Optimization of Adhesion in Textile Cord–Rubber Composites: An Experimental and Predictive Modeling Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Compounding Process
2.2.1. Master Batch Stage
2.2.2. Final Batch Stage
2.3. Effect of Accelerator Type on Compound Properties and Adhesion Performance
2.4. Experimental Design for Adhesion Optimization
2.5. Characterization of Rubber Compounds
2.5.1. Rheological Properties
2.5.2. Viscoelastic Properties
2.5.3. Mechanical Properties
2.5.4. Adhesion Strength
2.5.5. Spectroscopic Characterization: FT-IR Analysis
2.5.6. Morphological Characterization: SEM/EDS Analysis
3. Results and Discussion
3.1. Effects of Accelerator Types
3.1.1. Curing Characteristics of Rubber Compounds
3.1.2. Mooney Viscosity Characteristics of Rubber Compounds
3.1.3. Mechanical Properties of Rubber Compounds
3.1.4. Cord–Rubber Adhesion Characteristics
3.2. Statistical Analysis of Cord–Rubber Adhesion Performance
3.2.1. Main Effect Analysis of Formulation Parameters on Cord-Rubber Adhesion
3.2.2. Two-Dimensional Contour Plot Analysis of Cord-Rubber Adhesion
3.2.3. Optimization of Cord-Rubber Adhesion Performance
3.3. Characterization Studies
3.3.1. Spectroscopic Characterization of Rubber Compound
3.3.2. Surface Morphology of Rubber Compound
4. Conclusions
- The evaluation of different accelerators identified MBTS as the most effective in enhancing cord–rubber adhesion.
- The effects of varying the amounts of accelerator (MBTS), curing agent (sulfur), and resin (HMMM) on cord–rubber adhesion were examined using the Box–Behnken design method. a robust statistical approach for process optimization.
- Based on the optimization results obtained through the Box–Behnken design, the rubber compound formulation predicted to achieve maximum adhesion performance consists of 1.6 phr of curing agent (sulfur), 0.3 phr of resin (HMMM), and 0.5 phr of accelerator (MBTS).
- The predictive model estimated a maximum adhesion strength of 4.34 kg/cord for the optimized formulation.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Evans, M.S. Tyre Compounding for Improved Performance; Rapra Technology: Shrewsbury, UK, 2002; ISBN 1859573061. [Google Scholar]
- Rodgers, B. Tire Engineering: An Introduction; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Leister, G. Passenger Car Tires and Wheels: Development—Manufacturing—Application; Springer International Publishing: Cham, Switzerland, 2018; ISBN 9783319501185. [Google Scholar]
- Enganati, S.K.; Yan, C.; Fernandes, J.P.C.; Dieden, R.; Zielinski, B.; Gillick, J.; Addiego, F.; Ruch, D.; Mertz, G. Thermally Induced Structural Changes of Resorcinol Formaldehyde Latex Adhesive Used in Cord-Rubber Composites. Int. J. Adhes. Adhes. 2022, 118, 103224. [Google Scholar] [CrossRef]
- Yazıcı, N.; Dursun, S.; Yarıcı, T.; Kılıç, B.; Arıcan, M.O.; Mert, O.; Karaağaç, B.; Özkoç, G.; Kodal, M. The Outstanding Interfacial Adhesion between Acrylo-POSS/Natural Rubber Composites and Polyamide-Based Cords: ‘An Environmentally Friendly Alternative to Resorcinol-Formaldehyde Latex Coating’. Polymer 2021, 228, 123880. [Google Scholar] [CrossRef]
