# Seed Morphology in the Vitaceae Based on Geometric Models

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Species and Varieties Used

#### 2.2. Seed Images

#### 2.3. General Morphological Description by Image Analysis

#### 2.4. Comparison with Geometric Models

#### 2.4.1. Description of the Geometric Models Used

#### 2.4.2. Calculation of the J Index

#### 2.5. Statistical Analysis

## 3. Results

#### 3.1. General Morphological Description and Comparison of Vitis Species, Subspecies and Cultivars

#### 3.1.1. Comparison of Vitis Species and Subspecies

#### 3.1.2. Comparison of Vitis vinifera Cultivars

#### 3.2. Morphological Description of Vitis Species and Cultivars by Similarity with Geometric Models. Values of J Index

#### 3.2.1. Comparison of Vitis Species and Subspecies

#### 3.2.2. Comparison of Vitis vinifera Cultivars

#### 3.3. Seed Size and Shape of Cissus and Parthenocissus, Two Relatives of Vitis in the Vitaceae

## 4. Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Jacquat, C.H.; Martinoli, D. Vitis vinifera L.: Wild or cultivated? Study of the grape pips found at Petra, Jordan; 150 B.C.-A.D. 40. Veget. Hist. Archaeobot.
**1999**, 8, 25–30. [Google Scholar] [CrossRef] - Zohary, D. The domestication of the grapevine Vitis vinifera L. in the Near East. In The Origins and Ancient history of Wine; McGovern, P.E., Fleming, S.J., Katz, S.H., Eds.; Gordon and Breach: Amsterdam, The Netherlands, 1995; pp. 23–30. [Google Scholar]
- Zohary, D.; Hopf, M.; Weiss, E. Domestication of plants in the old world. The Origin and Spread of Cultivated Plants in West Asia, Europe and the Nile Valley; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Olmo, H. The origin and domestication of the Vinifera grape. In The Origins and Ancient History of Wine; McGovern, P.E., Fleming, S.J., Katz, S.H., Eds.; Gordon and Breach: Amsterdam, The Netherlands, 1995; pp. 31–43. [Google Scholar]
- Cunha, J.; Baleiras-Couto, M.; Cunha, J.P.; Banza, J.; Soveral, A.; Carneiro, L.C.; Eiras-Dias, J.E. Characterization of Portuguese populations of Vitis vinifera L. ssp. sylvestris (Gmelin) Hegi. Genet. Resour. Crop Evol.
**2007**, 54, 981–988. [Google Scholar] [CrossRef] - Arroyo-García, R.; Lefort, F.; De Andrés, M.; Ibáñez, J.; Borrego, J.; Cabello, F.; Martínez-Zapater, J.M. Haplotypic polymorphisms for chloroplast microsatellites analysis in Vitis. Genome
**2002**, 45, 1142–1149. [Google Scholar] [CrossRef] [PubMed][Green Version] - Zecca, G.; De Mattia, F.; Lovicu, G.; Labra, M.; Sala, F.; Grassi, F. Wild grapevine: Silvestris, hybrids or cultivars that escaped from vineyards? Molecular evidence in Sardinia. Plant Biol.
**2010**, 12, 558–562. [Google Scholar] [CrossRef] - Arroyo-García, R.; Ruiz-García, L.; Bolling, L.; Ocete, R.; López, M.A.; Arnold, C.; Ergul, A.; Soylemezoglu, G.; Uzun, H.I.; Cabello, F.; et al. Multiple origins of cultivated grapevine (Vitis vinifera L. ssp. sativa) based on chloroplast DNA polymorphisms. Mol. Ecol.
**2006**, 15, 707–714. [Google Scholar] - Rivera, D.; Miralles, B.; Obón, C.; Carreño, E.; Palazón, J.A. Multivariate analysis of Vitis subgenus Vitis seed morphology. Vitis
**2007**, 46, 158–167. [Google Scholar] - Planchon, J.E. Ampelideae, Monographie des Ampélidées Vraies. In Monographiae Phanerogamarum; De Candolle, A.P., Ed.; Treuttel et Würtz: Paris, France, 1887; Volume 5, pp. 305–368. [Google Scholar]
- Viala, P.; Péchoutre, P. Morphologie externe de la graine In Ampélographie; Viala, P., Vermorel, V., Eds.; Masson et Cie.: Paris, France, 1910; pp. 156–166. [Google Scholar]
