Experimental Study on the Mechanical Properties and Microstructural Mechanisms of Coal Gangue-Based Cementitious Materials Synergistically Activated by Desulfurization Gypsum and Lime
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.1.1. CG, DG, and Lime
2.1.2. Pretreatment of DG
2.2. Experimental Design
- (1)
- CF System (Coal Gangue–DG): in this system, DG was used to partially replace CG at mass ratios ranging from 10% to 90%, with 10% increments for each gradient.
- (2)
- GL System (Coal Gangue–Lime): here, lime was used to replace coal gangue in proportions from 2% to 10%, with 2% increments.
- (3)
- CFL System (Coal Gangue–DG–Lime): Based on the results of the CF and CL systems, the replacement level of desulfurized gypsum was fixed at 70%. Lime was added in varying amounts (1% to 6%, with 1% increments) to study its effect on the material properties.
2.3. Preparation of Samples
2.4. Test Methods
2.4.1. Particle Size Analysis
2.4.2. Unconfined Compression Test
2.4.3. XRD Test
2.4.4. SEM Test
2.4.5. TGA-DTG
2.4.6. NMR Test
3. Testing Results
3.1. The Effect of the CF System on the Compressive Strength
3.2. The Effect of CL System on the Compressive Strength
3.3. The Effect of CFL System on Compressive Strength
3.4. The Effect of DG and Lime Dosages on the Sample Density
4. Examination of the Microscopic Operation Mechanism
4.1. XRD Analysis
4.2. SEM Observation
4.3. TGA/DTG Analysis
4.4. NMR Analysis
5. Discussion
- Synergistic Effect of DG and Lime
- 2.
- Comparison with Existing Research
- 3.
- Limitations and Future Directions
- 4.
- Improvements and Optimization Suggestions
6. Conclusions
- (1)
- The introduction of DG gypsum significantly increases the early strength of the CF system. Its high reactivity promotes the formation of hydration products within the cementitious materials, enhancing the mechanical properties. An optimal amount of DG gypsum can improve the early strength, which is crucial for the initial phase of cementitious material performance.
- (2)
- The addition of lime effectively improves the long-term strength of the CF system. The calcium ions provided by lime react with other hydration products to form more stable hydrates, contributing to long-term durability.
- (3)
- In the CFL system, the combined effect of DG gypsum and lime further optimizes the cementitious properties of coal gangue. This system not only achieves superior mechanical performance but also shortens the setting time, demonstrating the synergistic effects of DG gypsum and lime on coal gangue reactivity.
- (4)
- Microstructural analysis revealed the mechanism of coal gangue activation by DG gypsum and lime. The analyses show that the optimized microstructure enhances the material’s density and crack resistance, leading to improved overall performance.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Tan, W.F.; Wang, L.A.; Huang, C. Environmental effects of coal gangue and its utilization. Energy Sources Part A-Recovery Util. Environ. Eff. 2016, 38, 3716–3721. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, M.; Jiang, X.; Tian, S.; Teng, Z.; Li, T. Research Progress of Coal Gangue Modification Method and Its Resource and Environment Utilisation. Acta Chim. Sin. 2024, 82, 527–540. [Google Scholar] [CrossRef]
