Bio-Based Coatings on Cellulosic Materials Resistant to Humidity and Fats
Abstract
1. Introduction
2. Food Loss and Waste
3. Food Packaging
4. Cellulose-Based Packaging
5. Biopolymeric Coatings
5.1. Poly(Lactic Acid) (PLA)
5.2. Chitosan
5.3. Lignin
5.4. Cationic Starch
5.5. Whey Protein Isolate (WPI)
5.6. Sodium Alginate
5.7. Waxes
6. Environmental Impact
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
UNEP | United Nations Environmental Programme |
FAO | Food and Agriculture Organization |
PLA | Poly(lactic acid) |
PHA | Poly(hydroxyalkanoate) |
MFC | Microfibrillated cellulose |
PEG | Poly(ethyleneglicol) |
ZnO | Zinc oxide |
MnO2 | Manganese dioxide |
PBAT | Poly(butylene adipate-co-terephthalate) |
AKD | Alkyl ketene dymer |
WPI | Whey protein isolate |
MMT | Montmorillonite |
PET | Poly(ethylene terephthalate) |
LLDPE | Linear low-density poly(ethylene) |
GOS | Galactooligosaccharide |
XOS | Xylooligosaccharide |
WCA | Water contact angle |
WA | Water absorption |
WRV | Water retention value |
WVP | Water vapor permeability |
WVTR | Water vapor transmission rate |
OCA | Oil contact angle |
OA | Oil absorption |
OP | Oil permeability |
References
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, Use, and Fate of All Plastics Ever Made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed]
- Nafiu, S.A.; Yerima, E.A.; Azeez, M.O.; Alaqad, K.M.; Tanimu, A.; Olarewaju, T.A. Waste Plastic Management: Recycling and the Environmental Health Nexus. Clean. Mater. 2025, 15, 100291. [Google Scholar] [CrossRef]
- Plastics Europe. Plastics—The Fast Facts 2024. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-fast-facts-2024/ (accessed on 1 May 2025).
- United Nations Environment Programme. Food Waste Index Report 2024. Think Eat Save: Tracking Progress to Halve Global Food Waste. 2024. Available online: https://wedocs.unep.org/20.500.11822/45230 (accessed on 1 May 2025).
- Freville, E.; Pescheux-Sergienko, J.; Mujica, R.; Rey, C.; Bras, J. Novel Technologies for Producing Tridimensional Cellulosic Materials for Packaging: A Review. Carbohydr. Polym. 2024, 342, 122413. [Google Scholar] [CrossRef]
- Karan, H.; Funk, C.; Oey, M.; Grabert, M.; Hankamer, B. Green Bioplastics as Part of a Circular Bioeconomy. Trends Plant Sci. 2019, 24, 237–249. [Google Scholar] [CrossRef]
- Hossain, R.; Gardner, D.J.; Bousfield, D.; Tajvidi, M. Recyclable Grease-Proof Cellulose Nanocomposites with Enhanced Water Resistance for Food Serving Applications. Cellulose 2022, 29, 5623–5643. [Google Scholar] [CrossRef]
- Lu, M.; Lu, P.; Liu, S.; Peng, Y.; Yang, Z.; Chu, Z.; Hong, Z.; Yang, Z.; Hu, Y. Chitosan/Acrylic Rosin-Based Superhydrophobic Coatings Inspired by Pickering Emulsion Template and Lotus Leaf Surface Structure for Paper-Based Food Packaging. Int. J. Biol. Macromol. 2025, 308, 142375. [Google Scholar] [CrossRef]
- Xia, Y.; Wang, S.; Meng, F.; Xu, Z.; Fang, Q.; Gu, Z.; Zhang, C.; Li, P.; Kong, F. Eco-Friendly Food Packaging Based on Paper Coated with a Bio-Based Antibacterial Coating Composed of Carbamate Starch, Calcium Lignosulfonate, Cellulose Nanofibrils, and Silver Nanoparticles. Int. J. Biol. Macromol. 2023, 254, 127659. [Google Scholar] [CrossRef]
- Gc, B. The State of Food and Agriculture 2019; Food Agriculture Organization: Rome, Italy, 2019; ISBN 9789251317891. [Google Scholar]
- Karmakar, R.; Tripathi, V.; Kumar, S.; Kathuria, D.; Bhattacharya, S.; Singh, N.; Aggarwal, S.; Sharma, P.K.; Mitra, D. Valorization of Food Waste Stream by Harnessing Bioactive Compounds: A Comprehensive Review on the Process, Challenges and Solutions. Food Biosci. 2025, 69, 106833. [Google Scholar] [CrossRef]
- Dhanker, R.; Kumar, R.; Kumar, V.; Deepa, D.; Chandna, V.; Sharma, A.; Rawat, S.; Das, S. Recovery of Silver Nanoparticles and Management of Food Wastes: Obstacles and Opportunities. Environ. Adv. 2022, 9, 100303. [Google Scholar] [CrossRef]
- Paiva, C.L.; Ugaya, C.M.L. Environmental Impacts Assessment in Packaging and Its Contribution to Reducing Food Waste. Clean. Circ. Bioecon. 2024, 8, 100083. [Google Scholar] [CrossRef]
