Chitosan-Based Materials as Effective Materials to Remove Pollutants
Abstract
1. Introduction
2. Chitosan: Structure, Sources, and Properties
3. Modifications of Chitosan
3.1. Alkylation
3.2. Acylation
Modification | Type of Substitution Reaction | Materials | Introduced Group | Pollutant Removed | References |
---|---|---|---|---|---|
Thiolation | Nucleophilic substitution | Thiolated chitosan | Introduction of -SH (thiol) groups | Cu (II) and Cd (II) | [77] |
Phosphorylation | Nucleophilic substitution or esterification | Phosphorylated chitosan | Introduction of phosphate groups | U (VI) ions | [78] |
Sulfonation | Electrophilic aromatic/hydroxyl substitution | Chitosan lignosulfonate | Introduction of -SO3H or -SO3− | Congo red, Cr (VI), and Rhodamine B | [79] |
3.3. Crosslinking of Chitosan
3.4. Graft Polymerization
3.5. Depolymerization of Chitosan
- (i)
- Chemical depolymerization
- (ii)
- Enzymatic depolymerization
- (iii)
- Physical depolymerization
Method | Advantages | Disadvantages | References |
---|---|---|---|
Chemical depolymerization | Cost-effective, simple, and widely used. | Loss of functional groups such as hydroxyl and amino groups, and environmental concerns due to hazardous byproducts. | [102] |
Enzymatic depolymerization | Environmentally friendly, mild reaction conditions, and high specificity. | Limited scalability and high costs. | [98,99] |
Physical depolymerization | Chemical-free, simple, and energy-efficient. | Limited control over depolymerization and high energy input. | [103] |
4. Techniques for Removing Pollutants from Wastewater
4.1. Flocculation
4.2. Photocatalysis
4.3. Membrane Filtration
5. Adsorption Mechanisms of Chitosan-Based Materials
5.1. Electrostatic Interactions
5.2. Hydrogen Bonding
5.3. Chelation Interaction
5.4. π–π Interactions
6. Chitosan as an Adsorbent
6.1. Sponges
6.2. Films and Membranes
6.3. Nanofibers, Nanoparticles, and Nanocomposites
6.4. Hydrogels
Chitosan-Based Adsorbent | Pollutant | Reusability | pH | Adsorption Capacity (mg/g) | Mechanism Involved | Kinetic Studies | Isotherm Model | References |
---|---|---|---|---|---|---|---|---|
Sponges | ||||||||
ZIF-8@chitosan (ZIF-8@CS) composite sponge | Congo Red | 5 | - | 987.01 | Electrostatic interactions, hydrogen bonding, π–π interactions | PFO | LIM and FIM | [149] |
PEI-S-CS sponge | Hg (II) | 6 | 1–7 | 1227.15 | Chelation | PSO | LIM | [150] |
Chitosan/silver cluster-loaded cellulose nanofibril/Cu-ZIF-8 | Cr (VI) | 10 | 2 | 171.20 | Electrostatic interactions, hydrogen bonding | PSO | LIM | [151] |
Ammonium-modified chitosan composite sponge | Congo Red | 5 | 6 | 1261.64 | Electrostatic interactions, hydrogen bonding | PSO | SIM | [152] |
Chitosan–alginate sponge | Maranth, Carmine, and Sunset Yellow | 6 | 2 | 94.34, 111.50, and 80.05, respectively | Electrostatic interactions | PSO | LIM | [153] |
Microspheres | ||||||||
Porous magnetic chitosan microspheres (PPy@PMCS) | Cr (VI) | 4 | 2 | 330.42 | Chelation | PSO | LIM | [154] |
Chitosan-based composite microspheres (CP) | Cr (VI) | 4 | 3 | 299.69 | Electrostatic interaction, chelation | PSO | LIM | [155] |
Chitosan-based composite microspheres (CP) | Eriochrome Black T dye (EBBR) | - | 5 | 317.21 | Electrostatic interactions | PSO | LIM | [155] |
