Factors Influencing the Occurrence of Onion Downy Mildew (Peronospora destructor) Epidemics: Trends from 31 Years of Observational Data
Abstract
:1. Introduction
2. Material and Methods
2.1. Onion Production and Study Area
2.2. Field Sampling, Disease Incidence and Data Aggregation
2.3. Weather-Related Variables
2.4. Data Analysis
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. Faostat Statistics Database; FAO: Rome, Italy, 2017. [Google Scholar]
- Mailvaganam, S. Seasonal Fruit and Vegetable Annual Summary Reports; Fruit and Vegetable Survey; Statistics Canada: Ottawa, ON, Canada, 2017. [Google Scholar]
- De Araújo, E.R.; Gonçalves, P.A.S.; Alves, D.P. Acibenzolar-S-methyl, and potassium and calcium phosphites are not effective to control downy mildew of onion in Brazil. Australas. Plant Dis. Notes 2017, 12, 30. [Google Scholar] [CrossRef]
- Develash, R.K.; Sugha, S.K. Management of downy mildew (Peronospora destructor) of onion (Allium cepa). Crop Prot. 1997, 16, 63–67. [Google Scholar] [CrossRef]
- Gerald, S.M.; O’brien, R.G. Validation of ‘downcast’ in the prediction of sporulation-infection periods of peronospora destructor in the lockyer valley. Aust. J. Exp. Agric. 1994, 34, 537–539. [Google Scholar] [CrossRef]
- O’Brien, R.G. Control of Onion Downy Mildew in the Presence of Phenylamide-Resistant Strains of Peronospora Destructor (Berk.) Caspary. Aust. J. Exp. Agric. 1992, 32, 669–674. [Google Scholar] [CrossRef]
- Hildebrand, P.D.; Sutton, J.C. Weather variables in relation to an epidemic of onion downy mildew. Phytopathology 1982, 72, 219–224. [Google Scholar] [CrossRef]
- Smith, R.W.; Lorbeer, J.W.; Abd-Elrazik, A.A. Reappearance and control of onion downy mildew epidemics in New York. Plant Dis. 1985, 69, 703–706. [Google Scholar]
- Yarwood, C.E. Relation of light to the diurnal cycle of sporulation of certain downy mildews. J. Agric. Res. 1937, 54, 365–373. [Google Scholar]
- Hildebrand, P.D.; Sutton, J.C. Interactive effects on the dark period, humid period, temperature, and light on sporulation of Peronospora destructor. Phytopathology 1984, 74, 1444–1449. [Google Scholar] [CrossRef]
- Hildebrand, P.D.; Sutton, J.C. Relationships of temperature, moisture, and inoculums density to the infection cycle of peronospora destructor. Can. J. Plant Pathol. 1984, 6, 127–134. [Google Scholar] [CrossRef]
- Leach, C.M.; Hildebrand, P.D.; Sutton, J.C. Sporangium discharge by Peronospora destructor: Influence of humidity, red-infrared radiation, and vibration. Phytopathology 1982, 72, 1052–1056. [Google Scholar] [CrossRef]
- Leach, C.M. Active sporangium discharge by Peronospora destructor. Phytopathology 1982, 72, 881–885. [Google Scholar] [CrossRef]
- Jesperson, G.D.; Sutton, J.C. Evaluation of a forecaster for downy mildew of onion (Allium cepa L.). Crop Prot. 1987, 6, 95–103. [Google Scholar] [CrossRef]
- Sutton, J.C.; Hildebrand, P.D. Environmental water in relation to peronospora destructor and related pathogens. Can. J. Plant Pathol. 1985, 7, 323–330. [Google Scholar] [CrossRef]
- Battilani, P.; Rossi, V.; Racca, P.; GiosuÈ, S. ONIMIL, a forecaster for primary infection of downy mildew of onion 1. EPPO Bull. 1996, 26, 567–576. [Google Scholar] [CrossRef]
