Methods for Determining the High Molecular Weight of Hyaluronic Acid: A Review
Abstract
1. Introduction
1.1. Structure and Physicochemical Properties of Hyaluronic Acid
- (i)
- The HA exhibits remarkable viscoelasticity and hydrophilicity, driven by its high density of hydroxyl and carboxyl groups. These structural features allow it to retain substantial quantities of water, which is essential for maintaining tissue hydration and lubrication [15].
- (ii)
- (iii)
- It is fully biodegradable, mainly through enzymatic cleavage by hyaluronidases and oxidative mechanisms, generating oligosaccharides that may retain biological activity and functional relevance [18].
- (iv)
- Moreover, HA demonstrates native bioactivity, as it interacts with several cell surface receptors—including CD44 and RHAMM—mediating critical physiological processes such as cell adhesion, proliferation, migration, and modulation of inflammatory responses [19].
1.2. Molecular Weight of Hyaluronic Acid and Its Biological Implications
1.2.1. High-Molecular-Weight Hyaluronic Acid (HMW-HA)
1.2.2. Medium- and Low-Molecular-Weight Hyaluronic Acid (MMW-HA and LMW-HA)
1.3. Biosynthesis of Hyaluronic Acid: Eukaryotic and Microbial Pathways
1.4. Sources of Hyaluronic Acid: Bacterial Production vs. Animal Tissue Extraction
1.5. Analytical Relevance of Hyaluronic Acid’s Molecular Weight
2. Methods for Analyzing the Molecular Weight of Hyaluronic Acid
2.1. Viscometry

2.2. Agarose Gel Electrophoresis
2.3. Size-Exclusion Chromatography (SEC)
2.3.1. Conventional SEC: SEC-RID and SEC-UV
2.3.2. SEC Coupled with Multi-Angle Light Scattering Detector (SEC-MALS)
2.3.3. Size-Exclusion Chromatography Coupled with Multiple Detectors
3. Final Remarks
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Grand view research. GMI Hyaluronic Acid Market Size & Share: Industry Report 2030; Grand View Research: San Francisco, CA, USA, 2025. [Google Scholar]
- Li, J.; Qiao, M.; Ji, Y.; Lin, L.; Zhang, X.; Linhardt, R.J. Chemical, enzymatic and biological synthesis of hyaluronic acids. Int. J. Biol. Macromol. 2020, 152, 199–206. [Google Scholar] [CrossRef]
- Graciela, C.Q.; José Juan, E.C.; Gieraldin, C.L.; Xóchitl Alejandra, P.M.; Gabriel, A.Á. Hyaluronic Acid—Extraction methods, sources and applications. Polymers 2023, 15, 3473. [Google Scholar] [CrossRef]
- Jabbari, F.; Babaeipour, V.; Saharkhiz, S. Comprehensive review on biosynthesis of hyaluronic acid with different molecular weights and its biomedical applications. Int. J. Biol. Macromol. 2023, 240, 124484. [Google Scholar] [CrossRef]
- Wei, M.; Huang, Y.; Zhu, J.; Qiao, Y.; Xiao, N.; Jin, M.; Gao, H.; Huang, Y.; Hu, X.; Li, O. Advances in hyaluronic acid production: Biosynthesis and genetic engineering strategies based on Streptococcus—A review. Int. J. Biol. Macromol. 2024, 270, 132334. [Google Scholar] [CrossRef]
- Mioti, B.; Xavier, G.F.; Lopes, E.S.; de Oliveira Gonçalves, F.; Tovar, L.P.; Lopes, M.S. Sustainable strategies for hyaluronic acid production: From conventional methods to biomass utilization—A review. Int. J. Biol. Macromol. 2025, 318, 145106. [Google Scholar] [CrossRef]
- Ucm, R.; Aem, M.; Lhb, Z.; Kumar, V.; Taherzadeh, M.J.; Garlapati, V.K.; Chandel, A.K. Comprehensive review on biotechnological production of hyaluronic acid: Status, innovation, market and applications. Bioengineered 2022, 13, 9645–9661. [Google Scholar] [CrossRef] [PubMed]
- Torres-Acosta, M.A.; Castaneda-Aponte, H.M.; Mora-Galvez, L.M.; Gil-Garzon, M.R.; Banda-Magaña, M.P.; Marcellin, E.; Mayolo-Deloisa, K.; Licona-Cassani, C. Comparative economic analysis between endogenous and recombinant production of hyaluronic acid. Front. Bioeng. Biotechnol. 2021, 9, 680278. [Google Scholar] [CrossRef] [PubMed]
- Cowman, M.K.; Lee, H.G.; Schwertfeger, K.L.; McCarthy, J.B.; Turley, E.A. The content and size of hyaluronan in biological fluids and tissues. Front. Immunol. 2015, 6, 138552. [Google Scholar] [CrossRef]
- Marcellin, E.; Steen, J.A.; Nielsen, L.K. Insight into hyaluronic acid molecular weight control. Appl. Microbiol. Biotechnol. 2014, 98, 6947–6956. [Google Scholar] [CrossRef] [PubMed]
