Effects of Leachate Fertigation and the Addition of Hydrogen Peroxide on Growth and Nutrient Balance in Dracaena deremensis Potted Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Growing Conditions
2.2. Monitoring of Irrigation and Leachate Composition
2.3. Yield and Water Productivity
2.4. Ornamental Parameters and Pigments Concentration
2.5. Biomass Parameters
2.6. Biochemical Determinations
2.7. Nutrient Balance
2.8. Statistical Analysis
3. Results
3.1. Chemical Composition of the Nutrient Solution
3.2. Yield and Water Productivity in Plants
3.3. Ornamental Parameters and Pigments Concentrations
3.4. Biomass Parameters
3.5. Biochemical Determinations
3.6. Nutrient Balance
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Boutigny, A.L.; Dohin, N.; Pornin, D.; Rolland, M. Overview and detectability of the genetic modifications in ornamental plants. Hortic. Res. 2020, 7, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Caparrós, P.; Lao, M.T. The effects of salt stress on ornamental plants and integrative cultivation practices. Sci. Hortic. 2018, 240, 430–439. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Allaire, S.E.; Akram, N.A.; Méndez, A.; Younis, A.; Peerzada, A.M.; Shaukat, N.; Wright, S.R. Challenges in organic component selection and biochar as an opportunity in potting substrates: A review. J. Plant Nutr. 2019, 42, 1386–1401. [Google Scholar] [CrossRef]
- Warsaw, A.L.; Fernandez, R.T.; Cregg, B.M.; Andresen, J.A. Container-grown ornamental plant growth and water runoff nutrient content and volume under four irrigation treatments. HortScience 2009, 44, 1573–1580. [Google Scholar] [CrossRef] [Green Version]
- García-Caparrós, P.; Llanderal, A.; El-Tarawy, A.; Correia, P.J.; Pestana, M.; Lao, M.T. Irrigation with drainage solutions improves the growth and nutrients uptake in Juncus acutus. Ecol. Engin. 2016, 95, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Bethune, M.G.; Gyles, O.A.; Wang, Q.J. Options for management of saline ground water in an irrigated farming system. Aus. J. Exp. Agric. 2004, 44, 181–188. [Google Scholar] [CrossRef]
- Chen, X.; Dhungel, J.; Bhattarai, S.; Torabi, M.; Midmore, D.J. Impact of oxygation on soil respiration and crop physiological characteristics in pineapple. J. Drain. Irrig. Mach. Engin. 2010, 28, 543–547. [Google Scholar]
- Massee, I. The sterilization of seed. Bull. Misc. Inf. 1913, 183–187. [Google Scholar] [CrossRef]
- Ben-Noah, I.; Friedman, S.P. Oxygation of clayey soils by adding hydrogen peroxide to the irrigation solution: Lysimetric experiments. Rhizosphere 2016, 2, 51–61. [Google Scholar] [CrossRef]
- Bhattarai, S.P.; Su, N.; Midmore, D.J. Oxygation unlocks yield potentials of crops in oxygen-limited soil environments. Adv. Agron. 2005, 88, 313–377. [Google Scholar]
- Guzel, S.; Terzi, R. Exogenous hydrogen peroxide increases dry matter production, mineral content and level of osmotic solutes in young maize leaves and alleviates deleterious effects of copper stress. Bot. Stud. 2013, 54, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, F.E.L.; Lobo, A.K.M.; Bonifacio, A.; Martins, M.O.; Lima Neto, M.C.; Silveira, J.A.G. Aclimatação ao estresse salino em plantas de arroz induzida pelo pré-tratamento com H2O2. Rev. Bras. Eng. Agric. Ambient. 2011, 15, 416–423. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.A.R.; Lima, G.S.; Azevedo, C.A.V.; Veloso, L.L.S.A.; Gheyi, H.R.; Soares, L.A.A. Salt stress and exogenous application of hydrogen peroxide on photosynthetic parameters of soursop. Rev. Bras. Eng. Agric. Ambient. 2019, 23, 257–263. [Google Scholar] [CrossRef] [Green Version]