- Friedrich, S.; Leinhos, G.M.E.; Löpmeier, F.J. Development of ZWIPERO, a model forecasting sporulation and infection periods of onion downy mildew based on meteorological data. Eur. J. Plant Pathol. 2003, 109, 35–45. [Google Scholar] [CrossRef]
- Gilles, T.; Phelps, K.; Clarkson, J.P.; Kennedy, R. Development of MILIONCAST, an improved model for predicting downy mildew sporulation on onions. Plant Dis. 2004, 88, 695–702. [Google Scholar] [CrossRef]
- De Visser, C.L.M. Development of a downy mildew advisory model based on downcast. Eur. J. Plant Pathol. 1998, 104, 933–943. [Google Scholar] [CrossRef]
- Savary, S.; Teng, P.S.; Willocquet, L.; Nutter, F.W. Quantification and Modeling of Crop Losses: A Review of Purposes. Annu. Rev. Phytopathol. 2006, 44, 89–112. [Google Scholar] [CrossRef]
- Van der Plank, J.E. Plant Diseases: Epidemics and Control; Academic Press: New York, NY, USA, 1963. [Google Scholar]
- Cunniffe, N.J.; Koskella, B.; Metcalf, C.J.E.; Parnell, S.; Gottwald, T.R.; Gilligan, C.A. Thirteen challenges in modelling plant diseases. Epidemics 2015, 10, 6–10. [Google Scholar] [CrossRef] [Green Version]
- Zwankhuizen, M.J.; Zadoks, J.C. Phytophthora infestans’s 10-year truce with Holland: A long-term analysis of potato late-blight epidemics in the Netherlands. Plant Pathol. 2002, 51, 413–423. [Google Scholar] [CrossRef]
- Hannukkala, A.O.; Kaukoranta, T.; Lehtinen, A.; Rahkonen, A. Late-blight epidemics on potato in Finland, 1933–2002; increased and earlier occurrence of epidemics associated with climate change and lack of rotation. Plant Pathol. 2007, 56, 167–176. [Google Scholar] [CrossRef]
- Hoegh-Guldberg, O.D.; Jacob, M.; Taylor, M.; Bindi, S.; Brown, I.; Camilloni, A.; Diedhiou, R.; Djalante, K.L.; Ebi, F.; Engelbrecht, J.; et al. Impacts of 1.5 °C Global Warming on Natural and Human Systems. In Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; The intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2018. [Google Scholar]
- Sparks, A.H.; Forbes, G.A.; Hijmans, R.J.; Garrett, K.A. Climate change may have limited effect on global risk of potato late blight. Glob. Chang. Biol. 2014, 20, 3621–3631. [Google Scholar] [CrossRef] [PubMed]
- Madden, L.V.; Hughes, G.; van den Bosch, F. The Study of Plant Disease Epidemics; American Phytopathological Society: St. Paul, MN, USA, 2007; p. 432. [Google Scholar]
- Hildebrand, P.D.; Sutton, J.C. Effects of weather variables on spore survival and infection of onion leaves by peronospora destructor. Can. J. Plant Pathol. 1984, 6, 119–126. [Google Scholar] [CrossRef]
- Salgado-Salazar, C.; Shiskoff, N.; Daughtrey, M.; Palmer, C.L.; Crouch, J.A. Downy Mildew: A Serious Disease Threat to Rose Health Worldwide. Plant Dis. 2018, 102, 1873–1882. [Google Scholar] [CrossRef] [Green Version]
- Lehsten, V.; Wiik, L.; Hannukkala, A.; Andreasson, E.; Chen, D.; Ou, T.; Liljeroth, E.; Lankinen, Å.; Grenville-Briggs, L. Earlier occurrence and increased explanatory power of climate for the first incidence of potato late blight caused by Phytophthora infestans in Fennoscandia. PLoS ONE 2017, 12, e0177580. [Google Scholar] [CrossRef] [Green Version]
- Heist, E.P.; Nesmith, W.C.; Schardl, C.L. Interactions of Peronospora tabacina with Roots of Nicotiana spp. in Gnotobiotic Associations. Phytopathology 2002, 92, 400–405. [Google Scholar] [CrossRef] [Green Version]