- Rivas, F.; Erxleben, D.; Smith, I.; Rahbar, E.; DeAngelis, P.L.; Cowman, M.K.; Hall, A.R. Methods for isolating and analyzing physiological hyaluronan: A review. Am. J. Physiol. Cell Physiol. 2022, 322, C674–C687. [Google Scholar] [CrossRef]
- Rodriguez-Marquez, C.D.; Arteaga-Marin, S.; Rivas-Sánchez, A.; Guidolin, D.; Dariel Rodriguez-Marquez, C.; Arteaga-Marin, S.; Rivas-Sánchez, A.; Autrique-Hernández, R.; Castro-Muñoz, R. A review on current strategies for extraction and purification of hyaluronic acid. Int. J. Mol. Sci. 2022, 23, 6038. [Google Scholar] [CrossRef]
- Saadati, F.; Bahrulolum, H.; Talebi, M.; Karimi, M.; Bozorgchami, N.; Ghale, R.A.; Zafar, S.; Aghighi, Y.; Asiaei, E.; Tabandeh, F. Advances and principles of hyaluronic acid production, extraction, purification, and its applications: A review. Int. J. Biol. Macromol. 2025, 312, 143839. [Google Scholar] [CrossRef]
- Shikina, E.V.; Kovalevsky, R.A.; Shirkovskaya, A.I.; Toukach, P.V. Prospective bacterial and fungal sources of hyaluronic acid: A review. Comput. Struct. Biotechnol. J. 2022, 20, 6214–6236. [Google Scholar] [CrossRef]
- Wu, Y.; Zhao, S.; Wang, J.; Chen, Y.; Li, H.; Li, J.P.; Kan, Y.; Zhang, T. Methods for determining the structure and physicochemical properties of hyaluronic acid and its derivatives: A review. Int. J. Biol. Macromol. 2024, 282, 137603. [Google Scholar] [CrossRef]
- Choi, S.; Choi, W.; Kim, S.; Lee, S.Y.; Noh, I.; Kim, C.W. Purification and biocompatibility of fermented hyaluronic acid for its applications to biomaterials. Biomater. Res. 2014, 18, 6. [Google Scholar] [CrossRef]
- Ding, Y.W.; Wang, Z.Y.; Ren, Z.W.; Zhang, X.W.; Wei, D.X. Advances in modified hyaluronic acid-based hydrogels for skin wound healing. Biomater. Sci. 2022, 10, 3393–3409. [Google Scholar] [CrossRef]
- Stern, R. Hyaluronidases in cancer biology. Semin. Cancer Biol. 2008, 18, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Dovedytis, M.; Liu, Z.J.; Bartlett, S. Hyaluronic acid and its biomedical applications: A review. Eng. Regen. 2020, 1, 102–113. [Google Scholar] [CrossRef]
- Parmal, S.; Subbappa, P.; Nikam, V.; Tarwate, Y.; Barhate, K.; Wagh, S.; Gholap, A.D.; Dua, K.; Singh, S.K.; Parikh, D.; et al. Hyaluronic acid based approaches for wound healing: A comprehensive review. Int. J. Biol. Macromol. 2025, 306, 141625. [Google Scholar] [CrossRef]
- Gagneja, S.; Capalash, N.; Sharma, P. Hyaluronic acid as a tumor progression agent and a potential chemotherapeutic biomolecule against cancer: A review on its dual role. Int. J. Biol. Macromol. 2024, 275, 133744. [Google Scholar] [CrossRef] [PubMed]
- Del Marmol, D.; Holtze, S.; Kichler, N.; Sahm, A.; Bihin, B.; Bourguignon, V.; Dogné, S.; Szafranski, K.; Hildebrandt, T.B.; Flamion, B. Abundance and size of hyaluronan in naked mole-rat tissues and plasma. Sci. Rep. 2021, 11, 7951. [Google Scholar] [CrossRef]
- Stern, R.; Asari, A.A.; Sugahara, K.N. Hyaluronan fragments: An information-rich system. Eur. J. Cell Biol. 2006, 85, 699–715. [Google Scholar] [CrossRef]
- D’Agostino, A.; Stellavato, A.; Corsuto, L.; Diana, P.; Filosa, R.; La Gatta, A.; De Rosa, M.; Schiraldi, C. Is molecular size a discriminating factor in hyaluronan interaction with human cells? Carbohydr. Polym. 2017, 157, 21–30. [Google Scholar] [CrossRef]
- Miyazaki, M.; Yuba, E.; Hayashi, H.; Harada, A.; Kono, K. Development of pH-responsive hyaluronic acid-based antigen carriers for induction of antigen-specific cellular immune responses. ACS Biomater. Sci. Eng. 2019, 5, 5790–5797. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, N.d.R.; Sanz, C.K.; Raybolt, A.; Pereira, C.M.; DosSantos, M.F. Action of hyaluronic acid as a damage-associated molecular pattern molecule and its function on the treatment of temporomandibular disorders. Front. Pain Res. 2022, 3, 852249. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Kirker, K.R.; Prestwich, G.D. Cross-linked hyaluronic acid hydrogel films: New biomaterials for drug delivery. J. Control. Release 2000, 69, 169–184. [Google Scholar] [CrossRef] [PubMed]