Nitrilotriacetic acid-modified magnetic chitosan microspheres | Tetracycline (TC) | 5 | 8 | 625.52 | π–π interactions, hydrogen bonding | PSO | FIM | [156] |
Iron-doped chitosan microspheres | As (III) | 3 | 8 | ≥125 | Electrostatic interaction, chelation | PSO | FIM | [157] |
Nanoparticles | ||||||||
Magnetic chitosan nanoparticles | Reactive Red 141 (RR-141), Reactive Yellow 14 (RY-14) | 5 | RR-141: 5.5 RY-14: 5.6 | RR-141.00: 98.8 RY-14: 89.70 | Electrostatic interactions | PSO | FIM | [158] |
Magnetic Fe3O4-chitosan nanoparticles | Cs (I) | 5 | - | 161.30 | Electrostatic interactions | PSO | LIM | [159] |
Magnetic thiazole-functionalized chitosan nanoparticles | Cd (II) | 5 | 4 | 200.00 | Ion exchange, chelation | PFO | SIM and LIM | [160] |
Magnetite-functionalized chitosan nanoparticles grafted with TDP | Cr (VI) | 5 | 4 | 299.00 | Electrostatic interactions, chelation, ion exchange | PFO | SIM and LIM | [161] |
Magnetic ion-imprinted chitosan nanoparticles (MIIP) | Ni (II) | 15 | 7 | 18.50 | Electrostatic interactions, chelation | PSO | LIM | [162] |
Nanofibers/membranes | ||||||||
Electrospun CS/CQDs/PCL nanofiber membrane | Ni (II) | 5 | 6 | 341.80 | Electrostatic interactions, chelation | PSO | LIM | [163] |
CS-g-PNVCL/ZIF-8 | Phenol | 5 | 3 | 395.80 | π–π interactions, electrostatic interactions | PSO | RPIM | [164] |
Electrospun CS/PVA nanofiber loaded with Ce-MOF | Malachite Green (MG) | 8 | 5 | 359.20 | Electrostatic interactions, chelation, hydrogen bonding | PSO | LIM | [165] |
Chitosan-sulfonated polyphenylsulfone nanofibers | Congo Red | 4 | 6.5 | 531.56 | Electrostatic interactions, chelation, hydrogen bonding, hydrophobic interactions | PSO | FIM | [166] |
Functionalized cellulose/chitosan porous nanofibrous membranes | Cu (II) | 6 | 5 | 121.06 | Electrostatic interactions, chelation | PSO | LIM | [167] |
Magnetic ion-imprinted electrospun nanofiber membrane | Pb (II) | 7 | 7 | 133.20 | Ion-imprinting, chelation, electrostatic interactions | PSO | LIM | [168] |
Chitosan/Nylon-6 (CS/N) nanofiber | Cu (II) | 8 | 4 | 240.00 | Electrostatic interactions, chelation | PSO | LIM and FIM | [169] |
Chitosan–lignin composite cast membrane | MB | 5 | 7 | 241.62 | Hydrogen bonding, electrostatic interaction, van der Waals forces | PFO | LIM | [170] |
Films | ||||||||
ZnFe2O4/HEC/chitosan film | Methyl Orange | 5 | 8 | 914.00 | Electrostatic interactions and hydrogen bonding | PSO | LIM | [171] |
CS/PVP/β-CD/NCC composite film | Cu (II) | 5 | 5 | 148.20 | Electrostatic interactions, hydrogen bonding, ion exchange, surface complexation | PSO | LIM | [172] |
CMC-chitosan film | Pb (II), Cd (II) | 4 | 5 | Pb (II): 483.00, Cd (II): 123.00 | Complexation, electrostatic interactions | PSO | LIM | [173] |
Chitosan film | As(V) | 4 | 3 | 15.23 | Ligand exchange, electrostatic interactions | PSO | LIM and FIM | [174] |
Chitosan film | Diclofenac (DCF) | 10 | 5 | ~10.00 | Electrostatic interactions | PSO | FIM and TIM | [175] |
Nanocomposites | ||||||||
Fe3O4–chitosan@bentonite nanocomposite | Congo Red | 8 | 5 | 169.00 | Electrostatic interactions, hydrogen bonding, π–π stacking | PSO | LIM | [176] |
Fe3O4@CS-CGSB | Pb (II), Cd (II) | 5 | 7 | Pb: 394.3, Cd: 390.99 | Electrostatic interactions and chelation | PSO | FIM | [177] |