- Wennekes, W.B. Adhesion of RFL-Treated Cords to Rubber: New Insights into Interfacial Phenomena; University of Twente: Enschede, The Netherlands, 2008. [Google Scholar]
- Jamshidi, M.; Afshar, F.; Mohammadi, N.; Pourmahdian, S. Study on Cord/Rubber Interface at Elevated Temperatures by H-Pull Test Method. Appl. Surf. Sci. 2005, 249, 208–215. [Google Scholar] [CrossRef]
- Roshanaei, H.; Margharian Pekachaki, H.; Khodkar, F. Adhesion Optimization of Rubber Compound on Polyester Cord to Retain Physico-Mechanical Properties. Iran. Polym. J. 2019, 28, 909–919. [Google Scholar] [CrossRef]
- Diao, S.; Huang, W.; Li, Y.; Wang, W.; Yu, B.; Ning, N.; Tian, M.; Zhang, L. Highly Interfacial Adhesion and Mechanism of Nylon-66/Rubber Composites by Designing Low-Toxic RF-like Dipping Systems. Ind. Eng. Chem. Res. 2022, 61, 17950–17962. [Google Scholar] [CrossRef]
- Luo, G.; Zhang, C.; Huan, Y.; Yin, Y.; Sun, H.; Chen, Z.; Yang, X. Dynamic Adhesion of Polyamide 6,6 Cord/Rubber Composites in H-Pull Tests: Fatigue Evolution, Life Prediction and Methodology Evaluation. Polym. Test. 2022, 111, 107586. [Google Scholar] [CrossRef]
- Wootton, D.B. The Application of Textiles in Rubber; Smithers Rapra Technology: Shrewsbury, UK, 2001. [Google Scholar]
- Arvind Mafetlal Group. Vulcanization & Accelerators; NOCIL Limited: Mumbai, India, 2018. [Google Scholar]
- Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M. Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Box, G.E.P.; Behnken, D.W. Some New Three Level Designs for the Study of Quantitative Variables. Technometrics 1960, 2, 455–475. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments, EMEA Edition, 9th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Wennekes, W.B.; Noordermeer, J.W.M.; Datta, R.N. Mechanistic Investigations into the Adhesion between RFL-Treated Cords and Rubber. Part I: The Influence of Rubber Curatives. Rubber Chem. Technol. 2007, 80, 545–564. [Google Scholar] [CrossRef]
- Huang, W.; Li, Y.; Zhao, H.; Wang, W.; Yu, B.; Ning, N.; Tian, M.; Zhang, L. A New Eco-Friendly Dipping System for PA66 Fiber Cords/Rubber Composites with Strong Interfacial Adhesion and Good Fatigue Stability. Compos. B Eng. 2023, 253, 110541. [Google Scholar] [CrossRef]
- Piri, N.; Salehi, A.; Azizi, A.M.; Karami, M.R. Application of Experimental Design for Optimization of Interfacial Adhesion between Rubber and Surface Modified Polyester Fabric-Factory Experience. Fibers Polym. 2024, 25, 3269–3280. [Google Scholar] [CrossRef]
- Bridgestone Corporation. Tyre Body Ply Skim. US20160009906A1, 17 January 2017. [Google Scholar]
- Kwak, J.S. Application of Taguchi and Response Surface Methodologies for Geometric Error in Surface Grinding Process. Int. J. Mach. Tools Manuf. 2005, 45, 327–334. [Google Scholar] [CrossRef]
- Ciesielski, A. An Introduction to Rubber Technology; Rapra Technology Ltd.: Shrewsbury, UK, 1999. [Google Scholar]
- Gent, A.N. Engineering with Rubber: How to Design Rubber Components; Smithers Rapra Technology: Shrewsbury, UK, 2012. [Google Scholar]
- Brendan, R. Rubber Compounding: Chemistry and Applications; Marcel Dekker: New York, NY, USA, 2004; ISBN 0824748719. [Google Scholar]