- Zulfiqar, F.; Younis, A.; Asif, M.; Abideen, Z.; Allaire, S.E.; Shao, Q.S. Evaluation of container substrates containing compost and biochar for ornamental plant Dracaena deremensis. Pak. J. Agric. Sci. 2019, 56, 613–621. [Google Scholar]
- García-Caparrós, P.; Llanderal, A.; Maksimovic, I.; Lao, M.T. Cascade cropping system with horticultural and ornamental plants under greenhouse conditions. Water 2018, 10, 125. [Google Scholar] [CrossRef] [Green Version]
- García-Caparrós, P.; Llanderal, A.; El-Tarawy, A.; Maksimovic, I.; Lao, M.T. Crop and irrigation management systems under greenhouse conditions. Water 2018, 10, 62. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, R.M.; Caballero, M.R. El Cultivo Industrial de Plantas en Maceta; Ediciones De Horticultura S.L.: Reus, Spain, 1990; p. 664. [Google Scholar]
- Csáky, A.G.; Martínez-Grau, M.A. Técnicas Experimentales en Síntesis Orgánica; Editorial Síntesis: Madrid, Spain, 1998. [Google Scholar]
- García-Caparrós, P.; González-Salmerón, O.; Pérez-Saiz, M.; Calatrava, R.; Lao, M.T.; Chica, R.M.; De la Cruz, G. Types of shelter and covering materials influencing growth, pigment, and nutrient concentrations of baby rubber plants (Peperomia obtusifolia). HortScience 2018, 53, 1434–1440. [Google Scholar] [CrossRef] [Green Version]
- García-Caparrós, P.; Llanderal, A.; Hegarat, E.; Jiménez-Lao, M.; Lao, M.T. Effects of exogenous application of osmotic adjustment substances on growth, pigment concentration, and physiological parameters of Dracaena sanderiana Sander under different levels of salinity. Agronomy 2020, 10, 125. [Google Scholar] [CrossRef] [Green Version]
- Wellburn, A. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvent with spectrophotometers of different resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- García-Caparrós, P.; Llanderal, A.; Pestana, M.; Correia, P.J.; Lao, M.T. Tolerance mechanisms of three potted ornamental plants grown under moderate salinity. Sci. Hortic. 2016, 201, 84–91. [Google Scholar] [CrossRef] [Green Version]
- García-Caparrós, P.; Llanderal, A.; Pestana, M.; Correia, P.J.; Lao, M.T. Lavandula multifida response to salinity: Growth, nutrient uptake, and physiological changes. J. Plant Nutr. Soil Sci. 2017, 180, 96–104. [Google Scholar] [CrossRef]
- Ben Amor, N.; Ben Hamed, K.; Debez, A.; Grignon, C.; Abdelly, C. Physiological and antioxidant responses of the perennial halophyte Crithmum maritimum to salinity. Plant Sci. 2005, 168, 889–899. [Google Scholar] [CrossRef]
- Irigoyen, J.J.; Emerich, D.W.; Sánchez-Díaz, M. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiol. Plant. 1992, 84, 55–60. [Google Scholar] [CrossRef]
- García-Caparrós, P.; Llanderal, A.; Lao, M.T. Water and nutrient uptake efficiency in containerized production of fern leaf lavender irrigated with saline water. HortTechnology 2016, 26, 742–747. [Google Scholar] [CrossRef] [Green Version]
