The Behavior of Beams Reinforced with Patches Under Three-Point Bending: An Experimental Investigation
Abstract
1. Introduction
2. Experimental Procedure
2.1. The Preparation of Cylindrical Specimens with Dimensions
2.2. Interpretation of Compressive Strength Test Results
3. Results and Discussions
3.1. Compressive Strength Evolution
3.2. Formability Behavior
3.2.1. Crack Geometry and Notched Specimen Preparation
3.2.2. Beams Reinforced with Carbon Fiber
3.2.3. Patching Specimens Before Testing
3.2.4. Flexural Test Configuration
4. Conclusions
- Reinforcement with CFRP significantly improves the efficiency of uncracked lightweight concrete beams, with gains ranging from 130% to 190% compared to non-reinforced beams.
- For cracked beams, the load-carrying capacity increased significantly, with gains of 170% to 240% for cracks of 7 mm in length, and even higher values for cracks of 21 mm and 35 mm after reinforcement.
- The reinforced beams typically failed in bending without any detachment of the CFRP sheets, indicating effective bonding, whereas the non-reinforced beams generally failed through shear cracking and concrete crushing, reflecting lower structural integrity”.
- Thus, reinforcement using composite patches proves to be an effective method for enhancing the mechanical performance and durability of concrete structures, particularly in applications requiring localized repairs or an increase in load-carrying capacity.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rafi, M.M.; Nadjai, A.; Ali, F.; Talamona, D. Aspects of behaviour of CFRP reinforced concrete beams in bending. Constr. Build. Mater. 2008, 22, 277–285. [Google Scholar] [CrossRef]
- Park, J.; Choi, J.; Jang, Y.; Park, S.-K.; Hong, S. An Experimental and Analytical Study on the Deflection Behavior of Precast Concrete Beams with Joints. Appl. Sci. 2017, 7, 1198. [Google Scholar] [CrossRef]
- Kiersnowska, A.; Fabianowski, W.; Koda, E. The Influence of the Accelerated Aging Conditions on the Properties of Polyolefin Geogrids Used for Landfill Slope Reinforcement. Polymers 2020, 12, 1874. [Google Scholar] [CrossRef] [PubMed]
- Al-Mawed, L.K.; Hamad, B.S. Experimental and Numerical Assessments of Slab-Column Connections Strengthened Using Bonded Hemp Fiber Fabric Sheets. Int. J. Concr. Struct. Mater. 2023, 17, 8. [Google Scholar] [CrossRef]
- Jen, Y.-M.; Chen, Y.-J.; Yu, T.-H. Improving the Impact Resistance and Post-Impact Tensile Fatigue Damage Tolerance of Carbon Fiber Reinforced Epoxy Composites by Embedding the Carbon Nanoparticles in Matrix. Polymers 2024, 16, 3589. [Google Scholar] [CrossRef]
- Cruz, R.; Correia, L.; Cabral-Fonseca, S.; Sena-Cruz, J. Durability of bond of EBR CFRP laminates to concrete under real-time field exposure and laboratory accelerated ageing. Constr. Build. Mater. 2023, 377, 131047. [Google Scholar] [CrossRef]
- Kanagavel, K.; Karbhari, V.M. Long-Term Durability of CFRP Strips Used in Infrastructure Rehabilitation. Polymers 2025, 17, 1886. [Google Scholar] [CrossRef]
- Kara, I.F.; Ashour, A.F. Moment redistribution in continuous FRP reinforced concrete beams. Constr. Build. Mater. 2013, 49, 939–948. [Google Scholar] [CrossRef]
- Obaidat, Y.T.; Barham, W.; Obaidat, A.T.; Abuzakham, H. Improving the Shear Capacity of Recycled Aggregate Concrete Beams with NSM-CFRP Strip. Pract. Period. Struct. Des. Constr. 2023, 28, 04023016. [Google Scholar] [CrossRef]
- Golham, M.A.; Al-Ahmed, A.H.A. Behavior of GFRP reinforced concrete slabs with openings strengthened by CFRP strips. Results Eng. 2023, 18, 101033. [Google Scholar] [CrossRef]
- Godlewski, T.; Mazur, Ł.; Szlachetka, O.; Witowski, M.; Łukasik, S.; Koda, E. Design of Passive Building Foundations in the Polish Climatic Conditions. Energies 2021, 14, 7855. [Google Scholar] [CrossRef]
- Hadigheh, S.A.; Ke, F.; Fatemi, H. Durability design criteria for the hybrid carbon fibre reinforced polymer (CFRP)-reinforced geopolymer concrete bridges. Structures 2022, 35, 325–339. [Google Scholar] [CrossRef]
- Li, G.; Li, X.; Fang, C.; Wang, J.; Liu, R. Dynamic behavior of concrete-filled steel tube cantilever columns stiffened with encased carbon fiber reinforced plastic profile subjected to lateral impact load. Int. J. Impact Eng. 2023, 177, 104561. [Google Scholar] [CrossRef]