- Hassoun, A.; Boukid, F.; Ozogul, F.; Aït-Kaddour, A.; Soriano, J.M.; Lorenzo, J.M.; Perestrelo, R.; Galanakis, C.M.; Bono, G.; Bouyahya, A.; et al. Creating New Opportunities for Sustainable Food Packaging through Dimensions of Industry 4.0: New Insights into the Food Waste Perspective. Trends Food Sci. Technol. 2023, 142, 104238. [Google Scholar] [CrossRef]
- Nguyen, A.T.; Parker, L.; Lockrey, S.; Brennan, L. A Consumer Definition of Eco-Friendly Packaging. J. Clean. Prod. 2019, 252, 119792. [Google Scholar] [CrossRef]
- Marangoni Júnior, L.; Vieira, R.P.; Coltro, L.; Dantas, F.B.H. Research on Food Packaging and Storage. Coatings 2022, 12, 1714. [Google Scholar] [CrossRef]
- Yin, Y.; Woo, M.W. Transitioning of Petroleum-Based Plastic Food Packaging to Sustainable Bio-Based Alternatives. Sustain. Food Technol. 2024, 2, 548–566. [Google Scholar] [CrossRef]
- Bai, F.; Liu, Y.; Wan, X.; Chen, G.; Hou, R.; Hu, Y.; Cai, H.; Yang, R.; Liu, J.; Li, H. Understanding the Effect of Plastic Food Packaging Materials on Food Flavor: A Critical Review. Trends Food Sci. Technol. 2024, 148, 104502. [Google Scholar] [CrossRef]
- Worm, B.; Wilcox, C.; Lotze, H.K.; Jambeck, J.; Jubinville, I. Plastic as a Persistent Marine Pollutant. Annu. Rev. Environ. Resour. 2017, 42, 1–26. [Google Scholar] [CrossRef]
- Sewwandi, M.; Wijesekara, H.; Rajapaksha, A.U.; Soysa, S.; Vithanage, M. Microplastics and Plastics-Associated Contaminants in Food and Beverages; Global Trends, Concentrations, and Human Exposure. Environ. Pollut. 2022, 317, 120747. [Google Scholar] [CrossRef]
- Luo, Q.; Tan, H.; Ye, M.; Jho, E.H.; Wang, P.; Iqbal, B.; Zhao, X.; Shi, H.; Lu, H.; Li, G. Microplastics as an Emerging Threat to Human Health: An Overview of Potential Health Impacts. J. Environ. Manag. 2025, 387, 125915. [Google Scholar] [CrossRef] [PubMed]
- Senathirajah, K.; Attwood, S.; Bhagwat, G.; Carbery, M.; Wilson, S.; Palanisami, T. Estimation of the Mass of Microplastics Ingested—A Pivotal First Step towards Human Health Risk Assessment. J. Hazard. Mater. 2020, 404, 124004. [Google Scholar] [CrossRef] [PubMed]
- Plastics Europe. Plastics—The Fast Facts 2023. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-fast-facts-2023/ (accessed on 5 May 2025).
- Schmidt, S.; Laner, D. The Multidimensional Effects of Single-Use and Packaging Plastic Strategies on German Household Waste Management. Waste Manag. 2021, 131, 187–200. [Google Scholar] [CrossRef]
- Edo, G.I.; Umar, H.; Madueke, C.J.; Mafe, A.N.; Ali, A.M.; Opiti, R.A.; Ndudi, W.; Jikah, A.N.; Yousif, E.; Igbuku, U.A.; et al. Biopolymers: An Inclusive Review. Hybrid Adv. 2025, 9, 100418. [Google Scholar] [CrossRef]
- Sivakanthan, S.; Rajendran, S.; Gamage, A.; Madhujith, T.; Mani, S. Antioxidant and Antimicrobial Applications of Biopolymers: A Review. Food Res. Int. 2020, 136, 109327. [Google Scholar] [CrossRef]
- Ghasemlou, M.; Barrow, C.J.; Adhikari, B. The Future of Bioplastics in Food Packaging: An Industrial Perspective. Food Packag. Shelf Life 2024, 43, 101279. [Google Scholar] [CrossRef]
- Chandrababu, V.; Parameswaranpillai, J.; Gopi, J.A.; Pathak, C.; Midhun Dominic, C.D.; Feng, N.L.; Krishnasamy, S.; Muthukumar, C.; Hameed, N.; Ganguly, S. Progress in Food Packaging Applications of Biopolymer-Nanometal Composites—A Comprehensive Review. Biomater. Adv. 2024, 162, 213921. [Google Scholar] [CrossRef]
- Dey, B.; Prabhakar, M.R.; Jayaraman, S.; Gujjala, L.K.S.; Venugopal, A.P.; Balasubramanian, P. Biopolymer-Based Solutions for Enhanced Safety and Quality Assurance: A Review. Food Res. Int. 2024, 191, 114723. [Google Scholar] [CrossRef]
- Edo, G.I.; Ali, A.B.M.; Essaghah, A.E.A.; Alamiery, A.A.; Mafe, A.N.; Ahmed, D.S.; Zainulabdeen, K.; Igbuku, U.A.; Owheruo, J.O.; Umar, H.; et al. Life Cycle and Environmental Impact Assessment of Biopolymer-Based Packaging vs. Conventional Plastics in the Food Industry. Mater. Today Commun. 2025, 46, 112806. [Google Scholar] [CrossRef]