- Nimmo, C.M.; Shoichet, M.S. Regenerative biomaterials that “click”: Simple, aqueous-based protocols for hydrogel synthesis, surface immobilization, and 3D patterning. Bioconjug. Chem. 2011, 22, 2199–2209. [Google Scholar] [CrossRef]
- Gao, Y.; Sun, Y.; Yang, H.; Qiu, P.; Cong, Z.; Zou, Y.; Song, L.; Guo, J.; Anastassiades, T.P. A low molecular weight hyaluronic acid derivative accelerates excisional wound healing by modulating pro-inflammation, promoting epithelialization and neovascularization, and remodeling collagen. Int. J. Mol. Sci. 2019, 20, 3722. [Google Scholar] [CrossRef]
- Ke, C.; Wang, D.; Sun, Y.; Qiao, D.; Ye, H.; Zeng, X. Immunostimulatory and antiangiogenic activities of low molecular weight hyaluronic acid. Food Chem. Toxicol. 2013, 58, 401–407. [Google Scholar] [CrossRef]
- Tian, Y.B.; Wang, N.X.; Xu, Y.; Yu, C.Y.; Liu, R.M.; Luo, Y.; Xiao, J.H. Hyaluronic acid ameliorates the proliferative ability of human amniotic epithelial cells through activation of TGF-β/BMP signaling. PeerJ 2020, 8, e10104. [Google Scholar] [CrossRef]
- Itano, N.; Kimata, K. Mammalian hyaluronan synthases. IUBMB Life 2002, 54, 195–199. [Google Scholar] [CrossRef]
- Itano, N. Simple primary structure, complex turnover regulation and multiple roles of hyaluronan. J. Biochem. 2008, 144, 131–137. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Y.; Li, J.; Du, G.; Chen, J. Microbial production of hyaluronic acid: Current state, challenges, and perspectives. Microb. Cell Fact. 2011, 10, 99. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, J.D.; Carvalho, L.S.; Gomes, A.M.V.; Queiroz, L.R.; Magalhães, B.S.; Parachin, N.S. Genetic basis for hyper production of hyaluronic acid in natural and engineered microorganisms. Microb. Cell Fact. 2016, 15, 119. [Google Scholar] [CrossRef] [PubMed]
- Shiedlin, A.; Bigelow, R.; Christopher, W.; Arbabi, S.; Yang, L.; Maier, R.V.; Wainwright, N.; Childs, A.; Miller, R.J. Evaluation of hyaluronan from different sources: Streptococcus zooepidemicus, rooster comb, bovine vitreous, and human umbilical cord. Biomacromolecules 2004, 5, 2122–2127. [Google Scholar] [CrossRef]
- Qiu, Y.; Ma, Y.; Huang, Y.; Li, S.; Xu, H.; Su, E. Current advances in the biosynthesis of hyaluronic acid with variable molecular weights. Carbohydr. Polym. 2021, 269, 118320. [Google Scholar] [CrossRef]
- Fraser, J.R.E.; Laurent, T.C.; Laurent, U.B.G. Hyaluronan: Its nature, distribution, functions and turnover. J. Intern. Med. 1997, 242, 27–33. [Google Scholar] [CrossRef]
- O’Regan, M.; Martini, I.; Crescenzi, F.; De Luca, C.; Lansing, M. Molecular mechanisms and genetics of hyaluronan biosynthesis. Int. J. Biol. Macromol. 1994, 16, 283–286. [Google Scholar] [CrossRef] [PubMed]
- Wessels, M.R. Capsular polysaccharide of group A Streptococcus. Microbiol. Spectr. 2019, 7, 10–1128. [Google Scholar] [CrossRef]
- Ashbaugh, C.D.; Alberti, S.; Wessels, M.R. Molecular analysis of the capsule gene region of group A Streptococcus: The hasab genes are sufficient for capsule expression. J. Bacteriol. 1998, 180, 4955–4959. [Google Scholar] [CrossRef]
- Boeriu, C.G.; Springer, J.; Kooy, F.K.; van den Broek, L.A.M.; Eggink, G. Production methods for hyaluronan. Int. J. Carbohydr. Chem. 2013, 2013, 624967. [Google Scholar] [CrossRef]
- Chahuki, F.F.; Aminzadeh, S.; Jafarian, V.; Tabandeh, F.; Khodabandeh, M. Hyaluronic acid production enhancement via genetically modification and culture medium optimization in Lactobacillus acidophilus. Int. J. Biol. Macromol. 2019, 121, 870–881. [Google Scholar] [CrossRef] [PubMed]
- Iaconisi, G.N.; Lunetti, P.; Gallo, N.; Cappello, A.R.; Fiermonte, G.; Dolce, V.; Capobianco, L. Hyaluronic acid: A powerful biomolecule with wide-ranging applications—A comprehensive review. Int. J. Mol. Sci. 2023, 24, 10296. [Google Scholar] [CrossRef]
- Marwan-Abdelbaset, E.; Samy-Kamal, M.; Tan, D.; Lu, X.Y. Microbial production of hyaluronic acid: The current advances, engineering strategies and trends. J. Biotechnol. 2025, 403, 52–72. [Google Scholar] [CrossRef]
- Lee, H.G.; Cowman, M.K. An agarose gel electrophoretic method for analysis of hyaluronan molecular weight distribution. Anal. Biochem. 1994, 219, 278–287. [Google Scholar] [CrossRef]