- Xu, L.; Wu, K.; Li, N.; Zhou, X.; Wang, P. Utilization of flue gas desulfurization gypsum for producing calcium sulfoaluminate cement. J. Clean. Prod. 2017, 161, 803–811. [Google Scholar] [CrossRef]
- Xia, X.; Zhang, L.; Yuan, X.; Ma, C.; Song, Z.; Zhao, X. Integrated Assessment of the Environmental and Economic Effects of Resource Utilization Process for Lime/Gypsum Flue Gas Desulfurization Collaborative Desulfurized Gypsum. Environ. Eng. Sci. 2021, 38, 886–898. [Google Scholar] [CrossRef]
- Kang, J.; Gou, X.; Hu, Y.; Sun, W.; Liu, R.; Gao, Z.; Guan, Q. Efficient utilisation of flue gas desulfurization gypsum as a potential material for fluoride removal. Sci. Total Environ. 2019, 649, 344–352. [Google Scholar] [CrossRef]
- Guo, W.; Xi, B.; Huang, C.; Li, J.; Tang, Z.; Li, W.; Ma, C.; Wu, W. Solid waste management in China: Policy and driving factors in 2004–2019. Resour. Conserv. Recycl. 2021, 173, 105727. [Google Scholar] [CrossRef]
- Li, J.; Wang, J. Comprehensive utilization and environmental risks of coal gangue: A review. J. Clean. Prod. 2019, 239, 117946. [Google Scholar] [CrossRef]
- Duan, D.-y.; Wang, C.-q.; Bai, D.-s.; Huang, D.-m. Representative coal gangue in China: Physical and chemical properties, heavy metal coupling mechanism and risk assessment. Sustain. Chem. Pharm. 2024, 37, 101402. [Google Scholar] [CrossRef]
- Zhang, Y.; Ling, T.-C. Reactivity activation of waste coal gangue and its impact on the properties of cement-based materials—A review. Constr. Build. Mater. 2020, 234, 117424. [Google Scholar] [CrossRef]
- Zheng, Q.; Zhou, Y.; Liu, X.; Liu, M.; Liao, L.; Lv, G. Environmental hazards and comprehensive utilization of solid waste coal gangue. Prog. Nat. Sci. Mater. Int. 2024, 34, 223–239. [Google Scholar] [CrossRef]
- Liu, S.; Liu, W.; Jiao, F.; Qin, W.; Yang, C. Production and resource utilization of flue gas desulfurized gypsum in China—A review. Environ. Pollut. 2021, 288, 117799. [Google Scholar] [CrossRef] [PubMed]
- Aakriti; Maiti, S.; Jain, N.; Malik, J. A comprehensive review of flue gas desulphurized gypsum: Production, properties, and applications. Constr. Build. Mater. 2023, 393, 131918. [Google Scholar] [CrossRef]
- Li, M.; Gu, K.; Chen, B. Effects of flue gas desulfurization gypsum incorporation and curing temperatures on magnesium oxysulfate cement. Constr. Build. Mater. 2022, 349, 128718. [Google Scholar] [CrossRef]
- Hao, Y.; Li, Q.; Pan, Y.; Liu, Z.; Wu, S.; Xu, Y.; Qian, G. Heavy metals distribution characteristics of FGD gypsum samples from Shanxi province 12 coal-fired power plants and its potential environmental impacts. Fuel 2017, 209, 238–245. [Google Scholar] [CrossRef]
- Koralegedara, N.H.; Pinto, P.X.; Dionysiou, D.D.; Al-Abed, S.R. Recent advances in flue gas desulfurization gypsum processes and applications—A review. J. Environ. Manag. 2019, 251, 109572. [Google Scholar] [CrossRef]
- Chen, J.; Guan, X.; Zhu, M.; Gao, J. Mechanism on Activation of Coal Gangue Admixture. Adv. Civ. Eng. 2021, 2021, 5436482. [Google Scholar] [CrossRef]