- Elfawal, G.F.; Šišková, A.O.; Andicsová, A.E. Ecological Packaging and Creating Sustainable Solutions for Biodegradable Cellulose Derivatives: A Review. Int. J. Biol. Macromol. 2025, 309, 142348. [Google Scholar] [CrossRef]
- Li, H.-X.; Wang, Q.; Zhang, L.; Tian, X.; Cao, Q.; Jin, L. Influence of the Degrees of Polymerization of Cellulose on the Water Absorption Performance of Hydrogel and Adsorption Kinetics. Polym. Degrad. Stab. 2019, 168, 108958. [Google Scholar] [CrossRef]
- Bocchini Martins, D.A.; do Prado, H.F.A.; Ferreira, H.; de Souza Moretti, M.; da Silva, R.; Gomes, E. Agroindustrial Wastes as Substrates for Microbial Enzymes Production and Source of Sugar for Bioethanol Production. In Integrated Waste Management—Volume II; Institute for New Technologies: New York, NY, USA, 2011; ISBN 9789533074474. [Google Scholar]
- Getahun, M.J.; Kassie, B.B.; Alemu, T.S. Recent Advances in Biopolymer Synthesis, Properties, & Commercial Applications: A Review. Process Biochem. 2024, 145, 261–287. [Google Scholar] [CrossRef]
- Kassab, Z.; Abdellaoui, Y.; Salim, M.H.; Bouhfid, R.; Qaiss, A.E.K.; El Achaby, M. Micro- and Nano-Celluloses Derived from Hemp Stalks and Their Effect as Polymer Reinforcing Materials. Carbohydr. Polym. 2020, 245, 116506. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, S.; Aburabie, J.; Hashaikeh, R. A Review on the Potential of Cellulose Nanomaterials for the Development of Thin Film Composite Polyamide Membranes for Water Treatment. Chemosphere 2024, 363, 142927. [Google Scholar] [CrossRef]
- Li, Y.; Tang, Z.; Wang, W.; Huang, X.; Lv, Y.; Qian, F.; Cheng, Y.; Wang, H. Improving Air Barrier, Water Vapor Permeability Properties of Cellulose Paper by Layer-by-Layer Assembly of Graphene Oxide. Carbohydr. Polym. 2020, 253, 117227. [Google Scholar] [CrossRef]
- Mujtaba, M.; Lipponen, J.; Ojanen, M.; Puttonen, S.; Vaittinen, H. Trends and Challenges in the Development of Bio-Based Barrier Coating Materials for Paper/Cardboard Food Packaging; a Review. Sci. Total Environ. 2022, 851, 158328. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zhao, H.; Sha, L.; Li, J.; Guo, D.; Yuan, T. One-Step Fabrication of Eco-Friendly Multi-Functional Amphiphobic Coatings for Cellulose-Based Food Packaging. Int. J. Biol. Macromol. 2023, 253, 127578. [Google Scholar] [CrossRef]
- Hill, R.; Phipps, J.; Greenwood, R.; Skuse, D.; Zhang, Z.J. The Effect of Pre-Treatment and Process Conditions on the Gas Barrier Properties of Fibrillated Cellulose Films and Coatings: A Review. Carbohydr. Polym. 2024, 337, 122085. [Google Scholar] [CrossRef]
- Tyagi, P.; Salem, K.S.; Hubbe, M.A.; Pal, L. Advances in Barrier Coatings and Film Technologies for Achieving Sustainable Packaging of Food Products—A Review. Trends Food Sci. Technol. 2021, 115, 461–485. [Google Scholar] [CrossRef]
- Glenn, G.; Olson, L.; Orts, W.; Hart-Cooper, W.; Shogren, R.; Jin, X. Per- and Polyfluoroalkyl Substances and Their Alternatives in Paper Food Packaging. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2596–2625. [Google Scholar] [CrossRef] [PubMed]
- Schwartz-Narbonne, H.; Venier, M.; Wang, Z.; Diamond, M.L.; Peng, H.; Peaslee, G.F.; Whitehead, H.D.; Xia, C.; Yang, D.; Blum, A.; et al. Per- and Polyfluoroalkyl Substances in Canadian Fast Food Packaging. Environ. Sci. Technol. Lett. 2023, 10, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Grigoras, A.G. Natural and Synthetic Polymeric Antimicrobials with Quaternary Ammonium Moieties: A Review. Environ. Chem. Lett. 2021, 19, 3009–3022. [Google Scholar] [CrossRef]
- Ali, W.; Souissi, S.; Zinck, P.; Gillani, S.; Ali, H. Polylactic Acid Synthesis, Biodegradability, Conversion to Microplastics and Toxicity: A Review. Environ. Chem. Lett. 2023, 21, 1761–1786. [Google Scholar] [CrossRef]
- Fournier, L.; Rivera Mirabal, D.M.; Hillmyer, M.A. Toward Sustainable Elastomers from the Grafting-Through Polymerization of Lactone-Containing Polyester Macromonomers. Macromolecules 2022, 55, 1003–1014. [Google Scholar] [CrossRef]