- Yang, J.; Lu, S.; Zeng, J.-J.; Wang, J.; Wang, Z. Durability of CFRP-confined seawater sea-sand concrete (SSC) columns under wet-dry cycles in seawater environment. Eng. Struct. 2023, 282, 115774. [Google Scholar] [CrossRef]
- Ozturk, M.; Sengun, K.; Arslan, G. CFRP contribution to load-carrying capacity of retrofitted geopolymer concrete beams. Structures 2023, 48, 1391–1402. [Google Scholar] [CrossRef]
- Zhou, S.C.; Demartino, C.; Xu, J.J.; Xiao, Y. Effectiveness of CFRP seismic-retrofit of circular RC bridge piers under vehicular lateral impact loading. Eng. Struct. 2021, 243, 112602. [Google Scholar] [CrossRef]
- Wu, M.; Yuan, F.; Guo, S.; Li, W.; Chen, G.; Zhou, Y.; Huang, Z.; Yang, X. Experimental investigation of the shear behaviour of concrete beams with CFRP strip stirrups under static and fatigue loading. Structures 2022, 41, 1602–1615. [Google Scholar] [CrossRef]
- Dong, H.; Zhou, Y.; Zhuang, N. Study on Corrosion Characteristics of Concrete-Filled CFRP-Steel Tube Piles under Hygrothermal Environment. Adv. Mater. Sci. Eng. 2020, 2020, 4849038. [Google Scholar] [CrossRef]
- Ananthkumar, M.; Mini, K.M.; Prakash, C.; Sharma, S.V.; Krishnaa, A.C.B. Study on the efficiency of CFRP and GFRP in corrosion resistance of rebar embedded in concrete. IOP Conf. Ser. Mater. Sci. Eng. 2020, 872, 012137. [Google Scholar] [CrossRef]
- Shakir, Q.M.; Alsaheb, S.D.A.; Farsangi, E.N. Rehabilitation of deteriorated reinforced self-consolidating concrete brackets and corbels using CFRP composites: Diagnosis and treatment. J. Build. Pathol. Rehabil. 2023, 8, 16. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, J. Flexural Behavior of Corroded Concrete Beams Strengthened with Carbon Fiber-Reinforced Polymer. Materials 2023, 16, 4355. [Google Scholar] [CrossRef] [PubMed]
- Hanif, M.U.; Seo, S.-Y.; Van Tran, H.; Senghong, K. Monitoring and characterizing the debonding in CFRP retrofitted RC beams using acoustic emission technology. Dev. Built Environ. 2023, 14, 100141. [Google Scholar] [CrossRef]
- Samy, K.; Fawzy, A.; Fouda, M.A. Strengthening of historic reinforced concrete columns using concrete and FRP jacketing techniques. Asian J. Civ. Eng. 2023, 24, 885–896. [Google Scholar] [CrossRef]
- Tudjono, S.; Sukamta; Priastiwi, Y.A.; Selalatu, D.T. Experimental study of the effect of CFRP string on shear reinforcement of reinforced concrete beams. AIP Conf. Proc. 2023, 2609, 050004. [Google Scholar] [CrossRef]
- Turki, A.Y.; Al-Farttoosi, M.H. Flexural Strength of Damaged RC Beams Repaired with Carbon Fiber-Reinforced Polymer (CFRP) Using Different Techniques. Fibers 2023, 11, 61. [Google Scholar] [CrossRef]
- Zhu, M.; Li, X.; Deng, J.; Peng, S. Electrochemical impedance based interfacial monitoring for concrete beams strengthened with CFRP subjected to wetting–drying cycling and sustained loading. Constr. Build. Mater. 2023, 366, 130238. [Google Scholar] [CrossRef]
- Qiang, X.; Chen, L.; Jiang, X. Experimental and theoretical study on flexural behavior of steel–concrete composite beams strengthened by CFRP plates with unbonded retrofit systems. Compos. Struct. 2023, 309, 116763. [Google Scholar] [CrossRef]
- Yu, X.-Y.; Jiang, C.; Zhang, W.-P. Failure mode-based calculation method for bending bearing capacities of corroded RC beams strengthened with CFRP sheets. Eng. Struct. 2022, 271, 114946. [Google Scholar] [CrossRef]
- Wang, Z.; Xian, G.; Yue, Q. Finite element modeling of debonding failure in CFRP-strengthened steel beam using a ductile adhesive. Compos. Struct. 2023, 311, 116818. [Google Scholar] [CrossRef]
- Guo, D.; Gao, W.-Y.; Liu, Y.-L.; Dai, J.-G. Intermediate crack-induced debonding in CFRP-retrofitted notched steel beams at different service temperatures: Experimental test and finite element modeling. Compos. Struct. 2023, 304, 116388. [Google Scholar] [CrossRef]
- Liu, X.; Yu, W.; Huang, Y.; Yang, G.; You, W.; Gao, L.; Song, J. Long-term behaviour of recycled aggregate concrete beams prestressed with carbon fibre-reinforced polymer (CFRP) tendons. Case Stud. Constr. Mater. 2023, 18, e01785. [Google Scholar] [CrossRef]