- Stummer, A. Zur Urgeschichte der Rebe und des Weinbaues. Mitt. Anthr. Ges. Wien
**1911**, 41, 283–296. [Google Scholar] - Mangafa, M.; Kotsakis, K. A new method for the identification of wild and cultivated charred grape seeds. J. Archaeol. Sci.
**1996**, 23, 409–418. [Google Scholar] [CrossRef] - Orrú, M.; Grillo, O.; Lovicu, G.; Venora, G.; Bacchetta, G. Morphological characterisation of Vitis vinifera L. seeds by image analysis and comparison with archaeological remains. Veget. Hist. Archaeobot.
**2012**, 22, 231–242. [Google Scholar] [CrossRef] - Orrú, M.; Grillo, O.; Venora, G.; Bacchetta, G. Seed morpho-colorimetric analysis by computer vision: A helpful tool to identify grapevine (Vitis vinifera L.) cultivars. Grape Wine Res.
**2015**, 21, 508–519. [Google Scholar] [CrossRef] - Helpful tool to identify grapevine (Vitis vinifera L.) cultivars. Aust. J. Grape. Wine Res.
**2015**, 21, 508–519. - Rovner, I.; Gyulai, F. Computer-assisted morphometry: A new method for assessing and distinguishing morphological variation in wild and domestic seed populations. Econ. Bot.
**2007**, 61, 154–172. [Google Scholar] [CrossRef] - Sonka, M.; Hlavac, V.; Boyle, R. Image Processing Analysis and Machine Vision, 3rd ed.; Thomson Learning: Toronto, ON, Canada, 2008; 829p. [Google Scholar]
- Ucchesu, M.; Orrú, M.; Grillo, O.; Venora, G.; Usai, A.; Serreli, P.F.; Bacchetta, G. Earliest evidence of a primitive cultivar of Vitis vinifera L. during the Bronze Age in Sardinia (Italy). Veget. Hist. Archaeobot.
**2015**, 24, 587–600. [Google Scholar] [CrossRef] - Ucchesu, M.; Orrú, M.; Grillo, O.; Venora, G.; Paglietti, G.; Ardu, A.; Bacchetta, G. Predictive Method for Correct Identification of Archaeological Charred Grape Seeds: Support for Advances in Knowledge of Grape Domestication Process. PLoS ONE
**2016**, 11, e0149814. [Google Scholar] [CrossRef][Green Version] - Milanesi, C.; Costantini, L.; Firmati, M.; Antonucci, F.; Faleri, C.; Buracchi, A.; Cresti, M. Geometric morphometry and archaeobotany: Characterisation of grape seeds (Vitis vinifera L.) by analysis of form. Open Access Libr. J.
**2014**, 1, e634. [Google Scholar] [CrossRef] - Mravcsik, Z.; Gyulai, F.; Vinogradov, S.; Emödi, A.; Rovner, I.; Gyulai, G. Digital seed morphometry for genotype identification case study of seeds of excavated (15th century Hungary) and current vine grape (Vitis v. vinifera) varieties. Acta Bot. Hunga.
**2015**, 57, 169–182. [Google Scholar] [CrossRef][Green Version] - Cervantes, E.; Martín, J.J.; Ardanuy, R.; de Diego, J.G.; Tocino, Á. Modeling the Arabidopsis seed shape by a cardioid: Efficacy of the adjustment with a scale change with factor equal to the Golden Ratio and analysis of seed shape in ethylene mutants. J. Plant. Physiol.
**2010**, 67, 408–410. [Google Scholar] [CrossRef] - Cervantes, E.; Martín, J.J.; Chan, P.K.; Gresshoff, P.M.; Tocino, Á. Seed shape in model legumes: Approximation by a cardioid reveals differences in ethylene insensitive mutants of Lotus japonicus and Medicago truncatula. J. Plant. Physiol.