Crosslinked alginate–rice husk–GO–chitosan nanocomposite | Pb (II) | 5 | 6.5 | 295.50 | Electrostatic interactions, ion exchange, chelation | PSO | FIM | [178] |
GO–chitosan nanocomposite | Cr (VI), Ni (II) | 4 | Cr (VI): 5 Ni (II): 8 | Cr: 1.01 Ni: 1.34 | Electrostatic interactions, hydrogen bonding | PSO | Cr (VI): FIM Ni (II): LIM | [179] |
CS–GO nanocomposite | Rotenone | 3 | 1 | 92.59 | Hydrogen bonding, π–π interactions | PFO | LIM | [121] |
Fe3O4/chitosan/ZIF-8 nanocomposite | Phenol | - | 9.91 | 6.44 | Hydrogen bonding, π–π interactions | PSO | LIM | [120] |
Hydrogels | ||||||||
Glucan/chitosan hydrogel | Cu (II), Co (II) | - | 7 | Cu (II): 342.00, Co (II): 232.00 | Ion exchange, electrostatic interactions | PSO | LIM | [141] |
Chitosan-based hydrogels | 2,4-Dichlorophenoxyacetic acid | 5 | Neutral (7) | 75.29 | Monolayer formation and multisite interactions | PSO | LIM | [180] |
Sodium alginate/sodium lignosulfonate/carboxylated chitosan/polyethyleneimine composite hydrogels | Anionic (AD) and cationic dyes (CD) | 5 | - | AD > 550 CD > 1900 | Electrostatic interactions, π–π interactions | PSO | LIM | [135] |
Carboxymethyl chitosan/sodium alginate hydrogels | Cd (II), Cr (III) | - | - | Cd (II): 314.60 Cr (III): 289.10 | Electrostatic interactions, ion exchange | PSO | LIM | [181] |
Chitosan-based hydrogel | Tetracycline | 4 | 8 | 541.30 | Electrostatic interactions, hydrogen bonding | PSO | LIM | [121] |
Acrolein-crosslinked chitosan hydrogel | Acid Blue 93 (AB93) | 12 | - | 1839.00 | Hydrogen bonding, electrostatic interactions | PSO | LIM | [182] |
Amine-thiourea modified magnetic chitosan hydrogel | Ce (III) | 5 | 6 | 156 | Chelation, electrostatic interactions | PSO | LIM | [183] |
XMPC hydrogel | Cu (II) | 5 | 5–6 | 185 | Chelation, electrostatic interactions | PSO | LIM | [184] |
7. Conclusions, Future Work, and Recommendations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mishra, B.K.; Kumar, P.; Saraswat, C.; Chakraborty, S.; Gautam, A. Water security in a changing environment: Concept, challenges and solutions. Water 2021, 13, 490. [Google Scholar] [CrossRef]
- Vollmer, D.; Harrison, I.J. H2O ≠ CO2: Framing and responding to the global water crisis. Environ. Res. Lett. 2021, 16, 011005. [Google Scholar] [CrossRef]
- Tsani, S.; Koundouri, P.; Akinsete, E. Resource management and sustainable development: A review of the European water policies in accordance with the United Nations’ Sustainable Development Goals. Environ. Sci. Policy 2020, 114, 570–579. [Google Scholar] [CrossRef]
- Akhtar, N.; Syakir Ishak, M.I.; Bhawani, S.A.; Umar, K. Various natural and anthropogenic factors responsible for water quality degradation: A review. Water 2021, 13, 2660. [Google Scholar] [CrossRef]
- Babuji, P.; Thirumalaisamy, S.; Duraisamy, K.; Periyasamy, G. Human Health Risks due to Exposure to Water Pollution: A Review. Water 2023, 15, 2532. [Google Scholar] [CrossRef]
- Tufail, M.A.; Iltaf, J.; Zaheer, T.; Tariq, L.; Amir, M.B.; Fatima, R.; Asbat, A.; Kabeer, T.; Fahad, M.; Naeem, H.; et al. Recent advances in bioremediation of heavy metals and persistent organic pollutants: A review. Sci. Total Environ. 2022, 850, 157961. [Google Scholar] [CrossRef] [PubMed]