- Wang, W.; Mu, H.; Niu, B.; Fang, X.; Wu, W.; Chen, H.; Wang, G.; Gao, H.; Liu, R. Development of Bio-Based PLA/Cellulose Antibacterial Packaging and Its Application for the Storage of Shiitake Mushroom. Food Chem. 2023, 429, 136905. [Google Scholar] [CrossRef]
- Sundar, N.; Kumar, A.; Pavithra, A.; Ghosh, S. Studies on Semi-Crystalline Poly Lactic Acid (PLA) as a Hydrophobic Coating Material on Kraft Paper for Imparting Barrier Properties in Coated Abrasive Applications. Prog. Org. Coat. 2020, 145, 105682. [Google Scholar] [CrossRef]
- Calosi, M.; D’Iorio, A.; Buratti, E.; Cortesi, R.; Franco, S.; Angelini, R.; Bertoldo, M. Preparation of High-Solid PLA Waterborne Dispersions with PEG-PLA-PEG Block Copolymer as Surfactant and Their Use as Hydrophobic Coating on Paper. Prog. Org. Coat. 2024, 193, 108541. [Google Scholar] [CrossRef]
- Abdenour, C.; Eesaee, M.; Stuppa, C.; Chabot, B.; Barnabé, S.; Bley, J.; Tolnai, B.; Guy, N.; Nguyen-Tri, P. Water Vapor and Air Barrier Performance of Sustainable Paper Coatings Based on PLA and Xanthan Gum. Mater. Today Commun. 2023, 36, 106626. [Google Scholar] [CrossRef]
- Zhang, H.; Bussini, D.; Hortal, M.; Elegir, G.; Mendes, J.; Jordá Beneyto, M. PLA Coated Paper Containing Active Inorganic Nanoparticles: Material Characterization and Fate of Nanoparticles in the Paper Recycling Process. Waste Manag. 2016, 52, 339–345. [Google Scholar] [CrossRef]
- Lujan, L.; Chiacchiarelli, L.M.; Martini, R.E.; Goñi, M.L. Polylactic Acid Coating of Cellulose/Chitosan Insulating Foams as a Strategy for Enhancing Mechanical Properties and Hydrophobicity. Prog. Org. Coat. 2024, 189, 108288. [Google Scholar] [CrossRef]
- Abd El-Aziz, M.E.; Youssef, A.M.; Hasanin, M.S.; Morsi, S.M.M. Synthesis and Characterization of Cellulose/Polylactic Acid/MnO2 Bio-Nanocomposite as a Promising Coating of Paper Sheet for Food Packaging Application. Carbohydr. Polym. Technol. Appl. 2025, 10, 100789. [Google Scholar] [CrossRef]
- Garavand, F.; Cacciotti, I.; Vahedikia, N.; Rehman, A.; Tarhan, Ö.; Akbari-Alavijeh, S.; Shaddel, R.; Rashidinejad, A.; Nejatian, M.; Jafarzadeh, S.; et al. A Comprehensive Review on the Nanocomposites Loaded with Chitosan Nanoparticles for Food Packaging. Crit. Rev. Food Sci. Nutr. 2020, 62, 1383–1416. [Google Scholar] [CrossRef]
- Yu, J.; Wang, D.; Geetha, N.; Khawar, K.M.; Jogaiah, S.; Mujtaba, M. Current Trends and Challenges in the Synthesis and Applications of Chitosan-Based Nanocomposites for Plants: A Review. Carbohydr. Polym. 2021, 261, 117904. [Google Scholar] [CrossRef] [PubMed]
- Kansal, D.; Rabnawaz, M. Fabrication of Oil- and water-resistant Paper without Creating Microplastics on Disposal. J. Appl. Polym. Sci. 2020, 138, 49692. [Google Scholar] [CrossRef]
- Hamdani, S.S.; Khan, B.A.; Kamdem, D.P.; Rabnawaz, M.; Li, Z. Chitosan–Graft–Poly(Dimethylsiloxane)/Zein Coatings for the Fabrication of Environmentally Friendly Oil- and Water-Resistant Paper. ACS Sustain. Chem. Eng. 2020, 8, 5147–5155. [Google Scholar] [CrossRef]
- Li, Z.; Rabnawaz, M.; Khan, B. Response Surface Methodology Design for Biobased and Sustainable Coatings for Water- and Oil-Resistant Paper. ACS Appl. Polym. Mater. 2020, 2, 1378–1387. [Google Scholar] [CrossRef]
- Wang, K.; Zhao, L.; He, B. Chitosan/Montmorillonite Coatings for the Fabrication of Food-Safe Greaseproof Paper. Polymers 2021, 13, 1607. [Google Scholar] [CrossRef]
- Shi, B.; Xie, S.; Huang, D.; Wang, Y. Fully Bio-Based Grease Resistant Composite Coating: Chitosan-Genipin-Microfibrillated Cellulose for Sustainable Paper Food Packaging. Int. J. Biol. Macromol. 2025, 311, 143660. [Google Scholar] [CrossRef]
- Jadhav, P.; Bhuyar, P.; Misnon, I.I.; Rahim, M.H.A.; Roslan, R. Advancement of Lignin into Bioactive Compounds through Selective Organic Synthesis Methods. Int. J. Biol. Macromol. 2024, 276, 134061. [Google Scholar] [CrossRef]
- Winotapun, C.; Hararak, B.; Treetong, A.; Chaloeijitkul, K.; Sane, A. Self-Assembly of Colloidal Lignin Nanosphere Particles Blended with Chitosan Composite Coated Bagasse Paper: An Eco-Friendly Food Packaging with Antimicrobial Properties. Colloids Surf. A Physicochem. Eng. Asp. 2022, 655, 130207. [Google Scholar] [CrossRef]
