, DC, USA, 1987. [Google Scholar]
- Carlson, B.M. Defining programming directions and priorities with respect to water quality and row crop production. J. NACAA 2014, 7. Available online: https://www.nacaa.com/journal/4445b911-0870-4232-85b0-11a98f7fbf1d (accessed on 7 December 2021).
- Sutton, J.G. Drainage as an aid to increased food production. Agr. Eng. 1943, 24, 327–331. [Google Scholar]
- Mukhtar, S.; Baker, J.L.; Kanwar, R.S. Corn growth as affected by excess soil water. Trans. Am. Soc. Agric. Eng. 1990, 33, 437–442. [Google Scholar] [CrossRef]
- Geigenberger, P. Response of plant metabolism to too little oxygen. Curr. Opin. Plant Biol. 2003, 6, 247–256. [Google Scholar] [CrossRef]
- Kaur, G.; Singh, G.; Motavalli, P.P.; Nelson, K.A.; Orlowski, J.M.; Golden, B.R. Impacts and Management Strategies for Crop Production in Waterlogged or Flooded Soils: A Review. Agron. J. 2020, 112, 1475–1501. [Google Scholar] [CrossRef]
- Reddy, K.R.; Patrick, W.H.; Broadbent, F.E. Nitrogen transformations and loss in flooded soils and sediments. CRC Crit. Rev. Environ. Control. 1984, 13, 273–309. [Google Scholar] [CrossRef]
- Fernández, F.G.; Venterea, R.T.; Fabrizzi, K.P. Corn Nitrogen Management Influences Nitrous Oxide Emissions in Drained and Undrained Soils. J. Environ. Qual. 2016, 45, 1847–1855. [Google Scholar] [CrossRef]
- Fernandez, F.G.; Fabrizzi, K.P.; Naeve, S.L. Corn and Soybean’s Season-Long in-Situ Nitrogen Mineralization in Drained and Undrained Soils. Nutr. Cycl. Agroecosystems 2017, 107, 33–47. [Google Scholar] [CrossRef]
- Xiong, X.; Wilson, E.; Fernández, F.G. How Variable Is Nitrogen in Production Agriculture Fields? Crops Soils 2016, 49, 38–42. [Google Scholar] [CrossRef]
- Castellano, M.J.; Archontoulis, S.V.; Helmers, M.J.; Poffenbarger, H.J.; Six, J. Sustainable Intensification of Agricultural Drainage. Nat. Sustain. 2019, 2, 914–921. [Google Scholar] [CrossRef]
- Sawyer, J.; Nafziger, E.; Randall, G.; Bundy, L.; Rehm, G.; Joern, B. Concepts and Rationale for Regional Nitrogen Rate Guidelines for Corn; Iowa State University-University Extension: Ames, IA, USA, 2006; pp. 1–28. Available online: https://store.extension.iastate.edu/Product/Concepts-and-Rationale-for-Regional-Nitrogen-Rate-Guidelines-for-Corn-pdf (accessed on 7 December 2021).
- Magdoff, F.R. Understanding the Magdoff pre-sidedress nitrate test for corn. J. Prod. Agric. 1991, 4, 297–305. [Google Scholar] [CrossRef]
- Erisman, J.W.; Galloway, J.N.; Seitzinger, S.; Bleeker, A.; Dise, N.B.; Roxana Petrescu, A.M.; Leach, A.M.; de Vries, W. Consequences of Human Modification of the Global Nitrogen Cycle. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130116. [Google Scholar] [CrossRef]
- Harding, K.J.; Snyder, P.K. Examining Future Changes in the Character of Central U.S. Warm-Season Precipitation Using Dynamical Downscaling. J. Geophys. Res. Atmospheres 2014, 119, 116–136. [Google Scholar] [CrossRef]
- NOAA. NOWData–NOAA Online Weather Data; National Weather Service Forecast Office (Twin Cities): Chanhassen, MN, USA, 2018. Available online: https://w2.weather.gov/climate/xmacis.php?wfo=mpx (accessed on 2 December 2020).