- Jin, L.; Zhang, J.; Li, D.; Du, X. Meso-scale analysis of shear performance and size effect of CFRP sheets strengthened RC beams. Structures 2022, 45, 1630–1645. [Google Scholar] [CrossRef]
- Huang, Z.; Deng, W.; Li, R.; Chen, J.; Sui, L.; Zhou, Y.; Zhao, D.; Yang, L.; Ye, J. Multi-impact performance of prestressed CFRP-strengthened RC beams using H-typed end anchors. Mar. Struct. 2022, 85, 103264. [Google Scholar] [CrossRef]
- Lam, C.C.; Zhang, Y.; Gu, J.; Cai, J. Reinforcing strategies of CFRP plate for coped steel beams against local buckling. Eng. Struct. 2023, 275, 115227. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, J.; Du, W.; Tong, C.; Zhu, Z.; Jing, Y. Residual load-carrying performance of CFRP strengthened RC beam after drop hammer impact. Int. J. Impact Eng. 2023, 175, 104547. [Google Scholar] [CrossRef]
- Gemi, L.; Aksoylu, C.; Yazman, Ş.; Özkılıç, Y.O.; Arslan, M.H. Experimental investigation of shear capacity and damage analysis of thinned end prefabricated concrete purlins strengthened by CFRP composite. Compos. Struct. 2019, 229, 111399. [Google Scholar] [CrossRef]
- Gemi, L.; Alsdudi, M.; Aksoylu, C.; Yazman, Ş.; Özkılıç, Y.O.; Arslan, M.H. Optimum amount of CFRP for strengthening shear deficient reinforced concrete beams, Steel and Composite Structures. Steel Compos. Struct. Int. J. 2022, 43, 735–757. [Google Scholar]
- Hasan, M.A.; Akiyama, M.; Kojima, K.; Izumi, N. Shear behavior of reinforced concrete beams repaired using a hybrid scheme with stainless steel rebars and CFRP sheets. Constr. Build. Mater. 2023, 363, 129817. [Google Scholar] [CrossRef]
- Özkılıç, Y.O.; Aksoylu, C.; Yazman, Ş.; Gemi, L.; Arslan, M.H. Behavior of CFRP-strengthened RC beams with circular web openings in shear zones: Numerical study. Structures 2022, 41, 1369–1389. [Google Scholar] [CrossRef]
- Özkılıç, Y.O.; Yazman, Ş.; Aksoylu, C.; Arslan, M.H.; Gemi, L. Numerical investigation of the parameters influencing the behavior of dapped end prefabricated concrete purlins with and without CFRP strengthening. Constr. Build. Mater. 2021, 275, 122173. [Google Scholar] [CrossRef]
- Li, Z.; Song, Q.; Liu, J.; Liu, W.; Chen, P.; Yue, G. Modeling of Preforming Process for Unidirectional Prepreg Composites Using Simplified Linear Friction Model and Fiber-Tracking Method. Polymers 2025, 17, 1321. [Google Scholar] [CrossRef]
- Qi, L.; Wang, K.; Ge, Z.; Cao, Z.; Hu, P.; He, Y.; Yasin, S.; Shi, J. Investigation of Cryogenic Mechanical Performance of Epoxy Resin and Carbon Fibre-Reinforced Polymer Composites for Cryo-Compressed Hydrogen Storage Onboard Gas Vessels. Polymers 2025, 17, 2296. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Liu, S.; Wang, J.; Zhao, C. Energy Absorption Characteristics of CFRP–Aluminum Foam Composite Structure Under High-Velocity Impact: Focusing on Varying Aspect Ratios and Relative Densities. Polymers 2025, 17, 2162. [Google Scholar] [CrossRef] [PubMed]
- Taheri, F.; Chowdhury, S.A.; Ghiaskar, A. Comparison of the Performance of Basalt Fiber-Reinforced Composites Incorporating a Recyclable and a Conventional Epoxy Resin. Polymers 2025, 17, 1348. [Google Scholar] [CrossRef] [PubMed]
- Reckendorf, I.M.Z.; Sahki, A.; Perrin, D.; Lacoste, C.; Bergeret, A.; Ohayon, A.; Morand, K. Chemical Recycling of Vacuum-Infused Thermoplastic Acrylate-Based Composites Reinforced by Basalt Fabrics. Polymers 2022, 14, 1083. [Google Scholar] [CrossRef]
- Faury, J. Le Béton: Influence de ses Constituants Inertes, Règles à Adopter Pour sa Meilleure Composition, sa Confection et Son Transport sur les Chantiers, par J. Faury… Préface de A. Caquot… 3e Édition; Dunod: Malakoff, France, 1958. [Google Scholar]
- Chen, H.-J.; Wu, C.-H. Influence of Aggregate Gradation on the Engineering Properties of Lightweight Aggregate Concrete. Appl. Sci. 2018, 8, 1324. [Google Scholar] [CrossRef]
- Kronlöf, A. Effect of very fine aggregate on concrete strength. Mater. Struct. 1994, 27, 15–25. [Google Scholar] [CrossRef]
- Evans, R.; Hall, D.; Luxon, B. Nickel Coated Graphite Fiber Conductive Composites. SAMPE Q. 1986, 17. Available online: https://www.osti.gov/biblio/5244428 (accessed on 20 August 2025).