- Sadequl, A.M.; Ishiaku, U.S.; Ismail, H.; Poh, B.T. The Effect of Accelerator/Sulphur Ratio on the Scorch Time of Epoxidized Natural Rubber. Eur. Polym. J. 1998, 34, 51–57. [Google Scholar] [CrossRef]
- James, E.; Mark, B.E. Science and Technology of Rubber; Academic Press: Amsterdam, The Netherlands, 1995. [Google Scholar]
- Setyadewi, N.M.; Mayasari, H.E. Curing Chracteristic of Various Accelerators on Natural Rubber/Chloroprene Rubber Blends. J. Dyn. Ind. Res. 2020, 31, 154–162. [Google Scholar]
- Coran, A.Y. Vulcanization. In Science and Technology of Rubber, 3rd ed.; Mark, J.E., Erman, B., Eirich, F.R., Eds.; Academic Press: Burlington, NJ, USA, 2005; pp. 321–366. ISBN 978-0-12-464786-2. [Google Scholar]
- Lessig, E.T.; Compton, J. The Single-Cord Compression Adhesion Test for Evaluating the Adhesion of Vulcanized Rubber to Cord. Rubber Chem. Technol. 1996, 19, 223–232. [Google Scholar] [CrossRef]
- Shi, X.; Ma, M.; Lian, C.; Zhu, D. Investigation of the Effects of Adhesion Promoters on the Adhesion Properties of Rubber/Steel Cord by a New Testing Technique. J. Appl. Polym. Sci. 2014. [Google Scholar] [CrossRef]
- Chollakup, R.; Suethao, S.; Suwanruji, P.; Boonyarit, J.; Smitthipong, W. Mechanical Properties and Dissipation Energy of Carbon Black/Rubber Composites. Compos. Adv. Mater. 2021, 30, 263498332110054. [Google Scholar] [CrossRef]
- Valdés, C.; Hernández, C.; Morales-Vera, R.; Andler, R. Desulfurization of Vulcanized Rubber Particles Using Biological and Couple Microwave-Chemical Methods. Front. Environ. Sci. 2021, 9, 633165. [Google Scholar] [CrossRef]
Mixing Stage | Component | Content (Phr) | |||
---|---|---|---|---|---|
ACL-1 | ACL-2 | ACL-3 | ACL-4 | ||
Master batch | Natural rubber (NR) | 65 | |||
Styrene–butadiene rubber (SBR) | 35 | ||||
Carbon black (CB) | 60 | ||||
Stearic acid | 1 | ||||
Phenol–formaldehyde resin | 1 | ||||
Oil | 10 | ||||
Final batch | Antioxidant (TMQ) | 0.5 | |||
Accelerator | DPG 1 | MBTS 1 | TBBS 1 | CBS 1 | |
Resin (HMMM) | 0.3 | ||||
Curing agent (Sulfur) | 1 | ||||
Zinc oxide | 3 |
Accelerator Types | Chemical Structures | Functional Characteristics |
---|---|---|
DPG (Diphenyl guanidine) | Scorch Slow cure rate | |
MBTS (2-2′-Dithiobis(benzothiazole)) | Less scorch Fast cure rate | |
TBBS (N-tert-butyl-2-benzothiazole sulfenamide) | Delayed action Fast cure rate | |
CBS (N-Cyclohexyl-2-benzothiazole sulfenamide) | Delayed action Fast cure rate |
Parameters | Low (−1) | Center (0) | High (+1) |
---|---|---|---|
: Accelerator amount (phr) | 0.5 | 1.0 | 1.5 |
: Resin amount (phr) | 0.3 | 0.6 | 0.9 |
: Curing agent amount (phr) | 1.0 | 2.0 | 3.0 |
Materials | ML (dNm) | MH (dNm) | MH-ML (dNm) | tS2 (min) | t90 (min) |
---|---|---|---|---|---|
ACL-1 | 1.65 ± 0.04 | 5.82 ± 0.09 | 4.17 ± 0.05 | 5.41 ± 0.13 | 16.44 ± 0.17 |
ACL-2 | 1.69 ± 0.02 | 8.23 ± 0.06 | 6.54 ± 0.05 | 3.26 ± 0.01 | 14.38 ± 0.13 |
ACL-3 | 1.70 ± 0.07 | 10.26 ± 0.07 | 8.56 ± 0.06 | 5.51 ± 0.02 | 11.84 ± 0.09 |
ACL-4 | 1.66 ± 0.02 | 9.81 ± 0.06 | 8.15 ± 0.06 | 4.86 ± 0.01 | 9.93 ± 0.10 |
Materials | ML(1 + 4) (MU) | t5 (min) |
---|---|---|
ACL-1 | 37.67 ± 0.58 | 23.62 ± 0.52 |
ACL-2 | 39.87 ± 0.06 | 15.12 ± 0.10 |
ACL-3 | 38.63 ± 0.12 | 25.70 ± 0.32 |
ACL-4 | 38.73 ± 0.23 | 26.12 ± 0.14 |