- Blake, G.R.; Hartge, K.H. Bulk density. In Methods of Soil Analysis, 2nd ed.; Part 1. Agronomy Monograph 9; Klute, A., Ed.; ASA and SSSA: Madison, WI, USA, 1986; pp. 363–375. [Google Scholar]
- Horneck, D.A.; Miller, R.O. Determination of total nitrogen in plant tissue. In Handbook of Reference Methods for Plant Analysis; Kalra, Y.P., Ed.; CRC Press: New York, USA, 1998; pp. 75–83. [Google Scholar]
- Mulvaney, R.L. Nitrogen: Inorganic forms. In Methods of Soil Analysis; Part 3. Chemical methods; SSSA Book Ser. 5; Sparks, D.L., Ed.; SSSA: Madison, WI, USA, 1996; pp. 1123–1200. [Google Scholar]
- Gelderman, R.H.; Beegle, D. Nitrate-nitrogen. In Recommended Chemical Soil Test Procedures for the North Central Region; North Central Reg. Publ. 221; Nathan, M.V., Gelderman, R., Eds.; University of Missouri: Columbia, MI, USA, 1998; pp. 5.1–5.4. [Google Scholar]
- R Core Team. R: A Language and Environment for STATISTICAL Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 10 July 2021).
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. Lme4: Linear Mixed-Effects Models Using Eigen and S4. R Package Version 1.1-7. Available online: https://cran.r-project.org/web/packages/lme4/index.html (accessed on 10 July 2021).
- Russell, L. Emmeans: Estimated Marginal Means, Aka Least-Squares Means. R Package Version 1.5.2-1. 2020. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 10 August 2021).
- Weisberg, S. Variable selection. In Applied Linear Regression, 4th ed.; Balding, D.J., Cressie, N.A.C., Fitzmaurice, G.M., Goldstein, H., Johnstone, I.M., Molenberghs, G., Scott, D.W., Smith, A.F.M., Tsay, R.S., Weisberg, S., Eds.; Wiley: Hoboken, NJ, USA, 2014. [Google Scholar]
- Box, G.E.P.; Cox, D.R. An analysis of transformations. J. R. Stat. Soc. 1964, 26, 211–252. [Google Scholar] [CrossRef]
- Paiao, G.D.; Fernández, F.G.; Spackman, J.A.; Kaiser, D.E.; Weisberg, S. Integrating canopy sensing and soil nitrogen for improved corn nitrogen management. Agron. J. 2021, 113, 1996–2005. [Google Scholar] [CrossRef]
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 3rd ed.; Sage: Thousand Oaks, CA, USA, 2019; Available online: https://socialsciences.mcmaster.ca/jfox/Books/Companion/ (accessed on 20 September 2021).
- Kaiser, D.; Fernandez, F.G.; Wilson, M.; Coulter, J.; Barber, B. Fertilizing Corn in Minnesota; University of Minnesota: St. Paul, MN, USA, 2020; Available online: https://extension.umn.edu/crop-specific-needs/fertilizing-corn-minnesota (accessed on 15 August 2021).
- Awale, R.; Chatterjee, A.; Kandel, H.; Ransom, J.K. Tile Drainage and Nitrogen Fertilizer Management Influences on Nitrogen Availability, Losses, and Crop Yields. Open J. Soil Sci. 2015, 5, 211–226. [Google Scholar] [CrossRef][Green Version]
- Van Es, H.M.; Yang, C.L.; Geohring, L.D. Maize Nitrogen Response as Affected by Soil Type and Drainage Variability. Precis. Agric. 2005, 6, 281–295. [Google Scholar] [CrossRef]
- Kladivko, E.J.; Willoughby, G.L.; Santini, J.B. Corn Growth and Yield Response to Subsurface Drain Spacing on Clermont Silt Loam Soil. Agron. J. 2005, 97, 1419–1428. [Google Scholar] [CrossRef]
- Triplett, G.B., Jr.; Van Doren, D.M., Jr. Development of a drainage variable facility for soil and crop management studies on a lakebed clay soil. Ohio Agr. Res. Devel. Cent. Res. Circ. 1963, 117. Available online: https://core.ac.uk/download/pdf/159577945.pdf (accessed on 7 December 2021).