- Němec, M.; Prokůpek, L.; Obst, V.; Pipíška, T.; Král, P.; Hýsek, Š. Novel Kraft-Lignin-Based Adhesives for the Production of Particleboards. Compos. Struct. 2024, 344, 118344. [Google Scholar] [CrossRef]
- Zubair, M.; Rauf, Z.; Fatima, S.; Ullah, A. Lignin-Derived Bionanocomposites as Functional Food Packaging Materials. Sustain. Food Technol. 2024, 2, 945–966. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, T.M.; Choi, I.-G.; Choi, J.W. Phenolic Hydroxyl Groups in the Lignin Polymer Affect the Formation of Lignin Nanoparticles. Nanomaterials 2021, 11, 1790. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.S.; Zaitoon, A.; Sharma, S.; Manickavasagan, A.; Lim, L.-T. Enhanced Hydrophobic Paper-Sheet Derived from Miscanthus × Giganteus Cellulose Fibers Coated with Esterified Lignin and Cellulose Acetate Blend. Int. J. Biol. Macromol. 2022, 223, 1243–1256. [Google Scholar] [CrossRef]
- Shorey, R.; Mekonnen, T.H. Sustainable Paper Coating with Enhanced Barrier Properties Based on Esterified Lignin and PBAT Blend. Int. J. Biol. Macromol. 2022, 209, 472–484. [Google Scholar] [CrossRef] [PubMed]
- Gai, X.; Liu, C.; Yu, Z.; Li, Y.; Wang, Y.; Deng, C.; Wei, H.; Liu, Y.; Xiao, H. Functionalized Lignin Nanoparticles Prepared by High Shear Homogenization for All Green and Barrier-Enhanced Paper Packaging. Resour. Chem. Mater. 2024, 3, 167–174. [Google Scholar] [CrossRef]
- Liu, L.; Wang, W.; Tan, L.; Cui, B. Improving the Combination of Cellulose and Lignin Using Xylan as a Compatibilizer. Cellulose 2021, 28, 5335–5349. [Google Scholar] [CrossRef]
- Zhang, N.; Yi, Y.; Gibril, M.E.; Kong, F.; Liu, P.; Wang, S. Application of Polyvinyl Acetate/Lignin Copolymer as Bio-Based Coating Material and Its Effects on Paper Properties. Coatings 2021, 11, 192. [Google Scholar] [CrossRef]
- Huang, H.; Ban, F.; Zhang, Z.; Huang, C. Using Xylan as a Compatibilizer to Enhance the Compatibility of Cellulose and Lignin Coatings in Order to Improve the Wet-Low-Temperature Properties of Coated Paper after High-Temperature Aging. Int. J. Biol. Macromol. 2025, 307, 142195. [Google Scholar] [CrossRef]
- Xie, K.; Wang, J.; Luo, T.; Liu, W.; Tang, Y.; Wang, L. Fabrication of Multifunctional Lignin-Based Composite Coatings for Enhanced Strength, Barrier Properties and UV Protection of Cellulosic Paper. Prog. Org. Coat. 2025, 207, 109429. [Google Scholar] [CrossRef]
- Santos, A.D.A.D.; Matos, L.C.; Mendonça, M.C.; Lago, R.C.D.; Muguet, M.C.D.S.; Damásio, R.A.P.; Ponzecchi, A.; Soares, J.R.; Sanadi, A.R.; Tonoli, G.H.D. Evaluation of Paper Coated with Cationic Starch and Carnauba Wax Mixtures Regarding Barrier Properties. Ind. Crops Prod. 2023, 203, 117177. [Google Scholar] [CrossRef]
- Zubair, M.; Rauf, Z.; Nawaz, H.; Shahzad, S.; Ullah, A. A Review of Recent Advances in Starch Derived Bionanocomposites for Food Packaging Applications. Nano-Struct. Nano-Objects 2024, 39, 101204. [Google Scholar] [CrossRef]
- Chatterjee, S.; Mahmood, S.; Hilles, A.R.; Thomas, S.; Roy, S.; Provaznik, V.; Romero, E.L.; Ghosal, K. Cationic Starch: A Functionalized Polysaccharide Based Polymer for Advancement of Drug Delivery and Health Care System—A Review. Int. J. Biol. Macromol. 2023, 248, 125757. [Google Scholar] [CrossRef] [PubMed]
- Vaezi, K.; Asadpour, G.; Sharifi, S.H. Effect of Coating with Novel Bio Nanocomposites of Cationic Starch/Cellulose Nanocrystals on the Fundamental Properties of the Packaging Paper. Polym. Test. 2019, 80, 106080. [Google Scholar] [CrossRef]
- Sharma, M.; Aguado, R.; Murtinho, D.; Valente, A.J.M.; Mendes De Sousa, A.P.; Ferreira, P.J.T. A Review on Cationic Starch and Nanocellulose as Paper Coating Components. Int. J. Biol. Macromol. 2020, 162, 578–598. [Google Scholar] [CrossRef]
- Todorova, D.; Yavorov, N.; Lasheva, V. Improvement of Barrier Properties for Packaging Applications. Sustain. Chem. Pharm. 2022, 27, 100685. [Google Scholar] [CrossRef]