**2012**, 169, 1359–1365. [Google Scholar] [CrossRef][Green Version] - Saadaoui, E.; Martín, J.J.; Cervantes, E. Seed morphology in Tunisian wild populations of Capparis spinosa L. Acta Biol. Cracov. Ser. Bot.
**2013**, 55, 99–106. [Google Scholar] [CrossRef] - Martín-Gómez, J.J.; Rewicz, A.; Cervantes, E. Seed Shape Diversity in families of the Order Ranunculales. Phytotaxa
**2019**, 425, 193–207. [Google Scholar] [CrossRef] - Martín-Gómez, J.J.; del Pozo, D.G.; Cervantes, E. Seed shape quantification in the Malvaceae reveals cardioid-shaped seeds predominantly in herbs. Bot. Lith.
**2019**, 25, 21–31. [Google Scholar] [CrossRef][Green Version] - Cervantes, E.; Martín-Gómez, J.J. Seed shape quantification in the order Cucurbitales. Mod. Phytomorphol.
**2018**, 12, 1–13. [Google Scholar] [CrossRef] - Martín-Gómez, J.J.; Saadaoui, E.; Cervantes, E. Seed Shape of Castor Bean (Ricinus communis L.) Grown in Different Regions of Tunisia. JAERI
**2016**, 8. ISSN 2394-1073. [Google Scholar] - Saadaoui, E.; Martín, J.J.; Bouazizi, R.; Chokri, B.R.; Grira, M.; Saad, A.; Khouja, M.L.; Cervantes, E. Phenotypic variability and seed yield of Jatropha curcas L Introduced to Tunisia. Acta Bot. Mex.
**2015**, 110, 119–134. [Google Scholar] [CrossRef][Green Version] - Martín-Gómez, J.J.; Rewicz, A.; Goriewa-Duba, K.; Wiwart, M.; Tocino, Á.; Cervantes, E. Morphological Description and Classification of Wheat Kernels Based on Geometric Models. Agronomy
**2019**, 9, 399. [Google Scholar] [CrossRef][Green Version] - Weisstein, E.W. “Heart Curve.” From MathWorld—A Wolfram Web Resource. Available online: http://mathworld.wolfram.com/HeartCurve.html (accessed on 19 May 2020).
- Cervantes, E.; Martín-Gómez, J.J. Seed Shape Description and Quantification by Comparison with Geometric Models. Horticulturae
**2019**, 5, 60. [Google Scholar] [CrossRef][Green Version] - Weisstein, E.W. “Pear Curve.” From MathWorld—A Wolfram Web Resource. Available online: http://mathworld.wolfram.com/PearCurve.html (accessed on 19 May 2020).
- Soejima, A.; Wen, J. Phylogenetic analysis of the grape family (Vitaceae) based on three chloroplast markers. Am. J. Bot.
**2006**, 93, 278–287. [Google Scholar] [CrossRef] [PubMed][Green Version] - Ferreira, T.; Rasband, W. Imagej User Guide-Ij1.46r., 2012, 186p. Available online: http://imagej.nih.gov/ij/docs/guide (accessed on 19 May 2020).
- Cox, E.P. A method of assigning numerical and percentage values to the degree of roundness of sand grains. J. Paleontol.
**1927**, 1, 179–183. [Google Scholar] - Riley, N.A. Projection sphericity. J. Sediment. Pet.
**1941**, 11, 94–97. [Google Scholar] - Schwartz, H. Two-dimensional feature-shape indexes. Mikroskopie
**1980**, 37, 64–67. [Google Scholar] - OIV Descriptor List for Grape Varieties and Vitis Species, 2nd ed.; Organisation Internationale de la Vigne et du Vin: Paris, France, 2009; 179p, Available online: http://www.oiv.int/public/medias/2274/code-2e-edition-finale.pdf (accessed on 19 May 2020).
- Hidalgo-Fernandez Cano, L.; Hidalgo Togores, J. Tratado de Viticultura I; Editorial Mundi Prensa: Madrid, Spain, 2011; pp. 2–5. [Google Scholar]