- Mamo, M.; Malzer, G.L.; Mulla, D.J.; Huggins, D.R.; Strock, J. Spatial and Temporal Variation in Economically Optimum Nitrogen Rate for Corn. Agron. J. 2003, 95, 958–964. [Google Scholar] [CrossRef]
- Cassman, K.G.; Walters, D.T.; Dobermann, A.R.; Walters, D.T. Agroecosystems, Nitrogen-Use Efficiency, and Nitrogen Management. Ambio 2002, 31, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Ghane, E.; Fausey, N.R.; Shedekar, V.S.; Piepho, H.P.; Shang, Y.; Brown, L.C. Crop Yield Evaluation under Controlled Drainage in Ohio, United States. J. Soil Water Conserv. 2012, 67, 465–473. [Google Scholar] [CrossRef]
- Robertson, G.P.; Groffman, P.M. Nitrogen transformations. In Soil Microbiology, Ecology and Biochemistry, 4th ed.; Paul, E.A., Ed.; Academic Press: Burlington, MA, USA, 2015; pp. 421–446. [Google Scholar]
- Wu, D.; Cárdenas, L.M.; Calvet, S.; Brüggemann, N.; Loick, N.; Liu, S.; Bol, R. The Effect of Nitrification Inhibitor on N2O, NO and N2 Emissions under Different Soil Moisture Levels in a Permanent Grassland Soil. Soil Biol. Biochem. 2017, 113, 153–160. [Google Scholar] [CrossRef]
- Struffert, A.M.; Rubin, J.C.; Fernández, F.G.; Lamb, J.A. Nitrogen Management for Corn and Groundwater Quality in Upper Midwest Irrigated Sands. J. Environ. Qual. 2016, 45, 1557–1564. [Google Scholar] [CrossRef] [PubMed]
- Spackman, J.A.; Fernandez, F.G.; Coulter, J.A.; Kaiser, D.E.; Paiao, G. Soil Texture and Precipitation Influence Optimal Time of Nitrogen Fertilization for Corn. Agron. J. 2019, 111, 2018–2030. [Google Scholar] [CrossRef]
- Kitchen, N.R.; Shanahan, J.F.; Ransom, C.J.; Bandura, C.J.; Bean, G.M.; Camberato, J.J.; Carter, P.R.; Clark, J.D.; Ferguson, R.B.; Fernández, F.G. A Public–Industry Partnership for Enhancing Corn Nitrogen Research and Datasets: Project Description, Methodology, and Outcomes. Agron. J. 2017, 109, 2371–2388. [Google Scholar] [CrossRef]
- Kusunose, Y.; Mahmood, R. Imperfect Forecasts and Decision Making in Agriculture. Agric. Syst. 2016, 146, 103–110. [Google Scholar] [CrossRef]
- Clark, J.D.; Fernández, F.G.; Camberato, J.J.; Carter, P.R.; Ferguson, R.B.; Franzen, D.W.; Kitchen, N.R.; Laboski, C.A.M.; Nafziger, E.D.; Sawyer, J.E.; et al. Weather and Soil in the US Midwest Influence the Effectiveness of Single- and Split-Nitrogen Applications in Corn Production. Agron. J. 2020, 112, 5288–5299. [Google Scholar] [CrossRef]
- Hong, N.; Scharf, P.C.; Davis, J.G.; Kitchen, N.R.; Sudduth, K.A. Economically Optimal Nitrogen Rate Reduces Soil Residual Nitrate. J. Environ. Qual. 2007, 36, 354–362. [Google Scholar] [CrossRef]