- Henderson, D.; Williams, C.J.; Miller, J.S. Forecasting Late Blight in Potato Crops of Southern Idaho Using Logistic Regression Analysis. Plant Dis. 2007, 91, 951–956. [Google Scholar] [CrossRef] [Green Version]
- Dutilleul, P.; Till, C. Detection of atypical years in tree-ring series by construction of a temporal walk in the principal components planes. Tree Ring Bull. 1989, 49, 11–21. [Google Scholar]
- Hildebrand, P.D.; Sutton, J.C. Maintenance of Peronospora destructor in onion sets. Can. J. Plant Pathol. 1980, 2, 239–240. [Google Scholar] [CrossRef]
- Wiik, L. Potato Late Blight and Tuber Yield: Results from 30 Years of Field Trials. Potato Res. 2014, 57, 77–98. [Google Scholar] [CrossRef]
- LaMondia, J.A.; Aylor, D.E. Epidemiology and Management of a Periodically Introduced Pathogen. Biol. Invasions 2001, 3, 273–282. [Google Scholar] [CrossRef]
- Aylor, D. Aerial Dispersal of Pollen and Spores; American Phytopathological Society: St. Paul, MN, USA, 2017; p. 418. [Google Scholar]
- Aylor, D.E. Spread of Plant Disease on a Continental Scale: Role of Aerial Dispersal of Pathogens. Ecology 2003, 84, 1989–1997. [Google Scholar] [CrossRef]
- Ojiambo, P.S.; Gent, D.H.; Quesada-Ocampo, L.M.; Hausbeck, M.K.; Holmes, G.J. Epidemiology and Population Biology of Pseudoperonospora cubensis: A Model System for Management of Downy Mildews. Annu. Rev. Phytopathol. 2015, 53, 223–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, Y.; Van den Langenberg, K.M.; Wehner, T.C.; Ojiambo, P.S.; Hausbeck, M.; Quesada-Ocampo, L.M.; Lebeda, A.; Sierotzki, H.; Gisi, U. Resurgence of Pseudoperonospora cubensis: The Causal Agent of Cucurbit Downy Mildew. Phytopathology 2015, 105, 998–1012. [Google Scholar] [CrossRef] [Green Version]
- Ojiambo, P.S.; Holmes, G.J. Spatiotemporal Spread of Cucurbit Downy Mildew in the Eastern United States. Phytopathology 2010, 101, 451–461. [Google Scholar] [CrossRef] [Green Version]
- Bebber, D.P.; Ramotowski, M.A.T.; Gurr, S.J. Crop pests and pathogens move polewards in a warming world. Nat. Clim. Chang. 2013, 3, 985–988. [Google Scholar] [CrossRef]
- Anderson, P.K.; Cunningham, A.A.; Patel, N.G.; Morales, F.J.; Epstein, P.R.; Daszak, P. Emerging infectious diseases of plants: Pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. 2004, 19, 535–544. [Google Scholar] [CrossRef]
- Francesca, S.; Simona, G.; Francesco Nicola, T.; Andrea, R.; Vittorio, R.; Federico, S.; Cynthia, R.; Maria Lodovica, G. Downy mildew (Plasmopara viticola) epidemics on grapevine under climate change. Glob. Chang. Biol. 2006, 12, 1299–1307. [Google Scholar] [CrossRef]
- Savary, S.; Nelson, A.; Sparks, A.H.; Willocquet, L.; Duveiller, E.; Mahuku, G.; Forbes, G.; Garrett, K.A.; Hodson, D.; Padgham, J.; et al. International Agricultural Research Tackling the Effects of Global and Climate Changes on Plant Diseases in the Developing World. Plant Dis. 2011, 95, 1204–1216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duku, C.; Sparks, A.H.; Zwart, S.J. Spatial modelling of rice yield losses in Tanzania due to bacterial leaf blight and leaf blast in a changing climate. Clim. Chang. 2016, 135, 569–583. [Google Scholar] [CrossRef]