- Gong, C.; Li, D.; Wang, X.; Li, Z. Activity and structure of calcined coal gangue. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2007, 22, 749–753. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, S.; Wang, R.; Shen, L.; Wang, Q. Utilization of raw coal gangue as coarse aggregates in pavement concrete. Constr. Build. Mater. 2023, 378, 131062. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, C.; Li, K.; Qu, F.; Yan, C.; Wu, Z. Toward understanding the activation and hydration mechanisms of composite activated coal gangue geopolymer. Constr. Build. Mater. 2022, 318, 125999. [Google Scholar] [CrossRef]
- Xu, J.; Kang, A.; Wu, Z.; Gong, Y.; Xiao, P. The effect of mechanical-thermal synergistic activation on the mechanical properties and microstructure of recycled powder geopolymer. J. Clean. Prod. 2021, 327, 129477. [Google Scholar] [CrossRef]
- Hao, R.; Li, X.; Xu, P.; Liu, Q. Thermal activation and structural transformation mechanism of kaolinitic coal gangue from Jungar coalfield, Inner Mongolia, China. Appl. Clay Sci. 2022, 223, 106508. [Google Scholar] [CrossRef]
- Liu, Y.; Ling, T.-C.; Wang, M.; Wu, Y.-Y. Synergic performance of low-kaolinite calcined coal gangue blended with limestone in cement mortars. Constr. Build. Mater. 2021, 300, 124012. [Google Scholar] [CrossRef]
- Huang, G.; Ji, Y.; Li, J.; Hou, Z.; Dong, Z. Improving strength of calcinated coal gangue geopolymer mortars via increasing calcium content. Constr. Build. Mater. 2018, 166, 760–768. [Google Scholar] [CrossRef]
- Zhang, N.; Liu, X.; Sun, H.; Li, L. Pozzolanic behaviour of compound-activated red mud-coal gangue mixture. Cem. Concr. Res. 2011, 41, 270–278. [Google Scholar] [CrossRef]
- Guo, X.; Zeng, M.; Yu, H.; Lin, F.; Li, J.; Wang, W.; Chen, G. Critical review for the potential analysis of material utilization from inorganic industrial solid waste. J. Clean. Prod. 2024, 459, 142457. [Google Scholar] [CrossRef]
- Zhang, J.; Yan, G.; Bai, X.; Kong, S.; Li, J.; Li, G.; Ge, Z.; Huang, J. Resource Utilization Potential of Red Mud: A Study on the Micro-Mechanism of the Synergistic Effect of Multiple Solid Waste Filling Materials. Sustainability 2023, 15, 15532. [Google Scholar] [CrossRef]
- Hou, W.; Liu, J.; Liu, Z.; He, F.; Zhu, J.; Cui, Y.; Jinyang, W. Calcium transfer process of cement paste for ettringite formation under different sulfate concentrations. Constr. Build. Mater. 2022, 348, 128706. [Google Scholar] [CrossRef]
- Gou, M.; Zhao, M.; Zhou, L.; Zhao, J.; Hou, W.; Ma, W.; Hou, Z. Hydration and mechanical properties of FGD gypsum-cement-mineral powder composites. J. Build. Eng. 2023, 69, 106288. [Google Scholar] [CrossRef]
- Ren, C.; Wang, W.; Li, G. Preparation of high-performance cementitious materials from industrial solid waste. Constr. Build. Mater. 2017, 152, 39–47. [Google Scholar] [CrossRef]
- Wang, Z.; Jiu, S.; Li, H.; Zhang, K.; Cheng, S. Properties and Hydration Mechanism of Cementitious Materials Prepared from Calcined Coal Gangue. J. Renew. Mater. 2022, 11, 1223–1236. [Google Scholar] [CrossRef]
- Divet, L.; Randriambololona, R. Delayed Ettringite Formation: The Effect of Temperature and Basicity on the Interaction of Sulphate and C-S-H Phase 11Communicated by M. Moranville-Regourd. Cem. Concr. Res. 1998, 28, 357–363. [Google Scholar] [CrossRef]