- García-Caparrós, P.; Llanderal, A.; Rodríguez, J.C.; Maksimovic, I.; Urrestarazu, M.; Lao, M.T. Rosemary growth and nutrient balance: Leachate fertigation with leachates versus conventional fertigation. Sci. Hortic. 2018, 242, 62–68. [Google Scholar] [CrossRef]
- Hogue, E.; Wilcow, G.E.; Cantliffe, D.J. Effect of soil P on phosphate fraction in tomato leaves. J. Am. Soc. Hort. Sci. 1970, 95, 174–176. [Google Scholar]
- Krom, M.D. Spectrophotometric determination of ammonia: Study of a modified Berthelot reaction using salicylate and dicholoroisocyanurate. Analyst 1980, 105, 305–316. [Google Scholar] [CrossRef]
- Lachica, M.; Aguilar, A.; Yanez, J. Análisis foliar: Métodos utilizados en la Estación Experimental del Zaidín. Anal. Edafol. Agrobiol. 1973, 32, 1033–1047. [Google Scholar]
- Sonneveld, C.; van den Ende, J.; van Dijk, P.A. Analysis of a growing media by means of a 1:1½ volume extract. Commun. Soil Sci. Plant Anal. 1974, 5, 183–202. [Google Scholar] [CrossRef]
- Mengel, K.; Kirkby, E.A. Principles of Plant Nutrition; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; p. 849. [Google Scholar]
- Smesrud, J.K.; Duvendack, G.D.; Obereiner, J.M.; Jordahl, J.L.; Madison, M.F. Practical salinity management for leachate irrigation to poplar trees. Int. J. Phyto. 2012, 14, 26–46. [Google Scholar] [CrossRef]
- Massa, D.; Incrocci, L.; Maggini, R.; Carmassi, G.; Campiotti, C.A.; Pardossi, A. Strategies to decrease water drainage and nitrate emission from soilless cultures of greenhouse tomato. Agric. Water Manag. 2010, 97, 971–980. [Google Scholar] [CrossRef]
- Hawkesford, M.J.; De Kok, L.J. Managing sulphur metabolism in plants. Plant Cell Environ. 2006, 29, 382–395. [Google Scholar] [CrossRef] [Green Version]
- Bhattarai, S.P.; Huber, S.; Midmore, D.J. Aerated subsurface irrigation water gives growth and yield benefits to zucchini, vegetable soybean and cotton in heavy clay soil. Ann. Appl. Biol. 2004, 144, 285–298. [Google Scholar] [CrossRef]
- Pendergast, L.; Bhattarai, S.P.; Midmore, D.J. Benefits of oxygation of subsurface drip-irrigation water for cotton in a Vertosol. Crop Pasture Sci. 2014, 64, 1171–1181. [Google Scholar] [CrossRef]
- Joo, J.H.; Bae, Y.S.; Lee, J.S. Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiol. 2001, 126, 1055–1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Caparrós, P.; Llanderal, A.; El-Tarawy, A.; Majsztrik, J.; Lao, M.T. Response of container-grown confetti tree irrigated with runoff water. HortTechnology 2017, 27, 625–630. [Google Scholar] [CrossRef] [Green Version]
- Santos, C.V. Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Sci. Hortic. 2004, 103, 93–99. [Google Scholar] [CrossRef]
- Li, Y.; Jia, Z.; Niu, W.; Zhang, M. Effect of post-infiltration soil aeration at different growth stages on growth and fruit quality of drip-irrigated potted tomato plants (Solanum lycopersicum). PLoS ONE 2015, 10, e0143322. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.; Sun, J.; Jiang, Y.; Hu, D.; Yang, X.; Dong, M.; Yu, K.; Yu, S. Effect of rhizosphere aeration by subsurface drip irrigation with tanks on the growth of ‘red globe’ grape seedling and its absorption, distribution and utilization of urea-15 n. Sci. Hortic. 2018, 236, 207–213. [Google Scholar] [CrossRef]