- Doss, S.S.; Bhatt, N.P.; Jayaraman, G. Improving the accuracy of hyaluronic acid molecular weight estimation by conventional size exclusion chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1060, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.; Lin, X.; Verma, S.; Puri, S.; Hascall, V.; Gesteira, T.F.; Coulson-Thomas, V.J. Characterization of the molecular weight of hyaluronan in eye products using a novel method of size exclusion high-pressure liquid chromatography. Transl. Vis. Sci. Technol. 2023, 12, 13. [Google Scholar] [CrossRef]
- Cowman, M.K.; Schmidt, T.A.; Raghavan, P.; Stecco, A. Viscoelastic properties of hyaluronan in physiological conditions. F1000Research 2015, 4, 622. [Google Scholar] [CrossRef]
- Cowman, M.K.; Mendichi, R. Methods for determination of hyaluronan molecular weight. In Chemistry and Biology of Hyaluronan; Hari, G., Garg, C.A.H., Eds.; Elsevier Science Ltd.: Amsterdam, The Netherlands, 2004; pp. 41–69. ISBN 9780080472225. [Google Scholar]
- Šoltés, L.; Mendichi, R.; Lath, D.; Mach, M.; Bakoš, D. Molecular characteristics of some commercial high-molecular-weight hyaluronans. Biomed. Chromatogr. 2002, 16, 459–462. [Google Scholar] [CrossRef]
- Fouissac, E.; Milas, M.; Rinaudo, M.; Borsali, R. Influence of the ionic strength on the dimensions of sodium hyaluronate. Macromolecules 1992, 25, 5613–5617. [Google Scholar] [CrossRef]
- Takahashi, A.; Kato, T.; Nagasawa, M. The second virial coefficient of polyelectrolytes. Phys. Chem. 2003, 71, 2001–2010. [Google Scholar] [CrossRef]
- Billmeyer, F. Textbook of Polymer Science; John Wiley & Sons: Hoboken, NJ, USA, 1984. [Google Scholar]
- Ferraro, V.; Venturella, G.; Pecoraro, L.; Gao, W.; Gargano, M.L. Cultivated mushrooms: Importance of a multipurpose crop, with special focus on Italian fungiculture. Plant Biosyst. 2020, 156, 130–142. [Google Scholar] [CrossRef]
- Gura, E.; Hückel, M.; Müller, P.J. Specific degradation of hyaluronic acid and its rheological properties. Polym. Degrad. Stab. 1998, 59, 297–302. [Google Scholar] [CrossRef]
- Snetkov, P.; Zakharova, K.; Morozkina, S.; Olekhnovich, R.; Uspenskaya, M. Hyaluronic acid: The influence of molecular weight on structural, physical, physico-chemical, and degradable properties of biopolymer. Polymers 2020, 12, 1800. [Google Scholar] [CrossRef]
- Bothner, H.; Wik, O. Rheology of hyaluronate. Acta Otolaryngol. 1987, 104, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Okamoto, A.; Nishinari, K. Viscoelasticity of hyaluronic acid with different molecular weights. Biorheology 1994, 31, 235–244. [Google Scholar] [CrossRef]
- Daar, E.; King, L.; Nisbet, A.; Thorpe, R.B.; Bradley, D.A. Viscosity changes in hyaluronic acid: Irradiation and rheological studies. Appl. Radiat. Isot. 2010, 68, 746–750. [Google Scholar] [CrossRef]
- Huggins, M.L. Molecular weights of high polymers. Ind. Eng. Chem. 2002, 35, 980–986. [Google Scholar] [CrossRef]
- Gray, M.F. HDEHP Activity Coefficients by Vapor Pressure Osmometry. Ph.D. Thesis, UC Irvine, Irvine, CA, USA, 2015. [Google Scholar]
- Birdi, K.S. Handbook of surface and colloid chemistry. In Handbook of Surface Colloid Chemistry, 4th ed.; Taylor & Francis: Abingdon, UK, 2015; pp. 1–683. [Google Scholar] [CrossRef]
- Cowman, M.K. Methods for hyaluronan molecular mass determination by agarose gel electrophoresis. In The Extracellular Matrix. Methods in Molecular Biology; Humana Press: New York, NY, USA, 2019; Volume 1952, pp. 91–102. [Google Scholar] [CrossRef]
- Caspersen, M.B.; Roubroeks, J.P.; Liu, Q.; Huang, S.; Fogh, J.; Zhao, R.; Tømmeraas, K. Thermal degradation and stability of sodium hyaluronate in solid state. Carbohydr. Polym. 2014, 107, 25–30. [Google Scholar] [CrossRef]
- Cowman, M.K.; Matsuoka, S. Experimental approaches to hyaluronan structure. Carbohydr. Res. 2005, 340, 791–809. [Google Scholar] [CrossRef]
- Müller-Lierheim, W.G.K. Why chain length of hyaluronan in eye drops matters. Diagnostics 2020, 10, 511. [Google Scholar] [CrossRef] [PubMed]
- Bothner, H.; Waaler, T.; Wik, O. Limiting viscosity number and weight average molecular weight of hyaluronate samples produced by heat degradation. Int. J. Biol. Macromol. 1988, 10, 287–291. [Google Scholar] [CrossRef]