- Wang, X.; Pan, Z.; Shen, X.; Liu, W. Stability and decomposition mechanism of ettringite in presence of ammonium sulfate solution. Constr. Build. Mater. 2016, 124, 786–793. [Google Scholar] [CrossRef]
- Wang, K.; Fu, J.-x.; Wang, J. The ratio optimization and hydration mechanism of multi source solid waste cementitious materials. Constr. Build. Mater. 2024, 411, 134267. [Google Scholar] [CrossRef]
- Jiang, L.; Li, C.; Wang, C.; Xu, N.; Chu, H. Utilization of flue gas desulfurization gypsum as an activation agent for high-volume slag concrete. J. Clean. Prod. 2018, 205, 589–598. [Google Scholar] [CrossRef]
- Zhang, L.; Mo, K.H.; Tan, T.H.; Hung, C.-C.; Yap, S.P.; Ling, T.-C. Influence of calcination and GGBS addition in preparing β-hemihydrate synthetic gypsum from phosphogypsum. Case Stud. Constr. Mater. 2023, 19, e02259. [Google Scholar] [CrossRef]
- Wu, X.; Tong, S.; Guan, B.; Wu, Z. Transformation of Flue-Gas-Desulfurization Gypsum to (α-Hemihydrated Gypsum in Salt Solution at Atmospheric Pressure. Chin. J. Chem. Eng. 2011, 19, 349–355. [Google Scholar] [CrossRef]
- Antiohos, S.; Tsimas, S. Activation of fly ash cementitious systems in the presence of quicklime: Part I. Compressive strength and pozzolanic reaction rate. Cem. Concr. Res. 2004, 34, 769–779. [Google Scholar] [CrossRef]
- Fu, H.; Huang, J.; Yin, L.; Yu, J.; Lou, W.; Jiang, G. Retarding effect of impurities on the transformation kinetics of FGD gypsum to α-calcium sulfate hemihydrate under atmospheric and hydrothermal conditions. Fuel 2017, 203, 445–451. [Google Scholar] [CrossRef]
- Zhou, W.; Shi, X.Y.; Lu, X.; Qi, C.C.; Luan, B.Y.; Liu, F.M. The mechanical and microstructural properties of refuse mudstone-GGBS-red mud based geopolymer composites made with sand. Constr. Build. Mater. 2020, 253, 119193. [Google Scholar] [CrossRef]
- Guo, W.; Zhu, J.; Li, D.; Chen, J.; Yang, N. Early hydration of composite cement with thermal activated coal gangue. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2010, 25, 162–166. [Google Scholar] [CrossRef]
- Kong, D.; Wang, T.; Zhang, J.; Li, T.; Liu, T. Improvement of strength and microstructure of low-carbon cementitious materials with high volume of calcined coal gangue. Constr. Build. Mater. 2024, 444, 137916. [Google Scholar] [CrossRef]
- Zhang, T.; Zhou, Y.; Sun, Z.; Zhang, J.; Guo, Q.; Han, J.; Cheeseman, C. Investigation of the activator system for coal gangue and its optimal utilization in composite cementitious materials. J. Sustain. Cem.-Based Mater. 2024, 13, 1672–1684. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Z.; Ji, Y.; Song, L.; Ma, M. Experimental Research on Improving Activity of Calcinated Coal Gangue via Increasing Calcium Content. Materials 2023, 16, 2705. [Google Scholar] [CrossRef]
- Yang, J.; Lu, H.; Zhang, X.; Li, J.; Wang, W. An Experimental Study on Solidifying Municipal Sewage Sludge through Skeleton Building Using Cement and Coal Gangue. Adv. Mater. Sci. Eng. 2017, 2017, 5069581. [Google Scholar] [CrossRef]