- Laboski, C.A.M.; Bandura, C.; Camberato, J.J.; Carter, P.R.; Ferguson, R.B.; Fernández, F.G.; Franzen, D.W.; Kitchen, N.R.; Nafziger, E.D.; Sawyer, J.E.; et al. Is NUE a useful metric of sustainability? In Annual Meetings Abstracts; ASA, CSSA, and SSSA: Madison, WI, USA, 2019. [Google Scholar]
- Basu, N.B.; Thompson, S.E.; Rao, P.S.C. Hydrologic and Biogeochemical Functioning of Intensively Managed Catchments: A Synthesis of Top-down Analyses. Water Resour. Res. 2011, 47, 1–12. [Google Scholar] [CrossRef]
- Randall, G.W.; Huggins, D.R.; Russelle, M.P.; Fuchs, D.J.; Nelson, W.W.; Anderson, J.L. Nitrate Losses through Subsurface Tile Drainage in Conservation Reserve Program, Alfalfa, and Row Crop Systems. J. Environ. Qual. 1997, 26, 1240–1247. [Google Scholar] [CrossRef]
- Spackman, J.A. Fate of Pre-Plant and Split-Applied 15Nitrogen Enriched Urea in Corn. Doctoral Dissertation, University of Minnesota, St. Paul, MN, USA, August 2020. [Google Scholar]
- Robertson, G.P. Nitrogen use efficiency in row crop agriculture: Crop nitrogen use and soil nitrogen loss. In Ecology in Agriculture; Jackson, L.E., Ed.; Academic Press: New York, NY, USA, 1997; pp. 347–365. [Google Scholar]
- Binford, G.D.; Blackmer, A.M.; Cerrato, M.E. Relationships between Corn Yields and Soil Nitrate in Late Spring. Agron. J. 1992, 84, 53–59. [Google Scholar] [CrossRef]
- Spackman, J.A. Nitrogen Fertilizer Rate, Source, and Application Timing Effects on Soil Nitrogen and Corn Yield. Master’s Thesis, University of Minnesota, St. Paul, MN, USA, 2018. [Google Scholar]
CEC | pH | P | K | Ca | Mg | SO4-S | OM | Sand | Silt | Clay | FC 2 |
---|---|---|---|---|---|---|---|---|---|---|---|
(meq 100 g−1) | (mg kg−1) | (g kg−1) | |||||||||
21 | 6.1 | 24 | 215 | 3571 | 623 | 9.3 | 49.5 | 360 | 290 | 350 | 302 |
Year | Hybrid | Planting | Harvest | Fert. Application 1 | Soil Sampling | |||
---|---|---|---|---|---|---|---|---|
PL | SP | In Season | Postharvest | Next Spring 2 | ||||
2014 | DK 53-78 RIB | 24-May | 21-October | 22-May | 20-June | 20-June | 30-October | 30-April |
2015 | DK 48-12 RIB | 4-May | 12-October | 30-April | 2-June | 9-June | 6-November | 4-May |
2016 | DK 48-12 RIB | 16-May | 17-October | 6-May | 20-June | 20-June | 20-October | 8-May |
2017 | P9929 AMXT | 12-May | 25-October | 26-May | 20-June | 20-June | 3-November | 21-May |
2018 | P9929 AMXT | 17-May | 24-October | 21-May | 2-July | 25-June | 31-October | 31-May |
2019 | P9929 AMXT | 16-May | 29-October | 31-May | 12-July | 1-July | 20-November | 13-May |
Year | Timing 1 | ONR | Grain Yield at ONR | Grain Yield at MRTN | Margin at ONR 2 | Margin at MRTN | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
kg N ha−1 | Mg grain ha−1 | USD ha−1 | |||||||||
D | U | D | U | D | U | D | U | D | U | ||
2014 | PL | 167 | 143 | 11.8 | 11.7 | 11.6 | 11.8 | 1706 | 1711 | 1694 | 1725 |