- Caubel, J.; Launay, M.; Garcia de Cortazar-Atauri, I.; Ripoche, D.; Huard, F.; Buis, S.; Brisson, N. A new integrated approach to assess the impacts of climate change on grapevine fungal diseases: The coupled MILA-STICS model. J. Int. Sci. Vigne Vin 2014, 48, 45–54. [Google Scholar]
- Launay, M.; Caubel, J.; Bourgeois, G.; Huard, F.; Garcia de Cortazar-Atauri, I.; Bancal, M.-O.; Brisson, N. Climatic indicators for crop infection risk: Application to climate change impacts on five major foliar fungal diseases in Northern France. Agric. Ecosyst. Environ. 2014, 197, 147–158. [Google Scholar] [CrossRef]
- Jeger, M.J.; Pautasso, M. Plant disease and global change—The importance of long-term data sets. New Phytol. 2008, 177, 8–11. [Google Scholar] [CrossRef] [PubMed]
- Garrett, K.A. Big data insights into pest spread. Nat. Clim. Chang. 2013, 3, 955–957. [Google Scholar] [CrossRef] [Green Version]
- Gilligan, C.A. Sustainable agriculture and plant diseases: An epidemiological perspective. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 741–759. [Google Scholar] [CrossRef]
- Skelsey, P.; Dancey, S.R.; Preedy, K.; Lees, A.K.; Cooke, D.E.L. Forecasting the spread of aerially transmitted crop diseases with a binary classifier for inoculum survival. Plant Pathol. 2018, 67, 920–928. [Google Scholar] [CrossRef] [Green Version]
- McKay, R. The longevity of the oospores of onion downy mildew Peronospora destructor (Berk.) Casp. In The Scientific Proceedings of the Royal Dublin Society; Royal Dublin Society: Dublin, Ireland, 1957; pp. 295–307. [Google Scholar]
- McKay, R. Germination of Oospores of Onion Mildew, Peronospora Schleideniana W. G. Sm. Nature 1937, 139, 758–759. [Google Scholar] [CrossRef]
- Cook, H.T. Studies on the downy mildew of onion and the causal organism, Peronospora destructor. N. Y. Agric. Exp. Stn. Ithaca Mem. 1932, 143, 1–40. [Google Scholar]
- Palti, J. Epidemiology, prediction and control of onion downy mildew caused byPeronospora destructor. Phytoparasitica 1989, 17, 31–48. [Google Scholar] [CrossRef]
- Abd-Elrazik, A.A.; Lorbeer, J.W. A procedure for isolation and maintenance of Peronospora destructor on onion. Phytopathology 1980, 70, 780–782. [Google Scholar] [CrossRef]
Category | Variables | Definition |
---|---|---|
Dependent variables | RDI | Regional disease incidence (% of infected fields) |
DSI | Disease intensity (from 0 to 3) | |
Related to sporulation (Calculated from 1 May to 15 August) | DC | Number of DownCast sporulation periods |
NSP | Number of night precipitation events (between 24:00 and 6:00) | |
HT4_24N | Number of hours with temperature between 4 °C and 24 °C (between 20:00 and 6:00) | |
NHNT_28 | Number of hours with temperatures above 28 °C (between 20:00 and 6:00) | |
Related to infection (Calculated from 1 May to 15 August) | RAD | Average solar radiation (J m−2) |
DSP | Number of morning precipitation events (between 7:00 and 12:00) | |
NREIP | Number of precipitation events during infection period | |
NHR_90 | Number of hours with relative humidity above 90% | |
HT4_24IP | Number of hours with temperature between 4 °C and 24 °C (between 6:00 and 20:00) | |
NHDT_28 | Number of hours with temperatures above 28 °C (between 6:00 and 20:00) | |
Related to production of overwintering inoculum (Calculated from 15 August to 1 October the previous year) | ATH | Mean temperature during harvest (°C) |