- Laurent, T.C.; Ryan, M.; Pietruszkiewicz, A. Fractionation of hyaluronic acid the polydispersity of hyaluronic acid from the bovine vitreous body. Biochim. Biophys. Acta 1960, 42, 476–485. [Google Scholar] [CrossRef] [PubMed]
- Cleland, R.L.; Wang, J.L. Ionic polysaccharides. III. Dilute solution properties of hyaluronic acid fractions. Biopolymers 1970, 9, 799–810. [Google Scholar] [CrossRef]
- Shimada, E.; Matsumura, G. Viscosity and molecular weight of hyaluronic acids. J. Biochem. 1975, 78, 513–517. [Google Scholar] [CrossRef]
- Ueno, Y.; Tanaka, Y.; Horie, K.; Tokuyasu, K. Low-angle laser light scattering measurements on highly purified sodium hyaluronate from rooster comb. Chem. Pharm. Bull. 1988, 36, 4971–4975. [Google Scholar] [CrossRef]
- Yanaki, T.; Yamaguchi, M. Shear-rate dependence of the intrinsic viscosity of sodium hyaluronate in 0.2 M sodium chloride solution. Chem. Pharm. Bull. 1994, 42, 1651–1654. [Google Scholar] [CrossRef][Green Version]
- Balazs, E.A.; Briller, S.O.; Denlinger, J.L. Na-hyaluronate molecular size variations in equine and human arthritic synovial fluids and the effect on phagocytic cells. Semin. Arthritis Rheum. 1981, 11, 141–143. [Google Scholar] [CrossRef]
- Terbojevich, M.; Cosani, A.; Palumbo, M.; Pregnolato, F. Molecular weight distribution of hyaluronic acid by high-performance gelpermeation chromatography. Carbohydr. Res. 1986, 157, 269–272. [Google Scholar] [CrossRef]
- Japanese Pharmacopoeia. Purified sodium hyaluronate. In Japanese Pharmacopoeia (JP XVII); The Ministry of Health, Labour and Welfare: Tokyo, Japan, 2016; pp. 1575–1576. [Google Scholar]
- Cowman, M.K.; Chen, C.C.; Pandya, M.; Yuan, H.; Ramkishun, D.; LoBello, J.; Bhilocha, S.; Russell-Puleri, S.; Skendaj, E.; Mijovic, J.; et al. Improved agarose gel electrophoresis method and molecular mass calculation for high molecular mass hyaluronan. Anal. Biochem. 2011, 417, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Volpi, N.; Maccari, F. Glycosaminoglycan composition of the large freshwater mollusc bivalve Anodonta anodonta. Biomacromolecules 2005, 6, 3174–3180. [Google Scholar] [CrossRef]
- Bhilocha, S.; Ripal, A.; Pandya, M.; Yuan, H.; Tank, M.; LoBello, J.; Shytuhina, A.; Wang, W.; Wisniewski, H.G.; De La Motte, C.; et al. Agarose and polyacrylamide gel electrophoresis methods for molecular mass analysis of 5- to 500-kDa hyaluronan. Anal. Biochem. 2011, 417, 41–49. [Google Scholar] [CrossRef]
- Jing, W.; Michael Haller, F.; Almond, A.; DeAngelis, P.L. Defined megadalton hyaluronan polymer standards. Anal. Biochem. 2006, 355, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Amjad Zanjani, F.S.; Afrasiabi, S.; Norouzian, D.; Ahmadian, G.; Hosseinzadeh, S.A.; Fayazi Barjin, A.; Cohan, R.A.; Keramati, M. Hyaluronic acid production and characterization by novel Bacillus subtilis harboring truncated hyaluronan synthase. AMB Express 2022, 12, 88. [Google Scholar] [CrossRef] [PubMed]
- Eisele, A.; Zaun, H.; Kuballa, J.; Elling, L. In Vitro one-pot enzymatic synthesis of hyaluronic acid from sucrose and N-acetylglucosamine: Optimization of the enzyme module system and nucleotide sugar regeneration. ChemCatChem 2018, 10, 2969–2981. [Google Scholar] [CrossRef]
- Gottschalk, J.; Aßmann, M.; Kuballa, J.; Elling, L. Repetitive synthesis of high-molecular-weight hyaluronic acid with immobilized enzyme cascades. ChemSusChem 2022, 15, e202101071. [Google Scholar] [CrossRef]
- Karami, M.; Shahraky, M.K.; Ranjbar, M.; Tabandeh, F.; Morshedi, D.; Aminzade, S. Preparation, purification, and characterization of low-molecular-weight hyaluronic acid. Biotechnol. Lett. 2021, 43, 133–142. [Google Scholar] [CrossRef]
- Maccari, F.; Tripodi, F.; Volpi, N. High-performance capillary electrophoresis separation of hyaluronan oligosaccharides produced by Streptomyces hyalurolyticus hyaluronate lyase. Carbohydr. Polym. 2004, 56, 55–63. [Google Scholar] [CrossRef]
- Mandawe, J.; Infanzon, B.; Eisele, A.; Zaun, H.; Kuballa, J.; Davari, M.D.; Jakob, F.; Elling, L.; Schwaneberg, U. directed evolution of hyaluronic acid synthase from Pasteurella multocida towards high-molecular-weight hyaluronic Acid. ChemBioChem 2018, 19, 1414–1423. [Google Scholar] [CrossRef]