- Vardhan, K.H.; Kumar, P.S.; Panda, R.C. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. J. Mol. Liq. 2019, 290, 111197. [Google Scholar] [CrossRef]
- Nordberg, G.; Jin, T.; Wu, X.; Lu, J.; Chen, L.; Liang, Y.; Lei, L.; Hong, F.; Bergdahl, I.A.; Nordberg, M. Kidney dysfunction and cadmium exposure—Factors influencing dose–response relationships. J. Trace Elem. Med. Biol. 2012, 26, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Dhar, S.; Sudarshan, M.; Chakraborty, A.; Bhattacharjee, S.; Bhattacharjee, P. Investigating the synergistic role of heavy metals in Arsenic-induced skin lesions in West Bengal, India. J. Trace Elem. Med. Biol. 2023, 75, 127103. [Google Scholar] [CrossRef]
- Chamoli, A.; Karn, S.K. The Effects of Mercury Exposure on Neurological and Cognitive Dysfunction in Human: A Review. In Mercury Toxicity Mitigation: Sustainable Nexus Approach; Kumar, N., Ed.; Springer Nature: Cham, Switzerland, 2024; pp. 117–135. [Google Scholar] [CrossRef]
- Klein, C.B.; Costa, M. Chapter 24—Nickel. In Handbook on the Toxicology of Metals, 5th ed.; Nordberg, G.F., Costa, M., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 615–637. [Google Scholar] [CrossRef]
- Kapoor, D.; Singh, M.P. 10—Heavy metal contamination in water and its possible sources. In Heavy Metals in the Environment; Kumar, V., Sharma, A., Cerdà, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 179–189. [Google Scholar] [CrossRef]
- Cheng, X.; Wei, C.; Ke, X.; Pan, J.; Wei, G.; Chen, Y.; Wei, C.; Li, F.; Preis, S. Nationwide review of heavy metals in municipal sludge wastewater treatment plants in China: Sources, composition, accumulation and risk assessment. J. Hazard. Mater. 2022, 437, 129267. [Google Scholar] [CrossRef]
- Bakare, B.F.; Adeyinka, G.C. Evaluating the Potential Health Risks of Selected Heavy Metals across Four Wastewater Treatment Water Works in Durban, South Africa. Toxics 2022, 10, 340. [Google Scholar] [CrossRef]
- Shahabudin, M.M.; Musa, S. Occurrence of Surface Water Contaminations: An Overview. IOP Conf. Ser. Earth Environ. Sci. 2018, 140, 012058. [Google Scholar] [CrossRef]
- Singh, V.; Ahmed, G.; Vedika, S.; Kumar, P.; Chaturvedi, S.K.; Rai, S.N.; Vamanu, E.; Kumar, A.; Sharma, D.; Kumar, A. Toxic heavy metal ions contamination in water and their sustainable reduction by eco-friendly methods: Isotherms, thermodynamics and kinetics study. Sci. Rep. 2024, 14, 7595. [Google Scholar] [CrossRef]
- Haleem, A.; Ullah, M.; Rehman Sur Shah, A.; Farooq, M.; Saeed, T.; Ullah, I.; Li, H. In-Depth Photocatalytic Degradation Mechanism of the Extensively Used Dyes Malachite Green, Methylene Blue, Congo Red, and Rhodamine B via Covalent Organic Framework-Based Photocatalysts. Water 2024, 16, 1588. [Google Scholar] [CrossRef]
- Oladoye, P.O.; Ajiboye, T.O.; Omotola, E.O.; Oyewola, O.J. Methylene blue dye: Toxicity and potential elimination technology from wastewater. Results Eng. 2022, 16, 100678. [Google Scholar] [CrossRef]
- Chandanshive, V.; Kadam, S.; Rane, N.; Jeon, B.-H.; Jadhav, J.; Govindwar, S. In situ textile wastewater treatment in high rate transpiration system furrows planted with aquatic macrophytes and floating phytobeds. Chemosphere 2020, 252, 126513. [Google Scholar] [CrossRef]