**Figure 1.**Seeds of V. vinifera ssp. sylvestris in three orientations: dorsal (D), lateral (L) and ventral (V). Ventral views are used in all the images, because the seeds are more stable and the orientation occurs in a plane perpendicular to the line of vision. In the dorsal view, the seed tends to oscillate resting on the central rib and a flank, resulting in more variable sub-lateral orientations.

**Figure 2.**Geometric models for the quantification of shape in seeds of the Vitaceae: (M1) The fourth heart curve of Weisstein [31]. (M2) A rounded heart curve modified from M1. (M3) The water drop, obtained from M1, adapting the basis in the heart curve to a circumference overlapping the maximum width of the curve. (M4) Obtained by scalling M3 in the y-axis by a factor of 123/100. (M5) Obtained by scalling M1 in the y-axis by a factor of 123/100. (M6) Fibonacci’s pear, obtained by scalling the pear curve of Weisstein [30] with r = 2 in the y-axis by a factor equal to the Golden Ratio $\Phi $. (M7) Derived from an ellipse.

**Figure 3.**The application of geometric models to seeds of the Vitaceae for the calculation of the J index. Left: two of the models used. Above: seeds of V. amurensis adjust well to M3. Below: Seeds of V. vinifera ssp. vinifera cultivar Morenillo adjust well to M6.

**Figure 4.**Method for obtaining the J index (percentage of similarity between two images; the geometric figure and the seed image). Left: the seed (V. amurensis) and the geometric model (M3). The composed image, in the center contains both the seed and the model. Right: total surface occupied by both figures (top) and shared surface (bottom). The surface comprised in the white perimeter is the common region, C; while total area (C+D) is obtained from the image in the right top figure. The J index is the ratio between the shared and the total area x 100. The bar is equal to 1 cm.

**Figure 5.**From left to right in all rows: Three of the models used (M3, the water drop is applied in rows 1 and 3; M1, the heart curve is applied in row 2; and M7 is applied in rows 5 and 6; a figure composed with the silhouettes of 20 seed images (120 for V. vinifera ssp. vinifera in row 5)), and six representative images of seeds of the following species (top to bottom): V. amurensis (row 1), V. labrusca (row 2), V. rupestris (row 3), V. vinifera ssp. sylvestris (row 4), V. vinifera ssp. vinifera (row 5; the second image contains the composed silhouettes of all six varieties). The bar is equal to 1 cm.

**Figure 6.**From left to right in all rows: Models used (M5, the elongated heart curve is applied in row 1; M6, the Fibonnacci’s pear is applied in row 2; and M7 is applied in rows 3 to 6); a figure composed of silhouettes of 20 seed images; representative images of seeds of the six V. vinifera ssp. vinifera cultivars analyzed. From top to bottom: Meserguera (row 1), Carignano (row 2), Camarate (row 3), Cercial (row 4), Malvasia (row 5) and Morenillo (row 6). The bar is equal to 1 cm.

**Figure 7.**From left to right: Model 4 (an elongated water drop), a figure composed with the silhouettes of 20 seed images, and five representative images of seeds of C. verticillata. The bar is equal to 1 cm.

**Figure 8.**From left to right: Model 2 (three rounded heart curves), three figures composed with the silhouettes of 20 seed images, and five representative images of seeds of P. tricuspidata. The first row contains seeds from one-seed fruits; the second from two-seed fruits and the third, from three seed-fruits. The bar is equal to 1 cm.