- Neuenschwander, H.M.; Moreira, J.J.; Vendruscolo, C.P.; Fülber, J.; Seidel, S.R.T.; Michelacci, Y.M.; Baccarin, R.Y.A. Hyaluronic acid has chondroprotective and joint-preserving effects on LPS-induced synovitis in horses. J. Vet. Sci. 2019, 20, e67. [Google Scholar] [CrossRef]
- Sauer, A.; Seeliger, B.; Jandl, K.; Erfinanda, L.; Wilhelm, J.; Alexopoulos, I.; Baal, N.; Birnhuber, A.; David, S.; Welte, T.; et al. Circulating hyaluronic acid signature in CAP and ARDS—The role of pneumolysin in hyaluronic acid shedding. Matrix Biol. 2022, 114, 67–83. [Google Scholar] [CrossRef] [PubMed]
- Zieba, J.; Walczak, M.; Gordiienko, O.; Gerstenhaber, J.A.; Smith, G.M.; Krynska, B. Altered amniotic fluid levels of hyaluronic acid in fetal rats with myelomeningocele: Understanding spinal cord injury. J. Neurotrauma 2019, 36, 1965–1973. [Google Scholar] [CrossRef]
- Hagel, L. Gel filtration: Size exclusion chromatography. In Protein Purification: Principles, High Resolution Methods, and Applications, 3rd ed.; Wiley: Hoboken, NJ, USA, 2011; pp. 51–91. [Google Scholar] [CrossRef]
- Hall, M. Size Exclusion Chromatography (SEC). In Biopharmaceutical Processing: Development, Design, and Implementation of Manufacturing Processes; Elsevier: Amsterdam, The Netherlands, 2018; pp. 421–432. [Google Scholar] [CrossRef]
- Suárez-Hernández, L.A.; Camacho-Ruíz, R.M.; Arriola-Guevara, E.; Padilla-Camberos, E.; Kirchmayr, M.R.; Corona-González, R.I.; Guatemala-Morales, G.M. Validation of an analytical method for the simultaneous determination of hyaluronic acid concentration and molecular weight by size-exclusion chromatography. Molecules 2021, 26, 5360. [Google Scholar] [CrossRef]
- Chang, W.-H.; Liu, P.-Y.; Lin, M.-H.; Lu, C.-J.; Chou, H.-Y.; Nian, C.-Y.; Jiang, Y.-T.; Hsu, Y.-H.H.; Chang, W.-H.; Liu, P.-Y.; et al. Applications of hyaluronic acid in ophthalmology and contact lenses. Molecules 2021, 26, 2485. [Google Scholar] [CrossRef]
- Kim, J.H.; Yoo, S.J.; Oh, D.K.; Kweon, Y.G.; Park, D.W.; Lee, C.H.; Gil, G.H. Selection of a Streptococcus equi mutant and optimization of culture conditions for the production of high molecular weight hyaluronic acid. Enzyme Microb. Technol. 1996, 19, 440–445. [Google Scholar] [CrossRef]
- Lai, Z.W.; Rahim, R.A.; Ariff, A.B.; Mohamad, R. Biosynthesis of high molecular weight hyaluronic acid by Streptococcus zooepidemicus using oxygen vector and optimum impeller tip speed. J. Biosci. Bioeng. 2012, 114, 286–291. [Google Scholar] [CrossRef]
- Ruckmani, K.; Shaikh, S.Z.; Khalil, P.; Muneera, M.S.; Thusleem, O.A. Determination of sodium hyaluronate in pharmaceutical formulations by HPLC–UV. J. Pharm. Anal. 2013, 3, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Qin, J.; Hu, Y. Efficient degradation of high-molecular-weight hyaluronic acid by a combination of ultrasound, hydrogen peroxide, and copper ion. Molecules 2019, 24, 617. [Google Scholar] [CrossRef] [PubMed]
- Hafsa, J.; Chaouch, M.A.; Charfeddine, B.; Rihouey, C.; Limem, K.; Le Cerf, D.; Rouatbi, S.; Majdoub, H. Effect of ultrasonic degradation of hyaluronic acid extracted from rooster comb on antioxidant and antiglycation activities. Pharm. Biol. 2017, 55, 156–163. [Google Scholar] [CrossRef]
- Holubova, L.; Korecka, L.; Podzimek, S.; Moravcova, V.; Rotkova, J.; Ehlova, T.; Velebny, V.; Bilkova, Z. Enhanced multiparametric hyaluronan degradation for production of molar-mass-defined fragments. Carbohydr. Polym. 2014, 112, 271–276. [Google Scholar] [CrossRef]
- Orviský, E.; Šoltés, L.; Al Assaf, S. Concentration effect in hyaluronan analysis by size exclusion chromatography. Chromatographia 1994, 39, 366–368. [Google Scholar] [CrossRef]
- Kaur, M.; Jayaraman, G. Hyaluronan production and molecular weight is enhanced in pathway-engineered strains of lactate dehydrogenase-deficient Lactococcus lactis. Metab. Eng. Commun. 2016, 3, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Mendichi, R.; Schieroni, A.G. Fractionation and characterization of ultra-high molar mass hyaluronan: 2. On-line size exclusion chromatography methods. Polymer 2002, 43, 6115–6121. [Google Scholar] [CrossRef]