- Benkhaya, S.; M’rabet, S.; El Harfi, A. A review on classifications, recent synthesis and applications of textile dyes. Inorg. Chem. Commun. 2020, 115, 107891. [Google Scholar] [CrossRef]
- Garg, A.; Chopra, L. Dye Waste: A significant environmental hazard. Mater. Today Proc. 2022, 48, 1310–1315. [Google Scholar] [CrossRef]
- Al-Tohamy, R.; Ali, S.S.; Li, F.; Okasha, K.M.; Mahmoud, Y.A.-G.; Elsamahy, T.; Jiao, H.; Fu, Y.; Sun, J. A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol. Environ. Saf. 2022, 231, 113160. [Google Scholar] [CrossRef] [PubMed]
- Patil, R.; Zahid, M.; Govindwar, S.; Khandare, R.; Vyavahare, G.; Gurav, R.; Desai, N.; Pandit, S.; Jadhav, J. Constructed wetland: A promising technology for the treatment of hazardous textile dyes and effluent. In Development in Wastewater Treatment Research and Processes: Removal of Emerging Contaminants from Wastewater Through Bio-Nanotechnology; Elsevier: Amsterdam, The Netherlands, 2022; pp. 173–198. [Google Scholar] [CrossRef]
- Preethi, P.S.; Vickram, S.; Das, R.; Hariharan, N.M.; Rameshpathy, M.; Subbaiya, R.; Karmegam, N.; Kim, W.; Govarthanan, M. Bioprospecting of novel peroxidase from Streptomyces coelicolor strain SPR7 for carcinogenic azo dyes decolorization. Chemosphere 2023, 310, 136836. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Sang, W.; Lu, W.; Zhang, W.; Zhan, C.; Jia, D. Recent Advances of Emerging Organic Pollutants Degradation in Environment by Non-Thermal Plasma Technology: A Review. Water 2022, 14, 1351. [Google Scholar] [CrossRef]
- Ahmad, H.A.; Ahmad, S.; Cui, Q.; Wang, Z.; Wei, H.; Chen, X.; Li, Y.; Zhang, M.; Khan, S. The environmental distribution and removal of emerging pollutants, highlighting the importance of using microbes as a potential degrader: A review. Sci. Total Environ. 2022, 809, 151926. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zhang Sgen Chang, C.C. Emerging pollutants—Part II: Treatment. Water Environ. Res. 2020, 92, 1603–1617. [Google Scholar] [CrossRef] [PubMed]
- Younas, F.; Mustafa, A.; Farooqi, Z.U.R.; Wang, X.; Younas, S.; Mohy-Ud-din, W.; Hameed, M.A.; Abrar, M.M.; Maitlo, A.A.; Abro, A.A. Current and emerging adsorbent technologies for wastewater treatment: Trends, limitations, and environmental implications. Water 2021, 13, 215. [Google Scholar] [CrossRef]
- Keshta, B.E.; Yu, H.; Wang, L. MIL series-based MOFs as effective adsorbents for removing hazardous organic pollutants from water. Sep. Purif. Technol. 2023, 322, 124301. [Google Scholar] [CrossRef]
- Chen, Q.; Yao, Y.; Li, X.; Lu, J.; Zhou, J.; Huang, Z. Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates. J. Water Process Eng. 2018, 26, 289–300. [Google Scholar] [CrossRef]
- Qader, I.N.; Ibrahim, B.M.; Fakhre, N.A.; Sharef, H.Y. Adsorption of Heavy Metals from Wastewater by Starch, Cellulose, Chitin, Chitosan and Lignin Biological Macro Molecule: Review Article. Hacet. J. Biol. Chem. 2025, 53, 127–158. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Dai, T.; He, X.; Chen, M.; Liu, C.; Liang, R.; Chen, J. Preparation of pectin/poly(m-phenylenediamine) microsphere and its application for Pb2+ removal. Carbohydr. Polym. 2021, 260, 117811. [Google Scholar] [CrossRef]