- Wang, Q.; Zhu, L.; Lu, C.; Liu, Y.; Yu, Q.; Chen, S. Investigation on the Effect of Calcium on the Properties of Geopolymer Prepared from Uncalcined Coal Gangue. Polymers 2023, 15, 1241. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Song, X. The mechanical properties and hydration characteristics of cement pastes containing added-calcium coal gangue. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2008, 23, 254–258. [Google Scholar] [CrossRef]
- Gu, X.; Ge, X.; Liu, J.; Song, G.; Wang, S.; Hu, Z.; Wang, H. Study on the synergistic effect of calcium carbide residue-fly ash enhanced desulphurisation gypsum under high temperature maintenance condition. Constr. Build. Mater. 2024, 412, 134706. [Google Scholar] [CrossRef]
- Wu, R.; Dai, S.; Jian, S.; Huang, J.; Tan, H.; Li, B. Utilization of solid waste high-volume calcium coal gangue in autoclaved aerated concrete: Physico-mechanical properties, hydration products and economic costs. J. Clean. Prod. 2021, 278, 123416. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, K.; He, X.; Wei, Z.; Zhao, X.; Fang, J. Experimental Study on Strength Development and Engineering Performance of Coal-Based Solid Waste Paste Filling Material. Metals 2022, 12, 1155. [Google Scholar] [CrossRef]
- Dhandapani, Y.; Santhanam, M.; Kaladharan, G.; Ramanathan, S. Towards ternary binders involving limestone additions—A review. Cem. Concr. Res. 2021, 143, 106396. [Google Scholar] [CrossRef]
- Juenger, M.C.G.; Siddique, R. Recent advances in understanding the role of supplementary cementitious materials in concrete. Cem. Concr. Res. 2015, 78, 71–80. [Google Scholar] [CrossRef]
- Min, Y.; Jueshi, Q.; Ying, P. Activation of fly ash–lime systems using calcined phosphogypsum. Constr. Build. Mater. 2008, 22, 1004–1008. [Google Scholar] [CrossRef]
- Wang, S.; Wu, H. Environmental-benign utilisation of fly ash as low-cost adsorbents. J. Hazard. Mater. 2006, 136, 482–501. [Google Scholar] [CrossRef] [PubMed]
- Fei, E.; Zhang, X.; Su, L.; Liu, B.; Li, B.; Li, W. Analysis of calcination activation modified coal gangue and its acid activation mechanism. J. Build. Eng. 2024, 95, 109916. [Google Scholar] [CrossRef]
- Yan, J.; Shan, D.; Wang, X.; Luo, Y.; Weng, W.; Wang, L.; Xie, J.; Lu, C.; Lai, Z.; Yu, X.; et al. Influence of Activated Coal Gangue Powder on Compressive Strength of Coal Gangue Coarse Aggregate Concrete. ACI Mater. J. 2023, 120, 29–40. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, H.; Hu, Y.; Wang, J.; Ma, J.; Jiang, R.; Sun, J. Influence of Curing Temperature on the Performance of Calcined Coal Gangue-Limestone Blended Cements. Materials 2024, 17, 1721. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-x.; Sun, H.-h.; Sun, Y.-m.; Zhang, N. Correlation between 29Si polymerization and cementitious activity of coal gangue. J. Zhejiang Univ.-Sci. A 2009, 10, 1334–1340. [Google Scholar] [CrossRef]
- Ma, H.; Zhu, H.; Yi, C.; Fan, J.; Chen, H.; Xu, X.; Wang, T. Preparation and Reaction Mechanism Characterization of Alkali-activated Coal Gangue-Slag Materials. Materials 2019, 12, 2250. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, N.; Sun, H.; Li, Y.; Cang, D. Effect of Multiplex Thermal Activation on Microstructure of Red Mud-Coal Gangue. Rare Met. Mater. Eng. 2013, 42, 538–542. [Google Scholar]