- Shalliker, R.A.; Samuelsson, J.; Fornstedt, T. Sample introduction for high performance separations. TrAC Trends Anal. Chem. 2016, 81, 34–41. [Google Scholar] [CrossRef]
- Valeja, S.G.; Emmett, M.R.; Marshall, A.G. Polar aprotic modifiers for chromatographic separation and back-exchange reduction for protein hydrogen/deuterium exchange monitored by fourier transform ion cyclotron resonance mass spectrometry. J. Am. Soc. Mass Spectrom. 2012, 23, 699–707. [Google Scholar] [CrossRef][Green Version]
- Saffman, P.G.; Tayulor, F.R.S. The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. In Dynamics of Curved Fronts; Academic Press: Cambridge, MA, USA, 1988; pp. 155–174. [Google Scholar] [CrossRef]
- Lambert, A. An extrapolation method for eliminating overload effects from gel permeation chromatograms. Polymer 1969, 10, 213–232. [Google Scholar] [CrossRef]
- Jia, Y.; Zhu, J.; Chen, X.; Tang, D.; Su, D.; Yao, W.; Gao, X. Metabolic engineering of Bacillus subtilis for the efficient biosynthesis of uniform hyaluronic acid with controlled molecular weights. Bioresour. Technol. 2013, 132, 427–431. [Google Scholar] [CrossRef]
- Gough, J.; Plankeele, J.-M. SEC Analysis of Hyaluronic Acid, Raffinose, and Rhamnose Using Advanced Polymer Chromatography; Waters: Milford, MA, USA, 2019. [Google Scholar]






| Technique | Advantages | Limitations | Comments |
|---|---|---|---|
| Viscometry |
|
| Widely accepted for regulatory purposes, but not suitable for polydisperse or complex HA samples. |
| Gel electrophoresis (agarose/PAGE) |
|
| One of the most practical, accessible, and informative methods for MW profiling is when well-optimized. |
| SEC-HPLC (RI detector) |
|
| Only reliable if using HA-based calibration and correcting for concentration effects (see [47]). |
| SEC-MALLS |
|
| Considered the “gold standard” for MW, though less precise for distribution unless combined with high-resolution separation. |
| GEMMA (Gas-phase electrophoretic mobility) |
|
| Ideal for analyzing HA in low-concentration biological fluids; best for comparative rather than absolute analysis. |
| MALDI-TOF MS |
|
| Effective for profiling small HA fragments; not applicable for large or complex HA distributions. |
| FFF (Field Flow Fractionation) |
|
| Superior to SEC for very large HA polymers, especially when high resolution and gentle separation are required. |
| Nanopore analysis (solid-state) |
|
| Emerging technique with great potential for full-spectrum HA characterization. Not yet routine but rapidly advancing. |
| HA Molecular Weight (Da) | k (dL/g) | α | Solvent * | Reference |
|---|---|---|---|---|
| 0.077–1.7 × 106 | 0.36 × 10−3 | 0.78 | 0.1 M NaCl | [69] |
| >0.1 × 106 | 0.228 × 10−3 0.318 × 10−3 | 0.816 0.777 | 0.2 M NaCl 0.5 M NaCl | [70] |
| 0.31–1.5 × 106 | 0.57 × 10−3 | 0.76 | 0.5 M NaCl | [71] |
| 0.25–1.63 × 106 | 0.39 × 10−3 | 0.77 | 0.2 M NaCl | [72] |
| >2.4 × 106 | 0.16 × 10−3 | 0.841 | 0.1 M NaCl | [52] |
| 0.1–1.0 × 106 >1 × 106 | 0.346 × 10−3 0.397 × 10−3 | 0.779 | 0.15 M NaCl | [58] |
| 0.4–2.66 × 106 | 0.199 × 10−3 | 0.829 | 0.2 M NaCl | [73] |
| 0.42–1.38 × 106 | 0.278 × 10−3 | 0.78 | 0.1 M NaNO3 | [51] |
| - | 0.29 × 10−3 | 0.80 | - | [74] |
| - | 0.57 × 10−3 | 0.75 | 0.15 M NaCl | [75] |
| 0.5–1.49 × 106 1.5–3.9 × 106 | 0.36 × 10−3 0.228 × 10−3 | 0.78 0.816 | 0.2 M NaCl | [76] |
| Agarose Gel (%) | Buffer | Pre-Run (Power/Time) | Run (Power/Time) | Staining Conditions | Destaining Conditions | HA Standards | Ref. |
|---|---|---|---|---|---|---|---|
| 0.5 | TAE * | - | 20 V/30 min 40 V/210 min | Stains-All | - | HA standards (0.2–6 MDa) | [46] |
| 1.2 | TBE ** (pH 8.2) | - | 100 V/300 min | 0.05% Stains-All (in 50% ethanol) | in water (2 h) + light | - | [85] |
| 0.5 | - | - | 100 V/60 min | 0.1 mg/mL Stains-(in 30% ethanol) | light | - | [86] |
| 0.5 | TAE (pH 8) | - | 105 V/55 min | 0.003% Stains-All (in 30% ethanol) | in water + light | Select-HA HiLadder™ (HA ≥ 2 MDa) | [82] |
| 0.5 | TAE (pH 7.9) | 30 V/30 min | 50 V/360 min | 0.005% Stains-All (in 50% ethanol) | in water (4 h) + light | MEGA/High Ladder, HMW HA (1.63 MDa), digested AF controls | [89] |