**Table 1.**Mean values of the area (A), perimeter (P), length of the major axis (L), length of the minor axis (W), aspect ratio (AR is the ratio L/W), circularity (C) and roundness (R) in the seeds of four species of Vitis analyzed.

N | A | P | L | W | AR | C | R | |
---|---|---|---|---|---|---|---|---|

V. amurensis | 44 | 0.14^{a} (0.01) | 1.48^{a} (0.06) | 0.49^{a} (0.03) | 0.38^{b} (0.02) | 1.22^{a} (0.07) | 0.80^{d} (0.03) | 0.82^{d} (0.05) |

V. labrusca | 41 | 0.27^{c} (0.02) | 2.13^{c} (0.06) | 0.71^{c} (0.03) | 0.55^{d} (0.02) | 1.23^{a} (0.08) | 0.76^{b,c} (0.03) | 0.81^{c,d} (0.06) |

V. rupestris | 33 | 0.16^{b} (0.02) | 1.60^{b} (0.11) | 0.55^{b} (0.04) | 0.41^{c} (0.02) | 1.29^{a} (0.07) | 0.78^{c,d} (0.02) | 0.78^{c} (0.04) |

V. vinifera ssp. sylvestris | 122 | 0.16^{b} (0.03) | 1.66^{b} (0.24) | 0.58^{b} (0.08) | 0.39^{b} (0.03) | 1.49^{b} (0.26) | 0.73^{b} (0.06) | 0.69^{b} (0.09) |

V. vinifera ssp. vinifera | 301 | 0.15^{a,b} (0.03) | 1.64^{b} (0.21) | 0.58^{b} (0.07) | 0.36^{a} (0.04) | 1.71^{c} (0.21) | 0.68^{a} (0.06) | 0.60^{a} (0.07) |

Vitis amurensis | 44 | 0.14^{a} (0.01) | 1.48^{a} (0.06) | 0.49^{a} (0.03) | 0.38^{b} (0.02) | 1.22^{a} (0.07) | 0.80^{d} (0.03) | 0.82^{d} (0.05) |

Vitis labrusca | 41 | 0.27^{c} (0.02) | 2.13^{c} (0.06) | 0.71^{c} (0.03) | 0.55^{d} (0.02) | 1.23^{a} (0.08) | 0.76^{b,c} (0.03) | 0.81^{c,d} (0.06) |

Vitis rupestris | 33 | 0.16^{b} (0.02) | 1.60^{b} (0.11) | 0.55^{b} (0.04) | 0.41^{c} (0.02) | 1.29^{a} (0.07) | 0.78^{c,d} (0.02) | 0.78^{c} (0.04) |

Vitis vinifera ssp. sylvestris | 122 | 0.16^{b} (0.03) | 1.66^{b} (0.24) | 0.58^{b} (0.08) | 0.39^{b} (0.03) | 1.49^{b} (0.26) | 0.73^{b} (0.06) | 0.69^{b} (0.09) |

Vitis vinifera ssp. vinifera | 301 | 0.15^{a,b} (0.03) | 1.64^{b} (0.21) | 0.58^{b} (0.07) | 0.36^{a} (0.04) | 1.71^{c} (0.21) | 0.68^{a} (0.06) | 0.60^{a} (0.07) |

^{2}; P, L and W, in cm. Standard deviation is given between parentheses. The mean values marked with the same letter in each column do not differ significantly at p < 0.05 (Scheffe’s test). N is the number of seeds used.

**Table 2.**Mean values of the area (A), perimeter (P), length of the major axis (L), length of the minor axis (W), aspect ratio (AR is the ratio L/W), circularity (C) and roundness (R), obtained for the images of the seeds of six cultivars of V. vinifera ssp. vinifera).