Materials | Tensile Strength (MPa) | Elongation at Break (%) | 100% Modulus (MPa) | 300% Modulus (MPa) | Hardness (Shore A) |
---|---|---|---|---|---|
ACL-1 | 118.92 ± 4.65 | 658.17 ± 16.67 | 8.83 ± 0.17 | 37.92 ± 0.90 | 42.00 ± 0.00 |
ACL-2 | 176.58 ± 5.05 | 656.58 ± 17.12 | 13.58 ± 0.48 | 64.75 ± 1.01 | 49.33 ± 0.47 |
ACL-3 | 195.33 ± 5.95 | 609.42 ± 13.16 | 16.50 ± 0.46 | 79.42 ± 1.07 | 51.33 ± 0.47 |
ACL-4 | 190.75 ± 6.10 | 613.00 ± 16.86 | 15.58 ± 0.48 | 75.42 ± 1.33 | 51.67 ± 0.47 |
Content (phr) | Adhesion (kg/cord) (Average) | |||
---|---|---|---|---|
Run | Curing Agent | Resin | Accelerator | |
BB-1 | 1 | 0.3 | 1.0 | 4.39 ± 0.18 |
BB-2 | 3 | 0.3 | 1.0 | 4.14 ± 0.03 |
BB-3 | 1 | 0.9 | 1.0 | 4.19 ± 0.20 |
BB-4 | 3 | 0.9 | 1.0 | 3.82 ± 0.15 |
BB-5 | 1 | 0.6 | 0.5 | 4.05 ± 0.10 |
BB-6 | 3 | 0.6 | 0.5 | 4.20 ± 0.06 |
BB-7 | 1 | 0.6 | 1.5 | 4.13 ± 0.07 |
BB-8 | 3 | 0.6 | 1.5 | 3.83 ± 0.14 |
BB-9 | 2 | 0.3 | 0.5 | 4.30 ± 0.14 |
BB-10 | 2 | 0.9 | 0.5 | 4.32 ± 0.17 |
BB-11 | 2 | 0.3 | 1.5 | 4.19 ± 0.18 |
BB-12 | 2 | 0.9 | 1.5 | 4.09 ± 0.13 |
BB-13 | 2 | 0.6 | 1.0 | 4.18 ± 0.07 |
BB-14 | 2 | 0.6 | 1.0 | 4.13 ± 0.21 |
BB-15 | 2 | 0.6 | 1.0 | 4.19 ± 0.14 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|
Model | 10 | 2.31908 | 0.231908 | 23.23 | 0.000 |
Blocks | 5 | 1.0006 | 0.200119 | 20.05 | 0.000 |
Linear | 3 | 1.14843 | 0.382811 | 38.35 | 0.000 |
1 | 0.73934 | 0.739345 | 74.07 | 0.000 | |
1 | 0.13277 | 0.132767 | 13.30 | 0.001 | |
1 | 0.20122 | 0.201222 | 20.16 | 0.000 | |
Square | 1 | 0.15211 | 0.152105 | 15.24 | 0.000 |
1 | 0.15211 | 0.152105 | 15.24 | 0.000 | |
2-Way Interaction | 1 | 0.08413 | 0.084131 | 8.43 | 0.005 |
1 | 0.08413 | 0.084131 | 8.43 | 0.005 | |
Error | 56 | 0.55899 | 0.009982 | ||
Lack-of-Fit | 50 | 0.50636 | 0.010127 | 1.15 | 0.474 |
Pure error | 6 | 0.05263 | 0.008772 | ||
Total | 66 | 2.87807 |
Regression Equation in Uncoded Units | R2 | R2 (adj) |
---|---|---|
CRA = 4.066 + 0.389 * Curing agent amount − 0.194 * Resin amount − 0.168 * Accelerator amount − 0.096 * Curing agent amount2 − 0.159 * Curing agent amount * Accelerator amount | 80.58% | 77.11% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pehlivan, M.; Atalik, B.; Gokcesular, S.; Ozbek, S.; Ozbek, B. Optimization of Adhesion in Textile Cord–Rubber Composites: An Experimental and Predictive Modeling Approach. Polymers 2025, 17, 1239. https://doi.org/10.3390/polym17091239
Pehlivan M, Atalik B, Gokcesular S, Ozbek S, Ozbek B. Optimization of Adhesion in Textile Cord–Rubber Composites: An Experimental and Predictive Modeling Approach. Polymers. 2025; 17(9):1239. https://doi.org/10.3390/polym17091239
Chicago/Turabian StylePehlivan, Merve, Bora Atalik, Sezgin Gokcesular, Sunullah Ozbek, and Belma Ozbek. 2025. "Optimization of Adhesion in Textile Cord–Rubber Composites: An Experimental and Predictive Modeling Approach" Polymers 17, no. 9: 1239. https://doi.org/10.3390/polym17091239
APA StylePehlivan, M., Atalik, B., Gokcesular, S., Ozbek, S., & Ozbek, B. (2025). Optimization of Adhesion in Textile Cord–Rubber Composites: An Experimental and Predictive Modeling Approach. Polymers, 17(9), 1239. https://doi.org/10.3390/polym17091239