| 0.5 | TAE | - | 50 V/480 min | 0.005% Stains-All (in 50% ethanol) | in water (48 h) + light | - | [88] |
| 1.0 | TBE (1×) | 0.08 V/360 min | 0.1 V/60 min | 5% Stains-All | light | HA MW standard | [84] |
| 0.5 | TAE (pH 8) | 105 V/60 min | 6.25 µg/mL Stains-All (in 30% ethanol) | in water (24 h) + light | Select-HA HiLadder™, HA ≥ 2 MDa | [83] |
| Molecular Weight Reported (MDa) | Microorganism | HA Sample Concentration (g/L) | Extraction Buffer | HPLC Conditions | Calibration Standard Used (Concentration) | Column | Detector | Ref. |
|---|---|---|---|---|---|---|---|---|
| SEC-RID | ||||||||
| 2–5 MDa | Streptococcus equi KFCC 10830 | - | - | - | Pullulan (conc. NA) | TSK 5000 PW (up to 1 MDa; Toyo Soda) + TSK 6000 PW (up to 8 MDa; Toyo Soda) Material: hydroxylated methacrylic polymer functionalized with quaternary amine strong anion exchange groups | RID | [94] |
| 5.2–15.4 MDa | S. equi ATCC 39920 | - | - | 0.1 M NaNO3 0.6 mL/min; 37 °C | Pullulan (conc. NA) | Ultrahydrogel Linear (up to 7 MDa; Waters) Material: Crosslinked hydroxylated polymer containing residual carboxyl functionality | RID | [95] |
| 0.111–2.67 MDa (standards); 0.140–1.644 MDa corrected (“true MW-SEC”) | Lactococcus lactis | 0.1–10 | Ethanol-precipitated HA, redissolved in mobile phase | 0.2 M NaNO3; 0.6 mL/min; ambient temperature; 20 μL injection | Pullulan (0.112–0.788 MDa; 0.1–1 g/L) PEO (0.6–8 MDa; 0.1–1 g/L) HA (0.111–2.67 MDa; 0.1–6 g/L) | Phenomenex GFC-P 6000 (300 × 7.8 mm) + Phenomenex GFC-P guard (30 × 7.8 mm) Material: hydroxylated methacrylate polymer (hydrophilic gel matrix) designed for aqueous GPC/SEC separations; neutral, non-ionic resin suitable for polysaccharides and glycosaminoglycan | RID | [47] |
| SEC-UV | ||||||||
| 0.1 → 2.5 MDa (OTC products); standards 0.004–2.67 MDa | - | 0.14–4.0 mg/mL (products); 0.0025–2.5 mg/mL (standards) | - | 0.1 M sodium phosphate + 20 μM EDTA, pH 6.8; 0.300 mL/min; 35 °C; 25 μL injection | HA standards 4–8 kDa to 2670 kDa, 2.5 μg/mL–2.5 mg/mL | 2 × AdvancedBio SEC 300 Å (4.6 × 300 mm, silica, Agilent) + 1 × Zorbax GF-250 (4.6 × 250 mm, silica, Agilent), in tandem | UV 204 nm (also 280 nm) | [48] |
| - | 2.0 mg/mL (formulations); 0.32–0.48 mg/mL (standards) | 0.05 M KH2PO4 | 0.05 M KH2PO4, pH 7.0 1.0 mL/min; 25 °C; 10 μL injection | Sodium hyaluronate reference standards (0.32–0.48 mg/mL; BPCL, London) | BioSep SEC S2000 (300 × 7.8 mm, silica-based diol phase, Phenomenex) | UV (205 nm) | [96] | |
| SEC with combined detectors | ||||||||
| 0.1–1 MDa | - | - | 0.15 M NaCl | 0.15 M NaCl; 0.5 mL/min | - | - | MALS+RID | [97] |
| 0.5–1.5 MDa | - | 0.5 g/L | NaOAc 5% | 0.1 M LiNO3; 0.5 mL/min; 25 °C 200 µL of 0.5 mg/mL HA solution | - | Shodex OHpak SB-804 HQ and Shodex OHpak SB-806 HQ (Showa Denko K.K., Tokyo, Japan) 8 mm I.D. × 300 mm length (each) Two columns connected in series | MALS+VD+RID | [98] |
| 0.01–1.2 MDa | Streptococcus equi | 0.75 g/L | 0.1 M phosphate buffer + 0.1 M NaCl + 1.5 mM saccharic acid-1,4-lactone (pH 7.0) | 50 mM sodium phosphate+ 3.1 mM sodium azide; 0.8 mL/min; 100 µL injection | - | - | MALS+RID+UV | [99] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Cánovas, A.E.; Victoria-Sanes, M.; Martínez-Hernández, G.B.; López-Gómez, A. Methods for Determining the High Molecular Weight of Hyaluronic Acid: A Review. Polymers 2025, 17, 3289. https://doi.org/10.3390/polym17243289
López-Cánovas AE, Victoria-Sanes M, Martínez-Hernández GB, López-Gómez A. Methods for Determining the High Molecular Weight of Hyaluronic Acid: A Review. Polymers. 2025; 17(24):3289. https://doi.org/10.3390/polym17243289
Chicago/Turabian StyleLópez-Cánovas, Amanda Esperanza, Miguel Victoria-Sanes, Ginés Benito Martínez-Hernández, and Antonio López-Gómez. 2025. "Methods for Determining the High Molecular Weight of Hyaluronic Acid: A Review" Polymers 17, no. 24: 3289. https://doi.org/10.3390/polym17243289
APA StyleLópez-Cánovas, A. E., Victoria-Sanes, M., Martínez-Hernández, G. B., & López-Gómez, A. (2025). Methods for Determining the High Molecular Weight of Hyaluronic Acid: A Review. Polymers, 17(24), 3289. https://doi.org/10.3390/polym17243289