- Shao, Z.; Lu, J.; Ding, J.; Fan, F.; Sun, X.; Li, P.; Fang, Y.; Hu, Q. Novel green chitosan-pectin gel beads for the removal of Cu(II), Cd(II), Hg(II) and Pb(II) from aqueous solution. Int. J. Biol. Macromol. 2021, 176, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Mudugamuwa Arachchige, M.P.; Mu, T.; Ma, M. Effect of high hydrostatic pressure-assisted pectinase modification on the Pb2+ adsorption capacity of pectin isolated from sweet potato residue. Chemosphere 2021, 262, 128102. [Google Scholar] [CrossRef]
- Chaurasiya, A.; Poorn Prakash, P.; Ravi, S.; Amar, N.; Tripathi, N.P. Synthesis and characterization of pectin-xanthate and their application in heavy metal and lignin enriched paper industry wastewater treatment. Sep. Sci. Technol. 2023, 58, 3026–3042. [Google Scholar] [CrossRef]
- Jha, A.; Mishra, S. Exploring the potential of waste biomass-derived pectin and its functionalized derivatives for water treatment. Int. J. Biol. Macromol. 2024, 275, 133613. [Google Scholar] [CrossRef]
- Wang, J.; Zhuang, S. Removal of various pollutants from water and wastewater by modified chitosan adsorbents. Crit. Rev. Environ. Sci. Technol. 2017, 47, 2331–2386. [Google Scholar] [CrossRef]
- Nath, J.; Dewan, M.; Ghosh, A.; Ray, S.S.; Orasugh, J.T.; Lahiri, B.; Chattopadhyay, D.; Adhikari, A. Chitosan-based adsorbents for remediation of toxic dyes from wastewater: A review on adsorption mechanism, reusability, machine learning based modeling and future perspectives. Int. J. Biol. Macromol. 2025, 311, 143388. [Google Scholar] [CrossRef]
- Tafraout, F.; Isaad, J. Recent research landscape on chitosan-mineral-based composites for wastewater treatment: A comprehensive bibliometric analysis (2014–2024). Environ. Sci. Pollut. Res. 2025, 32, 11815–11837. [Google Scholar] [CrossRef] [PubMed]
- Da Silva Bruckmann, F.; Gonçalves, J.O.; Silva, L.F.O.; Oliveira, M.L.S.; Dotto, G.L.; Rhoden, C.R.B. Chitosan-based adsorbents for wastewater treatment: A comprehensive review. Int. J. Biol. Macromol. 2025, 309, 143173. [Google Scholar] [CrossRef]
- Zhu, H.; Hu, C.; Jiang, R.; Xiao, M.; Fu, Y.; Wang, Q.; Zhao, K. Sustainable chitosan-based adsorbents for phosphorus recovery and removal from wastewater: A review. Int. J. Biol. Macromol. 2025, 313, 144160. [Google Scholar] [CrossRef]
- Liu, C.; Crini, G.; Lichtfouse, E.; Wilson, L.D.; Picos-Corrales, L.A.; Balasubramanian, P.; Li, F. Chitosan-based materials for emerging contaminants removal: Bibliometric analysis, research progress, and directions. J. Water Process Eng. 2025, 71, 107327. [Google Scholar] [CrossRef]
- Nayak, M.A.; Tripathi, A.; Raj, A.; Gauba, P.; Bhatt, E. Chitosan: A Novel Approach and Sustainable Way to Remove Contaminants and Treat Wastewater. Starch/Staerke 2025, 77, e202400171. [Google Scholar] [CrossRef]
- Yi, X.; Wang, Y.; Teng, Y.; Qu, Y.; Huang, D.; Qiang, X. A novel chitosan/Chinese ink composite aerogels: Preparation and application for solar steam generators. Colloids Surf. A Physicochem. Eng. Asp. 2025, 711, 136322. [Google Scholar] [CrossRef]
- Dinarvand, H.; Moradi, O. Sustainable Approaches for Pharmaceutical Pollutant Removal: Advances in Chitosan-Based Nanocomposite Adsorbents. ChemistrySelect 2025, 10, e202405962. [Google Scholar] [CrossRef]