MTH | Minimum temperature at harvest (°C) | |
TRH | Total rainfall at harvest (mm) | |
Related to overwintering (HL was calculated from November to March) | SCOV | Snow cover (mm) |
DS_PY | Final RDI previous year | |
DS_P2Y | Final RDI the year before previous year | |
HL | Hellmann number (sum of average daily temperatures below 0 °C) [23] | |
OSRF | Off growing season rainfall (mm) |
Variables * | Period ** | χ2 | p | ||
---|---|---|---|---|---|
I | II | III | |||
RDI | 3.6 a | 0.1 a | 9.6 b | 17.20 | 0.0002 |
DC | 33.7 b | 22.0 a | 20.18 a | 9.87 | 0.0072 |
NSP | 52.6 | 66.9 | 80.5 | 4.73 | 0.0941 |
HT4_24N | 1245.3 | 1207.5 | 1227.7 | 0.75 | 0.6867 |
NHNT_28 | 0.4 | 0.3 | 0.6 | 0.01 | 0.9945 |
RAD | 15.94 b | 15.77 b | 12.32 a | 20.45 | <0.0001 |
DSP | 79.3 | 82.6 | 107.5 | 5.33 | 0.0699 |
NREIP | 33.4 | 34.1 | 47.6 | 4.11 | 0.1284 |
NHR_90 | 413.0 | 486.6 | 468.6 | 5.23 | 0.0732 |
HT4_24IP | 451.5 | 447.2 | 446.5 | 0.94 | 0.624 |
NHDT_28 | 45.2 | 41.9 | 41.5 | 0.11 | 0.9463 |
ATH | 17.30 a | 18.42 a,b | 18.81 b | 6.99 | 0.0302 |
MTH | 7.28 a | 9.5 b | 10.5 b | 13.05 | 0.0015 |
TRH | 42.6 a | 90.9 b | 104.82 b | 14.15 | 0.0008 |
SCOV | 154.6 | 146.4 | 158.7 | 0.06 | 0.9683 |
DS_PY | 3.6 a | 0.1 a | 8.5 b | 16.92 | 0.0002 |
DS_P2Y | 3.6 a | 0.1 a | 7.99 b | 16.76 | 0.0002 |
HL | −111.7 b | −98.97 a,b | −94.46 a | 9.56 | 0.0084 |
OSRF | 330.1 | 289.7 | 298.4 | 0.12 | 0.9424 |
Year | Parameter a | Estimate | SE | Approximate 95% Confidence Limits | Model p-Value | Year | Parameter | Estimate | SE | Approximate 95% Confidence Limits | Model p-Value | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1989 | k | 1.024 | 0.024 | 0.972 | 1.077 | 0.0001 | 2010 | k | 1.019 | 0.036 | 0.941 | 1.098 | 0.0001 |
r | 0.187 | 0.017 | 0.150 | 0.225 | r | 0.151 | 0.024 | 0.099 | 0.204 | ||||
b | 217.900 | 0.594 | 216.600 | 219.200 | b | 202.800 | 1.260 | 200.100 | 205.500 | ||||
1990 | k | 1.028 | 0.017 | 0.990 | 1.065 | 0.0001 | 2011 | k | 1.040 | 0.049 | 0.935 | 1.145 | 0.0001 |
r | 0.274 | 0.021 | 0.228 | 0.321 | r | 0.141 | 0.026 | 0.084 | 0.198 | ||||
b | 223.100 | 0.326 | 222.400 | 223.800 | b | 206.400 | 1.594 | 202.900 | 209.800 | ||||
1991 | k | 1.020 | 0.022 | 0.973 | 1.068 | 0.0001 | 2012 | k | 1.000 | 0.001 | 1.000 | 1.000 | 0.0001 |
r | 0.214 | 0.020 | 0.171 | 0.257 | r | 2.021 | 0.013 | 1.994 | 2.048 | ||||
b | 218.400 | 0.513 | 217.300 | 219.500 | b | 195.900 | 1.32x10-9 | 195.900 | 195.900 | ||||
1992 | k | 1.012 | 0.025 | 0.959 | 1.066 | 0.0001 | 2013 | k | 1.011 | 0.017 | 0.975 | 1.047 | 0.0001 |
r | 0.663 | 0.196 | 0.240 | 1.086 | r | 0.412 | 0.032 | 0.344 | 0.480 | ||||
b | 232.500 | 0.496 | 231.400 | 233.600 | b | 228.700 | 0.255 | 228.100 | 229.200 | ||||
1993 | k | 1.000 | 0.001 | 1.000 | 1.000 | 0.0001 | 2014 | k | 1.072 | 0.053 | 0.957 | 1.187 | 0.0001 |
r | 1.993 | 0.008 | 1.976 | 2.009 | r | 0.164 | 0.022 | 0.116 | 0.211 | ||||
b | 230.900 | 0.001 | 230.900 | 230.900 | b | 224.800 | 1.089 | 222.500 | 227.200 | ||||
2006 | k | 0.954 | 0.030 | 0.891 | 1.018 | 0.0001 | 2015 | k | 1.057 | 0.040 | 0.970 | 1.144 | 0.0001 |
r | 0.630 | 0.340 | −0.104 | 1.364 | r | 0.128 | 0.015 | 0.095 | 0.160 | ||||
b | 201.400 | 0.999 | 199.200 | 203.500 | b | 213.400 | 1.176 | 210.900 | 216.000 | ||||