- Chi, K.; Wang, H.; Catchmark, J.M. Sustainable Starch-Based Barrier Coatings for Packaging Applications. Food Hydrocoll. 2020, 103, 105696. [Google Scholar] [CrossRef]
- Basak, S.; Dangate, M.S.; Samy, S. Oil- and Water-Resistant Paper Coatings: A Review. Prog. Org. Coat. 2023, 186, 107938. [Google Scholar] [CrossRef]
- Roy, S.; Malik, B.; Chawla, R.; Bora, S.; Ghosh, T.; Santhosh, R.; Thakur, R.; Sarkar, P. Biocompatible Film Based on Protein/Polysaccharides Combination for Food Packaging Applications: A Comprehensive Review. Int. J. Biol. Macromol. 2024, 278, 134658. [Google Scholar] [CrossRef]
- Song, H.-G.; Chang, Y.; Choi, I.; Yoon, C.S.; Lee, J.-S.; Han, J. Whey Protein Isolate Coating Material for High Oxygen Barrier Properties: A Scale-up Study from Laboratory to Industrial Scale and Its Application to Food Packaging. Food Packag. Shelf Life 2021, 31, 100765. [Google Scholar] [CrossRef]
- Purewal, S.S.; Kaur, A.; Bangar, S.P.; Singh, H.; Singh, P. Protein-Based Films and Coatings: An Innovative Approach. Coatings 2023, 14, 32. [Google Scholar] [CrossRef]
- Fernandes, L.M.; Guimarães, J.T.; Silva, R.; Rocha, R.S.; Coutinho, N.M.; Balthazar, C.F.; Calvalcanti, R.N.; Piler, C.W.; Pimentel, T.C.; Neto, R.P.C.; et al. Whey Protein Films Added with Galactooligosaccharide and Xylooligosaccharide. Food Hydrocoll. 2020, 104, 105755. [Google Scholar] [CrossRef]
- Schmid, M.; Müller, K.; Jesdinszki, M.; Merzbacher, S.; Brzoska, N. Improvement of Food Packaging-Related Properties of Whey Protein Isolate-Based Nanocomposite Films and Coatings by Addition of Montmorillonite Nanoplatelets. Front. Mater. 2017, 4, 35. [Google Scholar] [CrossRef]
- Xin, Y.; Yang, C.; Zhang, J.; Xiong, L. Application of Whey Protein-Based Emulsion Coating Treatment in Fresh-Cut Apple Preservation. Foods 2023, 12, 1140. [Google Scholar] [CrossRef]
- Mao, L.; Zuo, J.; Liu, Y.; Zheng, B.; Dai, X.; Bai, Z.; Liu, Y.; Yao, J. Alginate Based Films Integrated with Nitrogen-Functionalized Carbon Dots and Layered Clay for Active Food Packaging Applications. Int. J. Biol. Macromol. 2023, 253, 126653. [Google Scholar] [CrossRef]
- Cinà, G.; Massaro, M.; Cavallaro, G.; Lazzara, G.; Sánchez-Espejo, R.; Viseras Iborra, C.; D’Abrosca, B.; Fiorentino, A.; Messina, G.M.L.; Riela, S. Development of Alginate Film Filled with Halloysite-Carbon Dots for Active Food Packaging. Int. J. Biol. Macromol. 2024, 277, 134375. [Google Scholar] [CrossRef]
- Kopacic, S.; Leitner, E.; Bauer, W.; Walzl, A.; Zankel, A. Alginate and Chitosan as a Functional Barrier for Paper-Based Packaging Materials. Coatings 2018, 8, 235. [Google Scholar] [CrossRef]
- Adel, A.M.; Al-Shemy, M.T.; Diab, M.A.; El-Sakhawy, M.; Toro, R.G.; Montanari, R.; De Caro, T.; Caschera, D. Fabrication of Packaging Paper Sheets Decorated with Alginate/Oxidized Nanocellulose-silver Nanoparticles Bio-Nanocomposite. Int. J. Biol. Macromol. 2021, 181, 612–620. [Google Scholar] [CrossRef]
- Priyadarshi, R.; Riahi, Z.; Rhim, J.-W. Alginate-Coated Functional Wrapping Paper Incorporated with Sulfur Quantum Dots and Grapefruit Seed Extract for Preservation of Potato Hash Browns. Sustain. Mater. Technol. 2024, 40, e00942. [Google Scholar] [CrossRef]
- Mayrhofer, A.; Kopacic, S.; Bauer, W. Extensive Characterization of Alginate, Chitosan and Microfibrillated Cellulose Cast Films to Assess Their Suitability as Barrier Coating for Paper and Board. Polymers 2023, 15, 3336. [Google Scholar] [CrossRef]
- Saji, V.S. Wax-Based Artificial Superhydrophobic Surfaces and Coatings. Colloids Surf. A Physicochem. Eng. Asp. 2020, 602, 125132. [Google Scholar] [CrossRef]
- Tinto, W.F.; Elufioye, T.O.; Roach, J. Chapter 22—Waxes. In Pharmacognosy; Elsevier: Amsterdam, The Netherlands, 2016; pp. 443–455. ISBN 9780128021040. [Google Scholar]