- Hameed, A.; Shafqat, F.; Nayyer, I.; Rubina, A. Influence of exogenous application of hydrogen peroxide on root and seedling growth on wheat (Triticum aestivum L.). Int. J. Agric. Biol. 2004, 6, 366–369. [Google Scholar]
- Gil, P.M.M.; Ferreyra, R.E.; Barrerea, C.M.; Zúñiga, C.E.; Gurovich, L.R. Effect of injecting hydrogen peroxide into heavy clay loam soil on plant water status, net CO2 assimilation, biomass and vascular anatomy of avocado trees. Chil. J. Agric. Res. 2009, 69, 97–106. [Google Scholar] [CrossRef]
- Szabados, L.; Savoure, A. Proline: A multifunctional amino acid. Trends Plant Sci. 2010, 15, 89–97. [Google Scholar] [CrossRef]
- Lima, R.E.; Luciana, F.D.L.; Ferreira, J.F.; Suarez, D.L.; Bezerra, M.A. Translocation of photoassimilates in melon vines and fruits under salinity using 13C isotope. Sci. Hortic. 2020, 274, 109659. [Google Scholar] [CrossRef]
- Ristvey, A.G.; Lea-Cox, J.D.; Ross, D.S. Nitrogen and phosphorus uptake efficiency and partitioning of container-grown azalea during spring growth. J. Am. Soc. Hortic. Sci. 2007, 132, 563–571. [Google Scholar] [CrossRef] [Green Version]
- Marconi, D.J.; Nelson, P.V. Leaching of applied phosphorus in container media. Sci. Hortic. 1984, 22, 275–285. [Google Scholar] [CrossRef]
Parameters | D0 | DL | DL + H2O2 |
---|---|---|---|
pH | 6.60 ± 0.10 b | 7.96 ± 0.11 a | 7.88 ± 0.12 a |
EC | 1.90 ± 0.12 b | 4.55 ± 0.24 a | 4.61 ± 0.25 a |
Cl− | 3.50 ± 0.11 b | 20.94 ± 2.85 a | 20.88 ± 2.63 a |
NO3− | 6.05 ± 0.51 b | 15.87 ± 1.61 a | 14.32 ± 1.54 a |
H2PO4− | 0.70 ± 0.06 a | 0.30 ± 0.03 b | 0.26 ± 0.03 b |
SO42− | 2.01 ± 0.04 a | 1.69 ± 0.09 b | 1.68 ± 0.11 b |
Na+ | 2.60 ± 0.08 b | 12.12 ± 0.88 a | 12.28 ± 0.98 a |
K+ | 3.08 ± 0.06 b | 8.14 ± 0.50 a | 8.18 ± 0.45 a |
Ca2+ | 2.03 ± 0.05 b | 9.55 ± 0.55 a | 9.53 ± 0.54 a |
Mg2+ | 1.41 ± 0.04 b | 4.44 ± 0.38 a | 4.40 ± 0.32 a |
Parameters | D0 | DL | DL + H2O2 |
---|---|---|---|
Irrigation water applied (L m−2) | 10.2 a | 10.2 a | 10.2 a |
Water uptake | 7.0 ± 0.5 a | 7.1 ± 0.5 a | 7.0 ± 0.6 a |
Leachate (L m−2) | 3.1 ± 0.3 a | 2.9 ± 0.3 a | 3.1 ± 0.3 a |
Leachate fraction (%) | 30 a | 30 a | 30 a |
Yield (g FW m−2) | 150.1 ± 12.7 b | 122.5 ± 10.8. c | 241.3 ± 19.8 a |
Water productivity (g of FW per L of water applied) | 14.2 ± 1.0 b | 12.1 ± 0.8 c | 23.9 ± 2.5 a |
Treatments | Root Length | Plant Height | Leaf Number | Color Index | Pigment Concentrations | ||||
---|---|---|---|---|---|---|---|---|---|
Red | Green | Blue | Chl a | Chl b | Chl (a + b) | ||||
D0 | 41.25 ± 2.75 a | 35.53 ± 1.74 b | 23.00 ± 2.04 a | 111.25 ± 7.66 a | 109.07 ± 6.92 a | 86.05 ± 6.58 a | 0.06 ± 0.01 a | 0.70 ± 0.06 a | 0.75 ± 0.06 a |
DL | 33.75 ± 2.22 b | 34.13 ± 1.65 b | 17.50 ± 1.29 b | 88.50 ± 5.72 b | 85.18 ± 5.05 b | 56.55 ± 3.43 b | 0.02 ± 0.01 b | 0.42 ± 0.04 c | 0.45 ± 0.04 c |
DL + H2O2 | 34.13 ± 2.46 b | 40.25 ± 1.89 a | 19.00 ± 1.63 b | 84.10 ± 4.69 b | 87.25 ± 5.25 b | 53.95 ± 3.68 b | 0.03 ± 0.01 b | 0.55 ± 0.05 b | 0.60 ± 0.06 b |
Treatments | RDW | SDW | LDW | TDW | RWR | SWR | LWR | WC |
---|---|---|---|---|---|---|---|---|
D0 | 2.56 ± 0.24 a | 1.27 ± 0.07 a | 6.97 ± 0.61 b | 10.60 ± 0.64 b | 0.23 ± 0.02 a | 0.12 ± 0.01 a | 0.65 ± 0.05 a | 1.27 ± 0.10 b |