N | A | P | L | W | AR | C | R | |
---|---|---|---|---|---|---|---|---|

Camarate | 73 | 0.13^{a.b} (0.02) | 1.54^{a} (0.11) | 0.55^{a,b} (0.04) | 0.34^{a.b} (0.02) | 1.70^{b,c} (0.12) | 0.69^{b} (0.04) | 0.59^{b,c} (0.04) |

Carignano | 52 | 0.15^{c} (0.02) | 1.76^{b} (0.16) | 0.64^{c} (0.04) | 0.35^{b} (0.03) | 1.95^{d} (0.12) | 0.62^{a} (0.06) | 0.51^{a} (0.03) |

Cercial | 58 | 0.12^{a} (0.02) | 1.46^{a} (0.10) | 0.52^{a} (0.03) | 0.32^{a} (0.03) | 1.75^{c} (0.13) | 0.69^{b} (0.04) | 0.58^{b} (0.04) |

Malvasia | 33 | 0.17^{d} (0.02) | 1.75^{b} (0.11) | 0.61^{c} (0.05) | 0.39^{d} (0.02) | 1.63^{b} (0.15) | 0.70^{b} (0.04) | 0.62^{c,d} (0.06) |

Meserguera | 39 | 0.14^{b.c} (0.02) | 1.57ª (0.09) | 0.56^{b} (0.03) | 0.36^{c} (0.03) | 1.51^{a} (0.12) | 0.73^{c} (0.03) | 0.67^{e} (0.05) |

Morenillo | 46 | 0.18^{d} (0.04) | 1.84^{b} (0.32) | 0.65^{c} (0.11) | 0.40^{d} (0.03) | 1.63^{b.c} (0.30) | 0.68^{b} (0.06) | 0.63^{d} (0.07) |

^{2}; P, L and W, in cm. Standard deviation is given between parentheses. The values marked with the same letter in each column do not differ significantly at p < 0.05 (Scheffe’s test).

**Table 3.**Mean values of the J index in seeds of four species of Vitis, with four of the models used.

N | J Index M1 | J Index M3 | J Index M6 | J Index M7 | |
---|---|---|---|---|---|

Vitis amurensis | 20 | 86.8^{b} (2.65) | 90.6^{c} (2.16) | 68.4^{a} (2.77) | 79.1^{a} (3.02) |

Vitis labrusca | 20 | 89.6^{b} (2.48) | 88.3^{b,c} (2.08) | 74.3^{b} (3.78) | 81.5^{a,b} (4.35) |

Vitis rupestris | 20 | 87.4^{b} (2.74) | 90.0^{c} (2.03) | 76.3^{b} (2.50) | 83.7^{b} (2.38) |

Vitis vinifera ssp. sylvestris | 20 | 78.6^{a} (5.88) | 86.3^{b} (3.82) | 80.7^{c} (4.83) | 88.4^{c} (3.41) |

Vitis vinifera ssp. vinifera | 120 | 75.8^{a} (5.32) | 77.6^{a} (4.19) | 87.5^{d} (3.10) | 88.9^{c} (3.35) |

**Table 4.**Mean values of the J index in six cultivars of Vitis vinifera ssp. vinifera, with the models used (M5, M6 and M7).

Cultivar | N | J Index M5 | J Index M6 | J Index M7 |
---|---|---|---|---|

Camarate | 20 | 84.5^{b,c} (2.45) | 88.5^{a} (2.33) | 89.9^{b,c} (2.18) |

Carignano | 20 | 79.7^{a} (2.08) | 86.8^{a} (2.91) | 83.9^{a} (2.39) |

Cercial | 20 | 83.4^{b} (2.44) | 88.4^{a} (1.83) | 90.1^{b,c} (2.50) |

Malvasia | 20 | 85.9^{c,d} (3.74) | 86.3^{a} (2.44) | 91.7^{c} (3.26) |

Meserguera | 20 | 90.4^{e} (1.80) | 86.1^{a} (4.35) | 88.6^{b} (1.93) |

Morenillo | 20 | 88.0^{d} (2.11) | 88.6^{a} (3.21) | 89.4^{b} (1.35) |

**Table 5.**Mean values of the area (A), perimeter (P), length of the major axis (L), length of the minor axis (W), aspect ratio (AR is the ratio L/W), circularity (C) and roundness (R) for seeds in the species C. verticillata and P. tricuspidata.