- Barea-Sepúlveda, M.; Palma, M.; Calle, J.L.P.; Ferreiro-González, M. Rapid Classification of Petroleum Waxes: A Vis-NIR Spectroscopy and Machine Learning Approach. Foods 2023, 12, 3362. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Zhang, K.; Arslan, M.; Tahir, H.E.; Zhai, X.; Zou, X.; Shishir, M.R.I.; Zhiyang, C.; Hashim, S.B.H.; Zhihua, L.; et al. Berry Wax Improves the Physico-Mechanical, Thermal, Water Barrier Properties and Biodegradable Potential of Chitosan Food Packaging Film. Int. J. Biol. Macromol. 2024, 261, 129821. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Gong, M.; Wang, S.; Duan, Y.; Dai, H. Improvement of Oil and Water Barrier Properties of Food Packaging Paper by Coating with Microcrystalline Wax Emulsion. Polymers 2022, 14, 1786. [Google Scholar] [CrossRef] [PubMed]
- Boonmahitthisud, A.; Booranapunpong, C.; Pattaradechakul, C.; Tanpichai, S. Development of Water-Resistant Paper Using Chitosan and Plant-Based Wax Extracted from Banana Leaves. Int. J. Biol. Macromol. 2023, 240, 124412. [Google Scholar] [CrossRef] [PubMed]
- Ahuja, A.; Kumar Rastogi, V. Spray Coating of Edible Insect Waxes for Liquid Food Packaging. Appl. Surf. Sci. 2023, 624, 157150. [Google Scholar] [CrossRef]
- Lee, E.J.; Lim, K.-H. Preparation of Eco-Friendly Wax-Coated Paper and Its Rheological and Water-Resistant Characteristics. Korean J. Chem. Eng. 2021, 38, 2479–2492. [Google Scholar] [CrossRef]
- Sun, M.; Wang, Y.; Shi, L.; Klemeš, J.J. Uncovering Energy Use, Carbon Emissions and Environmental Burdens of Pulp and Paper Industry: A Systematic Review and Meta-Analysis. Renew. Sustain. Energy Rev. 2018, 92, 823–833. [Google Scholar] [CrossRef]
Substrate | Coating | Control | Main Results | Reference |
---|---|---|---|---|
Modified Cellulose Sheet | PLA | WCA: 11.42° WA: 182.52% WVP: 1.78 × 10−10 g/Pa s m | WCA: 132.12–133.23° WA: 55.71% WVP: 4.22–4.25 × 10−11 g/Pa s m | [47] |
Kraft Paper | PLA | Cobb30: 25.6 g/m2 WCA: ~65 g/m2 | Cobb30: 3.2–8.8 g/m2 WCA: ~70–80 g/m2 | [48] |
Paper | PEG-PLA-PEG | Cobb60: 100 g/m2 WVP: 22 × 10−6 g/Pa d m | Cobb60: 2.0–50.0 g/m2 WVP: 6.7–9.7 × 10−6 g/Pa d m | [49] |
Paper | PLA-Xanthan gum | WVP: 14.5 × 10−6 g/Pa d m | WVP: 1.5–3.8 × 10−6 g/Pa d m | [50] |
Kraft Paper | PLA-ZnO | Cobb60: 24.2 g/m2 WCA: 96.1° | Cobb60: 1.8–3.4 g/m2 WCA: 71.2–76.1° | [51] |
Cellulose/Chitosan foam | PLA | WCA: 84° WA: ~4 g water/g dry foam | WCA: 94–110° WA: 0.33–0.52 g water/g dry foam | [52] |
Paper | CNC/PLA@MnO2 | WVTR: 890.34 g/m2 d | WVTR: 450.65–145.46 g/m2 d | [53] |
Substrate | Coating | Control | Main Results | References |
---|---|---|---|---|
Paper | Chitosan-graft Sunflower Oil | Cobb60: ~100 g/m2 WVP: 90.4 g μm/Pa d m2 WCA: 53.5° KIT: 0/12 OCA: <23° | Cobb60: ~30–60 g/m2 WVP: 53.4–69.2 g μm/Pa d m2 WCA: 94.3–98.3° KIT: 6–8/12 OCA: 53.1–56.9° | [56] |
Kraft Paper | Chitosan-graft poly(dimethylsiloxane)/Zein | Cobb60: ~35 g/m2 WCA: 71.5° WVTR: 1200 g/m2 d KIT: 0/12 OCA: 40° | Cobb60: ~21–25 g/m2 WCA: 100–121° WVTR: ~122–1000 g/m2 d KIT: 8–11/12 OCA: 64–68° | [57] |
Kraft Paper | Chitosan-graft Castor Oil | WCA: 79.36° WVTR: ~1500 g/m2 d OCA: 29.96° | WCA: 92.91° WVTR: ~300–800 g/m2 d OCA: 30.12° | [58] |
Kraft Paper | Chitosan–Montmorillonite | WCA: ~110° KIT: 0/12 OCA: ~30° | WCA: ~90–100° KIT: 6–9/12 OCA: ~30–40° | [59] |
Paper | Chitosan/Carnauba Wax | Cobb60: 22.8 g/m2 WCA: - KIT: - | Cobb60: 7.5–30.3 g/m2 WCA: >105° KIT: 9–12/12 | [39] |
Paper | Chitosan–Genipin–Microfibrillated cellulose | WVTR: ~1300–1450 g/m2 d KIT: 0–10/12 | WVTR: ~900–1100 g/m2 d KIT: 10–12/12 | [60] |
Substrate | Coating | Control | Main Results | Reference |
---|---|---|---|---|
Paper | Lignin–PBAT | Cobb60: 35.82 g/m2 WCA: 77.1° Cobb60 (Oil): 155.83 g/m2 | Cobb60: 18.05–27.27 g/m2 WCA: 81.7–134.2° Cobb60 (Oil): 54.33–103.53 g/m2 | [67] |
Paper | Lignin–Cationic Starch | Cobb60: ~48 g/m2 WCA: 104° WVTR: 2569 g/m2 d KIT: 1/12 | Cobb60: ~36–38° g/m2 WCA: ~100–118° WVTR: 426–864 g/m2 d KIT: 8–9/12 | [68] |
Cellulose/Lignin/Xylan Film | - | WA: ~75% WRV: 37.82% | WA: ~60% WRV: ~30% | [69] |
Paper | Poly(vinyl Acetate)/Lignin | WCA: 2.1° | WCA: 80–90° | [70] |
Paper | Esterified Lignin–Cellulose acetate | WCA: 52.4° WVTR: 213.7 g/m2 d | WCA: 132.6–133.7° WVTR: 63.3–64.2 g/m2 d | [66] |
Paper | Lignin–Cellulose–Xylan | WA: 220% WVTR: 670.14 g/cm2 d | WA: 83% WVTR: 172.96 g/cm2 d | [71] |