DL | 1.88 ± 0.16 b | 1.10 ± 0.07 b | 7.08 ± 0.60 b | 9.17 ± 0.56 c | 0.21 ± 0.02 a | 0.12 ± 0.01 a | 0.67 ± 0.05 a | 1.22 ± 0.09 b |
DL + H2O2 | 2.45 ± 0.21 a | 1.31 ± 0.08 a | 8.78 ± 0.72 a | 12.30 ± 0.68 a | 0.21 ± 0.02 a | 0.11 ± 0.01 a | 0.68 ± 0.06 a | 2.33 ± 0.19 a |
Treatments | Roots | Leaves | |
---|---|---|---|
Proline (µg g−1 FW) | D0 | 25.56 ± 2.21 b | 83.45 ± 6.32 b |
DL | 34.89 ± 2.52 a | 103.90 ± 8.52 a | |
DL + H2O2 | 34.12 ± 2.45 a | 105.18 ± 8.45 a | |
Total soluble sugars (mg g−1 FW) | D0 | 5.49 ± 0.29 c | 7.37 ± 0.54 a |
DL | 7.07 ± 0.36 a | 3.57 ± 0.23 c | |
DL + H2O2 | 6.44 ± 0.32 b | 5.39 ± 0.30 b |
Treatments | Nutrient Supplied per Plant (mg) | Plant Nutrient Uptake (mg) | Nutrient Uptake Efficiency (%) | Nutrient Leached per Plant (mg) | Nutrient Leachates (%) | Substrate (mg) | Unaccounted Nutrient (mg) | UnaccountedLoss (%) | |
---|---|---|---|---|---|---|---|---|---|
N | D0 | 145.1 ± 14.3 a | 20.1 ± 1.7 c | 13.9 ± 1.1 c | 45.9 ± 4.7 b | 31.9 ± 2.5 b | 4.7 ± 0.3 c | 76.5 ± 8.1 a | 50.9 ± 5.0 a |
DL | 269.4 ± 26.2 b | 60.5 ± 5.4 b | 22.5 ± 2.0 b | 110.7 ± 9.8 a | 41.1 ± 3.8 a | 7.5 ± 0.6 b | 90.4 ± 8.7 a | 33.6 ± 3.3 b | |
DL + H2O2 | 287.2 ± 28.0 b | 91.3 ± 8.6 a | 31.8 ± 3.0 a | 105.1 ± 10.7 a | 36.6 ± 3.5 a | 12.3 ± 1.1 a | 78.6 ± 7.4 a | 27.3 ± 2.9 b | |
P | D0 | 37.6 ± 2.8 a | 3.7 ± 0.3 b | 9.8 ± 0.9 b | 21.8 ± 2.1 a | 57.9 ± 5.3 a | 4.2 ± 0.3 b | 7.6 ± 0.8 b | 21.1 ± 2.0 b |
DL | 33.5 ± 2.7 a | 1.1 ± 0.1 c | 3.2 ± 0.3 c | 11.8 ± 1.0 b | 35.5 ± 3.1 b | 2.5 ± 0.2 c | 18.1 ± 1.6 a | 53.8 ± 5.2 a | |
DL + H2O2 | 35.7 ± 3.1 a | 9.1 ± 0.8 a | 24.5 ± 2.4 a | 11.2 ± 0.9 b | 31.4 ± 2.9 b | 8.7 ± 0.8 a | 6.7 ± 0.5 b | 18.7 ± 2.0 b | |
K | D0 | 200.6 ± 20.3 a | 114.2 ± 11.1 b | 56.9 ± 5.3 a | 72.4 ± 6.8 b | 36.1 ± 3.3 a | 0.2 ± 0.01 c | 13.8 ± 1.5 c | 6.8 ± 0.6 c |
DL | 451.5 ± 40.7 b | 120.0 ± 10.5 b | 26.6 ± 2.4 b | 167.2 ± 15.8 a | 37.1 ± 3.9 a | 0.6 ± 0.02 a | 163.6 ± 13.9 a | 36.2 ± 3.2 a | |
DL + H2O2 | 481.3 ± 39.8 b | 238.4 ± 21.7 a | 49.5 ± 4.4 a | 173.3 ± 14.4 a | 35.9 ± 3.4 a | 0.4 ± 0.03 b | 69.8 ± 6.4 b | 14.4 ± 1.2 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Caparrós, P.; Velasquez Espino, C.; Lao, M.T. Effects of Leachate Fertigation and the Addition of Hydrogen Peroxide on Growth and Nutrient Balance in Dracaena deremensis Potted Plants. Agronomy 2021, 11, 127. https://doi.org/10.3390/agronomy11010127
García-Caparrós P, Velasquez Espino C, Lao MT. Effects of Leachate Fertigation and the Addition of Hydrogen Peroxide on Growth and Nutrient Balance in Dracaena deremensis Potted Plants. Agronomy. 2021; 11(1):127. https://doi.org/10.3390/agronomy11010127
Chicago/Turabian StyleGarcía-Caparrós, Pedro, Cristina Velasquez Espino, and María Teresa Lao. 2021. "Effects of Leachate Fertigation and the Addition of Hydrogen Peroxide on Growth and Nutrient Balance in Dracaena deremensis Potted Plants" Agronomy 11, no. 1: 127. https://doi.org/10.3390/agronomy11010127
APA StyleGarcía-Caparrós, P., Velasquez Espino, C., & Lao, M. T. (2021). Effects of Leachate Fertigation and the Addition of Hydrogen Peroxide on Growth and Nutrient Balance in Dracaena deremensis Potted Plants. Agronomy, 11(1), 127. https://doi.org/10.3390/agronomy11010127