- Li, C.; Wan, J.; Sun, H.; Li, L. Investigation on the activation of coal gangue by a new compound method. J. Hazard. Mater. 2010, 179, 515–520. [Google Scholar] [CrossRef]
- Guo, W.; Li, D.; Chen, J.; Yang, N. Structure and Pozzolanic Activity of Calcined Coal Gangue during the Process of Mechanical Activation. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2009, 24, 326–329. [Google Scholar] [CrossRef]
Raw Materials | SiO2 | Al2O3 | Fe2O3 | MgO | K2O | CaO | MoO3 | SO3 |
---|---|---|---|---|---|---|---|---|
CG | 39.876 | 34.921 | 10.414 | 1.311 | 3.841 | 4.793 | 1.183 | 0.088 |
DG | 0.806 | 1.275 | - | 1.166 | 0.211 | 57.521 | - | 37.272 |
Lime | - | 0.287 | - | 0.575 | 0.697 | 97.076 | - | 0.216 |
Sample | Specific Gravity | Particle Size Parameters | |||
---|---|---|---|---|---|
D10/μm | D50/μm | D90/μm | STD/μm | ||
CG | 2.3 | 1.716 | 9.674 | 33.573 | 5.309 |
DG | 2.4 | 2.170 | 25.605 | 61.150 | 9.830 |
Lime | 2.6 | 1.542 | 8.022 | 53.713 | 8.695 |
Sample | CG | DG | Lime | Water/Cement Ratio | |
---|---|---|---|---|---|
CF system | 1 | 90 | 10 | 0 | 0.35 |
2 | 80 | 20 | 0 | 0.35 | |
3 | 70 | 30 | 0 | 0.35 | |
4 | 60 | 40 | 0 | 0.35 | |
5 | 50 | 50 | 0 | 0.35 | |
6 | 40 | 60 | 0 | 0.35 | |
7 | 30 | 70 | 0 | 0.35 | |
8 | 20 | 80 | 0 | 0.35 | |
9 | 10 | 90 | 0 | 0.35 | |
CL system | 10 | 98 | 0 | 2 | 0.35 |
11 | 96 | 0 | 4 | 0.35 | |
12 | 94 | 0 | 6 | 0.35 | |
13 | 92 | 0 | 8 | 0.35 | |
14 | 90 | 0 | 10 | 0.35 | |
CFL system | 15 | 29 | 70 | 1 | 0.35 |
16 | 28 | 70 | 2 | 0.35 | |
17 | 27 | 70 | 3 | 0.35 | |
18 | 26 | 70 | 4 | 0.35 | |
19 | 25 | 70 | 5 | 0.35 | |
20 | 24 | 70 | 6 | 0.35 |
Sample | Q0 | Q1 | Q2 | Q3 | Q4 |
---|---|---|---|---|---|
Coal gangue | 0 | 0 | 0 | 28 | 72 |
CF system | 0 | 10 | 30 | 25 | 35 |
CL system | 0 | 0 | 40 | 0 | 60 |
CFL system | 5 | 10 | 20 | 25 | 40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Wang, Q.; Cai, J.; Zhou, F.; Cheng, Z.; Zhang, J. Experimental Study on the Mechanical Properties and Microstructural Mechanisms of Coal Gangue-Based Cementitious Materials Synergistically Activated by Desulfurization Gypsum and Lime. Polymers 2025, 17, 932. https://doi.org/10.3390/polym17070932
Wang L, Wang Q, Cai J, Zhou F, Cheng Z, Zhang J. Experimental Study on the Mechanical Properties and Microstructural Mechanisms of Coal Gangue-Based Cementitious Materials Synergistically Activated by Desulfurization Gypsum and Lime. Polymers. 2025; 17(7):932. https://doi.org/10.3390/polym17070932
Chicago/Turabian StyleWang, Luyao, Qingping Wang, Jingyi Cai, Feifei Zhou, Zhiwei Cheng, and Jiayao Zhang. 2025. "Experimental Study on the Mechanical Properties and Microstructural Mechanisms of Coal Gangue-Based Cementitious Materials Synergistically Activated by Desulfurization Gypsum and Lime" Polymers 17, no. 7: 932. https://doi.org/10.3390/polym17070932
APA StyleWang, L., Wang, Q., Cai, J., Zhou, F., Cheng, Z., & Zhang, J. (2025). Experimental Study on the Mechanical Properties and Microstructural Mechanisms of Coal Gangue-Based Cementitious Materials Synergistically Activated by Desulfurization Gypsum and Lime. Polymers, 17(7), 932. https://doi.org/10.3390/polym17070932