Paper | Sodium lignosulfonate–Cellulose Nanocrystals–poly(vinyl alcohol) | Cobb30: 66 g/m2 | Cobb30: 56 g/m2 | [72] |
Substrate | Coating | Control | Main Results | Reference |
---|---|---|---|---|
Kraft Paper | Cationic Starch–Carnauba wax | Cobb120: 37 g/m2 WCA: ~88° WVP: ~30 g mm/kPa m2 d KIT: 0 | Cobb120: 56–73 g/m2 WCA: ~85–100° WVP: ~28–33 g mm/kPa m2 d KIT: 5–9/12 | [73] |
Paper | Cationic Starch–Cellulose Nanocrystals | Cobb60: 65.43 g/m2 OP: 88.14% | Cobb60: 33.28–43.24 g/m2 OP: 44.26–53.36% | [76] |
Paper | Cationic Starch–AKD | Cobb60: ~140 g/m2 KIT: 1/12 | Cobb60: ~10–25 g/m2 KIT: 3–4/12 | [78] |
Paperboard | Cationic Starch (high and low molecular weight) | Cobb60: 38.9 g/m2 WVP: 1.5 × 10−9 g m/m2 s Pa KIT: 0/12 OA: 25 g/m2 | Cobb60: ~20–65 g/m2 WVP: ~1.3 × 10−9 g m/m2 s Pa KIT: 1–12/12 OA: ~2–18 g/m2 | [79] |
Substrate | Coating | Control | Main Results | Reference |
---|---|---|---|---|
PET/LLDPE | WPI | WVP: 1566.21 g μm/m2 d Pa | WVP: 7.10 g μm/m2 d Pa | [82] |
WPI/galactooligosaccharides WPI/xylooligosaccharides | - | WVP: 1.09 g mm/m2 h kPa WCA: 56.61° | WVP: 0.63–0.78 g mm/m2 h kPa WCA: 46.69–51.66° | [84] |
PET | WPI-MMT | WVTR: ~1268–1539 g/m2 d | WVTR: 642–1323 g/m2 d | [85] |
WPI-Transglutaminase-Sunflower oil | - | WVP: 1.38 g mm/m2 h kPa WA: 4.87% | WVP: 0.48–0.59 g mm/m2 h kPa WA: 3.70–3.95% | [86] |
Substrate | Coating | Control | Main Results | Reference |
---|---|---|---|---|
Paper | Alginate and Chitosan | WVTR: 609–690 g/m2 d WCA: ~100° Cobb60: 25–155 g/m2 KIT: 0–1/12 | WVTR: ~200–400 g/m2 d WCA: ~70–100° Cobb60: 29–149 g/m2 KIT: 6–12/12 | [89] |
Paper | Alginate/oxidized nanocellulose–silver nanoparticles | WVP: 5.44 × 10−7 g/s m Pa | WVP: 4.38–4.88 × 10−7 g/s m Pa | [90] |
Kraft Paper | Alginate–Sulfur quantum dots | WVP: 1.4 × 10−9 gm/m2 s Pa WA: 21% OA: 48% | WVP: 1.5–1.7 × 10−9 gm/m2 s Pa WA: 18–47% OA: ~15% | [91] |
Sodium Alginate | - | - | WVTR: 258.95 g/m2 d WCA: ~65.2–72.2° KIT: 12/12 | [92] |
Substrate | Coating | Control | Main Results | Reference |
---|---|---|---|---|
Paper | Microcrystalline wax | Cobb60: 23 g/m2 WVP: 5.436 × 10−12 g cm/cm2 s Pa WCA: 80.9° KIT: 0/12 OCA: 47.8° | Cobb60: 20.4–10.5 g/m2 WVP: 2.497 × 10−12–1.816 × 10−13 g cm/cm2 s Pa WCA: ~90–106° KIT: 1–8/12 OCA: ~55–68.4° | [97] |
Kraft Paper | Cationic Starch–Carnauba wax | Cobb120: 37 g/m2 WCA: ~88° WVP: ~30 g mm/kPa m2 d KIT: 0 | Cobb120: 56–73 g/m2 WCA: ~85–100° WVP: ~28–33 g mm/kPa m2 d KIT: 5–9/12 | [73] |
Kraft Paper | Chitosan–Plant-based wax | WCA: 65.1° WA: 147.9% OCA: 29° OA: 148.2% | WCA: 108.2–123.2° WA: 67.5–120.7% OCA: ~32° OA: 97.7–212.2% | [98] |
Paper | Beeswax and Shellac wax | WCA: - WA: 12.19% | WCA: 134–147° WA: 0.64% | [99] |
Paper | Paraffin wax–Polyolefin wax | WVTR: 2564.6 g/m2 d WCA: ~75° | WVTR: ~29–50 g/m2 d WCA: 90–100° | [100] |
Paper | Chitosan–Carnauba wax | Cobb60: 22.8 g/m2 WCA: - KIT: - | Cobb60: 7.5–30.3 g/m2 WCA: >105° KIT: 9–12/12 | [39] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rozas, B.; Bruna, J.E.; Guarda, A.; Galotto, M.J.; Reyes, C.; Valenzuela, X.; Rodríguez-Mercado, F.; Torres, A. Bio-Based Coatings on Cellulosic Materials Resistant to Humidity and Fats. Polymers 2025, 17, 2755. https://doi.org/10.3390/polym17202755
Rozas B, Bruna JE, Guarda A, Galotto MJ, Reyes C, Valenzuela X, Rodríguez-Mercado F, Torres A. Bio-Based Coatings on Cellulosic Materials Resistant to Humidity and Fats. Polymers. 2025; 17(20):2755. https://doi.org/10.3390/polym17202755
Chicago/Turabian StyleRozas, Bastián, Julio E. Bruna, Abel Guarda, María José Galotto, Cristopher Reyes, Ximena Valenzuela, Francisco Rodríguez-Mercado, and Alejandra Torres. 2025. "Bio-Based Coatings on Cellulosic Materials Resistant to Humidity and Fats" Polymers 17, no. 20: 2755. https://doi.org/10.3390/polym17202755
APA StyleRozas, B., Bruna, J. E., Guarda, A., Galotto, M. J., Reyes, C., Valenzuela, X., Rodríguez-Mercado, F., & Torres, A. (2025). Bio-Based Coatings on Cellulosic Materials Resistant to Humidity and Fats. Polymers, 17(20), 2755. https://doi.org/10.3390/polym17202755