| Cement | Coarse Aggregate | Mass Composition of Concrete | ||||
|---|---|---|---|---|---|---|
| Property | Value | Property | Value | Element | Percent (%) | Mass (kg) |
| Fineness | 18% | Class | Gravel 3/8 | Gravel 3/8 | 47.40% | 1100 |
| Initial setting time | 30 min | Absolute density | 2.665 t/m3 | Sand | 26.72% | 620 |
| Soundness | 0.233 | Apparent volumetric mass | 1.38 t/m3 | Cement | 17.24% | 400 |
| Standard consistency | 34% | Coefficient of form | 0.138 | Water | 8.62% | 200.02 |
| Properties | Value |
|---|---|
| Density, ρ (kg/m3) | 1700 |
| Elastic modulus, E1 (GPa) | 235 |
| Elastic modulus, E2 (GPa) | 155 |
| Poison’s ratio, ν12 | 0.25 |
| Longitudinal tensile strength, XT (MPa) | 3590 |
| Longitudinal compressive strength, XC (MPa) | 950 |
| Transverse tensile strength, YT (MPa) | 117 |
| Transverse compressive strength, YC (MPa) | 367 |
| Series | Specimens | Crack | Reinforcement |
|---|---|---|---|
| Reference B | B1, B2 and B3 | No | No |
| Strengthened B’ | B4, B5 and B6 | No | Yes |
| Cracked (crack length a = 7 mm) C | C1, C2 and C3 | Yes | No |
| Repaired and strengthened (crack length a = 7 mm) C’ | C4, C5 and C6 | Yes | Yes |
| Cracked (crack length a = 21 mm) D | D1, D2 and D3 | Yes | No |
| Repaired and strengthened crack length (a = 21 mm) D’ | D4, D5 and D6 | Yes | Yes |
| Cracked (crack length a = 35 mm) E | E1, E2 and E3 | Yes | No |
| Repaired and strengthened (a = 35 mm) E’ | E4, E5 and E6 | Yes | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benaoum, F.; Khelil, F.; Baltach, A.; Sekban, D.U.G.; Yaylacı, E.U.; Benhamena, A.; Mouli, M.; Sekban, D.M.; Yaylacı, M. The Behavior of Beams Reinforced with Patches Under Three-Point Bending: An Experimental Investigation. Polymers 2025, 17, 2993. https://doi.org/10.3390/polym17222993
Benaoum F, Khelil F, Baltach A, Sekban DUG, Yaylacı EU, Benhamena A, Mouli M, Sekban DM, Yaylacı M. The Behavior of Beams Reinforced with Patches Under Three-Point Bending: An Experimental Investigation. Polymers. 2025; 17(22):2993. https://doi.org/10.3390/polym17222993
Chicago/Turabian StyleBenaoum, Fatima, Foudil Khelil, Abdelghani Baltach, Demet Ulku Gulpinar Sekban, Ecren Uzun Yaylacı, Ali Benhamena, Mohamed Mouli, Dursun Murat Sekban, and Murat Yaylacı. 2025. "The Behavior of Beams Reinforced with Patches Under Three-Point Bending: An Experimental Investigation" Polymers 17, no. 22: 2993. https://doi.org/10.3390/polym17222993
APA StyleBenaoum, F., Khelil, F., Baltach, A., Sekban, D. U. G., Yaylacı, E. U., Benhamena, A., Mouli, M., Sekban, D. M., & Yaylacı, M. (2025). The Behavior of Beams Reinforced with Patches Under Three-Point Bending: An Experimental Investigation. Polymers, 17(22), 2993. https://doi.org/10.3390/polym17222993