N | A | P | L | W | AR | C | R | |
---|---|---|---|---|---|---|---|---|

C. verticillata | 28 | 1.15^{a} (0.07) | 1.43^{a} (0.05) | 0.50^{b} (0.02) | 0.35^{a} (0.01) | 1.40^{b} (0.05) | 0.71^{a} (0.03) | 0.72^{a} (0.02) |

P. tricuspidata | 36 | 1.40^{b} (0.17) | 1.45^{a} (0.08) | 0.45^{a} (0.03) | 0.41^{b} (0.03) | 1.10^{a} (0.08) | 0.83^{b} (0.03) | 0.93^{b} (0.06) |

^{2}; P, L and W, in cm. Standard deviation is given between parentheses. Values marked with the same letter in each column do not differ significantly at p < 0.05 (Scheffe’s test).

**Table 6.**Mean values of the area (A), perimeter (P), length of the major axis (L), length of the minor axis , aspect ratio (AR is the ratio L/W), circularity (C) and roundness (R) and J index values in seeds of P. tricuspidata (Siebold and Zucc.) Planch has one, two or three seeds per fruit. J index values were obtained with M4 (an elongated water drop).

Seeds/Fruit | N | A | P | L | W | AR | C | R | J Index (M2) |
---|---|---|---|---|---|---|---|---|---|

1 | 12 | 1.25^{a} | 1.40^{a} | 0.42^{a} | 0.40^{a} | 1.03^{a} | 0.82^{a} | 0.97^{b} | 93.7^{b} |

(0.10) | (0.06) | (0.02) | (0.02) | (0.02) | (0.03) | (0.02) | (1.29) | ||

2 | 12 | 1.52^{c} | 1.50^{c} | 0.47^{b} | 0.43^{b} | 1.05^{a} | 0.84^{a} | 0.95^{b} | 91.8^{b} |

(0.13) | (0.07) | (0.02) | (0.02) | (0.02) | (0.03) | (0.02) | (1.47) | ||

3 | 12 | 1.38^{b} | 1.40^{b} | 0.47^{b} | 0.40^{a} | 1.16^{b} | 0.83^{a} | 0.86^{a} | 88.6^{a} |

(0.14) | (0.07) | (0.02) | (0.03) | (0.08) | (0.02) | (0.06) | (3.71) |

^{2}; P, L and W, in cm. Standard deviation is given between parentheses. Values marked with the same letter in each column do not differ significantly at p < 0.05 (Scheffe’s test).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Martín-Gómez, J.J.; Gutiérrez del Pozo, D.; Ucchesu, M.; Bacchetta, G.; Cabello Sáenz de Santamaría, F.; Tocino, Á.; Cervantes, E. Seed Morphology in the Vitaceae Based on Geometric Models. *Agronomy* **2020**, *10*, 739.
https://doi.org/10.3390/agronomy10050739

**AMA Style**

Martín-Gómez JJ, Gutiérrez del Pozo D, Ucchesu M, Bacchetta G, Cabello Sáenz de Santamaría F, Tocino Á, Cervantes E. Seed Morphology in the Vitaceae Based on Geometric Models. *Agronomy*. 2020; 10(5):739.
https://doi.org/10.3390/agronomy10050739

**Chicago/Turabian Style**

Martín-Gómez, José Javier, Diego Gutiérrez del Pozo, Mariano Ucchesu, Gianluigi Bacchetta, Félix Cabello Sáenz de Santamaría, Ángel Tocino, and Emilio Cervantes. 2020. "Seed Morphology in the Vitaceae Based on Geometric Models" *Agronomy* 10, no. 5: 739.
https://doi.org/10.3390/agronomy10050739