2007 | k | 1.005 | 0.018 | 0.966 | 1.043 | 0.0001 | 2016 | k | 1.006 | 0.021 | 0.961 | 1.051 | 0.0001 |
r | 0.420 | 0.060 | 0.289 | 0.550 | r | 0.560 | 0.093 | 0.359 | 0.760 | ||||
b | 208.000 | 0.423 | 207.100 | 208.900 | b | 226.000 | 0.406 | 225.100 | 226.900 | ||||
2008 | k | 1.014 | 0.016 | 0.979 | 1.050 | 0.0001 | 2017 | k | 1.121 | 0.041 | 1.032 | 1.210 | 0.0001 |
r | 0.262 | 0.023 | 0.213 | 0.312 | r | 0.098 | 0.007 | 0.083 | 0.112 | ||||
b | 213.900 | 0.400 | 213.100 | 214.800 | b | 219.900 | 1.131 | 217.400 | 222.300 | ||||
2009 | k | 1.025 | 0.032 | 0.956 | 1.094 | 0.0001 | |||||||
r | 0.150 | 0.015 | 0.118 | 0.182 | |||||||||
b | 217.900 | 0.831 | 216.100 | 219.700 |
Categories | Variables | Principal Components | ||
---|---|---|---|---|
1 | 2 | 3 | ||
Related to sporulation | DC | −0.1501 | 0.3595 | −0.1119 |
NHNT_28 | −0.0422 | −0.2494 | 0.2626 | |
HT4_24N | 0.1225 | 0.3935 | −0.0859 | |
NSP | 0.258 | 0.0695 | 0.3646 | |
DSP | 0.2905 | 0.1403 | 0.4098 | |
Related to infection | RAD | −0.3104 | 0.1242 | 0.187 |
NHDT_28 | −0.1389 | −0.3254 | 0.0754 | |
HT4_24IP | −0.0299 | 0.3353 | −0.2817 | |
NHR_90 | 0.0295 | −0.3518 | 0.0737 | |
NREIP | 0.2409 | 0.2085 | 0.4248 | |
Related to production of overwintering inoculum | ATH | 0.1088 | −0.2944 | −0.1261 |
TRH | 0.1538 | −0.2353 | −0.1137 | |
MTH | 0.2930 | −0.1287 | −0.1455 | |
Related to overwintering | OSRF | 0.1171 | 0.1021 | 0.3673 |
HL | 0.1821 | −0.2124 | 0.0499 | |
DS_P2Y | 0.3175 | −0.059 | −0.1326 | |
DS_PY | 0.3418 | 0.0015 | −0.1674 | |
RDI | 0.3499 | 0.0668 | −0.1576 | |
DSI | 0.3549 | 0.0776 | −0.2156 | |
Cumulative variation accounted for (%) | 28.93 | 49.23 | 60.25 |
Variables a | F-Value b | p > F | Partial R2 b | Wilks’ Lambda c | p < Lambda |
---|---|---|---|---|---|
RAD | 29.570 | <0.0001 | 0.6787 | 0.3213 | <0.0001 |
DS_PY | 10.310 | 0.0005 | 0.4331 | 0.1821 | <0.0001 |
MTH | 15.750 | <0.0001 | 0.5479 | 0.0823 | <0.0001 |
TRH | 8.370 | 0.0016 | 0.4011 | 0.0493 | <0.0001 |
HL | 2.380 | 0.1145 | 0.1652 | 0.0412 | <0.0001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van der Heyden, H.; Dutilleul, P.; Charron, J.-B.; Bilodeau, G.J.; Carisse, O. Factors Influencing the Occurrence of Onion Downy Mildew (Peronospora destructor) Epidemics: Trends from 31 Years of Observational Data. Agronomy 2020, 10, 738. https://doi.org/10.3390/agronomy10050738
Van der Heyden H, Dutilleul P, Charron J-B, Bilodeau GJ, Carisse O. Factors Influencing the Occurrence of Onion Downy Mildew (Peronospora destructor) Epidemics: Trends from 31 Years of Observational Data. Agronomy. 2020; 10(5):738. https://doi.org/10.3390/agronomy10050738
Chicago/Turabian StyleVan der Heyden, Hervé, Pierre Dutilleul, Jean-Benoît Charron, Guillaume J. Bilodeau, and Odile Carisse. 2020. "Factors Influencing the Occurrence of Onion Downy Mildew (Peronospora destructor) Epidemics: Trends from 31 Years of Observational Data" Agronomy 10, no. 5: 738. https://doi.org/10.3390/agronomy10050738
APA StyleVan der Heyden, H., Dutilleul, P., Charron, J.-B., Bilodeau, G. J., & Carisse, O. (2020). Factors Influencing the Occurrence of Onion Downy Mildew (Peronospora destructor) Epidemics: Trends from 31 Years of Observational Data. Agronomy, 10(5), 738. https://doi.org/10.3390/agronomy10050738