2015 | PL | 121 | 224 | 13.4 | 13.3 | 13.4 | 11.6 | 1997 | 1891 | 1976 | 1694 |
2016 | PL | 103 | 136 | 13.6 | 14.0 | 13.3 | 14.0 | 2045 | 2078 | 1961 | 2070 |
2017 | PL | 174 | 224 | 13.6 | 13.4 | 13.3 | 11.1 | 1982 | 1907 | 1961 | 1615 |
2018 | PL | 224 | 224 | 14.9 | 12.8 | 13.0 | 10.8 | 2142 | 1812 | 1913 | 1568 |
2019 | PL | 134 | 224 | 11.1 | 12.3 | 11.1 | 9.7 | 1625 | 1734 | 1615 | 1395 |
2014 | SP | - | - | - | - | - | - | - | - | - | - |
2015 | SP | 157 | 179 3 | 13.6 | 13.1 | 13.5 | 11.3 | 1972 | 1874 | 1967 | 1622 |
2016 | SP | 87 | 179 3 | 13.5 | 14.2 | 12.3 | 13.8 | 2018 | 2047 | 1779 | 2014 |
2017 | SP | 224 | 224 | 14.1 | 12.9 | 12.8 | 11.2 | 1992 | 1803 | 1857 | 1606 |
2018 | SP | 194 | 187 | 14.3 | 13.2 | 13.6 | 12.7 | 2049 | 1883 | 1983 | 1841 |
2019 | SP | 176 | 176 | 12.8 | 11.7 | 12.4 | 11.3 | 1830 | 1657 | 1794 | 1622 |
Year | Residual TINFall (kg N ha−1) | Residual TINDiff (kg N ha−1) | ||||||
---|---|---|---|---|---|---|---|---|
Drained | Undrained | Drained | Undrained | |||||
PL 1 | SP 2 | PL | SP | PL | SP | PL | SP | |
2014 | 63a | 58a | 63a | 52a | 4a | 3a | 10a | −10a |
2015 | 105ab | 110a | 74c | 79bc | 35a | 35a | 39a | 19a |
2016 | 85b | 101ab | 87b | 116a | 23a | 18a | 13a | 40a |
2017 | 89a | 98a | 86a | 95a | 13a | 19a | 2a | 21a |
2018 | 88a | 81a | 82a | 93a | 28a | 37a | 32a | 44a |
2019 | 99a | 98a | 90a | 93a | 23a | 27a | 36a | 49a |
Mean | 88a | 91a | 80a | 88a | 21a | 23a | 22a | 27a |
Year | Soil N30V6 Intensity | Optimal Soil N30V6 | ||
---|---|---|---|---|
kg N ha−1 | mg kg−1 | |||
Drained | Undrained | Drained | Undrained | |
2014 | 28a 1 | 34a | - | - |
2015 | 56a | 59a | - | - |
2016 | 41a | 49a | - | - |
2017 | 37a | 30a | 23 (13.6) 2 | 25 (13.4) |
2018 | 11a | 8b | 15 (14.9) | 6 (12.8) |
2019 | 20a | 25a | 17 (11.1) | 18 (12.3) |
Mean | 28a | 29a | 18 (13.2) | 16 (12.8) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paiao, G.D.; Fernández, F.G.; Naeve, S.L. Drainage Conditions Influence Corn-Nitrogen Management in the US Upper Midwest. Agronomy 2021, 11, 2491. https://doi.org/10.3390/agronomy11122491
Paiao GD, Fernández FG, Naeve SL. Drainage Conditions Influence Corn-Nitrogen Management in the US Upper Midwest. Agronomy. 2021; 11(12):2491. https://doi.org/10.3390/agronomy11122491
Chicago/Turabian StylePaiao, Gabriel Dias, Fabián G. Fernández, and Seth L. Naeve. 2021. "Drainage Conditions Influence Corn-Nitrogen Management in the US Upper Midwest" Agronomy 11, no. 12: 2491. https://doi.org/10.3390/agronomy11122491
APA StylePaiao, G. D., Fernández, F. G., & Naeve, S. L. (2021). Drainage Conditions Influence Corn-Nitrogen Management in the US Upper Midwest. Agronomy, 11(12), 2491. https://doi.org/10.3390/agronomy11122491