- Verma, A.; Sharma, G.; Wang, T.; Kumar, A.; Dhiman, P.; Verma, Y.; Bhaskaralingam, A.; García-Peñas, A. Graphene oxide/chitosan hydrogels for removal of antibiotics. Environ. Technol. 2025, 46, 3391–3421. [Google Scholar] [CrossRef]
- Hu, Y.; Ye, Y.; Wang, J.; Zhang, T.; Jiang, S.; Han, X. Functionalization of chitosan and its application in flame retardants: A review. Int. J. Biol. Macromol. 2025, 295, 139615. [Google Scholar] [CrossRef] [PubMed]
- Darmenbayeva, A.; Zhussipnazarova, G.; Rajasekharan, R.; Massalimova, B.; Zharlykapova, R.; Nurlybayeva, A.; Mukazhanova, Z.; Aubakirova, G.; Begenova, B.; Manapova, S.; et al. Applications and Advantages of Cellulose–Chitosan Biocomposites: Sustainable Alternatives for Reducing Plastic Dependency. Polymers 2025, 17, 23. [Google Scholar] [CrossRef] [PubMed]
- Thirugnanasambandan, T.; Gopinath, S.C.B. Laboratory to industrial scale synthesis of chitosan-based nanomaterials: A review. Process Biochem. 2023, 130, 147–155. [Google Scholar] [CrossRef]
- Mei, Z.; Kuzhir, P.; Godeau, G. Update on Chitin and Chitosan from Insects: Sources, Production, Characterization, and Biomedical Applications. Biomimetics 2024, 9, 297. [Google Scholar] [CrossRef]
- Huq, T.; Khan, A.; Brown, D.; Dhayagude, N.; He, Z.; Ni, Y. Sources, production and commercial applications of fungal chitosan: A review. J. Bioresour. Bioprod. 2022, 7, 85–98. [Google Scholar] [CrossRef]
- Al-Mashhadani, M.H.; Adil, H.; Naser, H.G.; Ibraheem, H.; Jwad, R.S.; Alshareef, S.A.; Hasan, A.A.; Ghosh, S.; Hamzah, H.A.; Yousif, E. Organic Modification of Chitosan: An Overview. Baghdad J. Biochem. Appl. Biol. Sci. 2024, 5, 72–86. [Google Scholar] [CrossRef]
- Syed, N.H.; Rajaratinam, H.; Nurul, A.A. Chitosan from Marine Biowaste: Current and Future Applications in Tissue Engineering. In Sustainable Material for Biomedical Engineering Application; Wan Kamarul Zaman, W.S., Abdullah, N.A., Eds.; Springer Nature: Singapore, 2023; pp. 87–106. [Google Scholar] [CrossRef]
- Harmsen, R.A.G.; Tuveng, T.R.; Antonsen, S.G.; Eijsink, V.G.H.; Sørlie, M. Can we make Chitosan by Enzymatic Deacetylation of Chitin. Molecules 2019, 24, 3862. [Google Scholar] [CrossRef]
- Kozma, M.; Acharya, B.; Bissessur, R. Chitin, Chitosan, and Nanochitin: Extraction, Synthesis, and Applications. Polymers 2022, 14, 3989. [Google Scholar] [CrossRef]
- Rizeq, B.; Younes, N.; Rasool, K.; Nasrallah, G.K. Synthesis, Bioapplications, and Toxicity Evaluation of Chitosan-Based Nanoparticles. Int. J. Mol. Sci. 2019, 20, 5776. [Google Scholar] [CrossRef] [PubMed]
- El-Araby, A.; Janati, W.; Ullah, R.; Ercisli, S.; Errachidi, F. Chitosan, chitosan derivatives, and chitosan-based nanocomposites: Eco-friendly materials for advanced applications (a review). Front. Chem. 2024, 11, 1327426. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.-Y.; Ajaj, Y.; Mahmoud, Z.H.; Ghadir, G.K.; Alani, Z.K.; Hussein, M.M.; Hussein, S.A.; Karim, M.M.; Al-Khalidi, A.; Abbas, J.K. Adsorption of heavy metal ions use chitosan/graphene nanocomposites: A review study. Results Chem. 2024, 7, 101332. [Google Scholar] [CrossRef]
- Aranaz, I.; Alcántara, A.R.; Civera, M.C.; Arias, C.; Elorza, B.; Caballero, A.H.; Acosta, N. Chitosan: An overview of its properties and applications. Polymers 2021, 13, 3256. [Google Scholar] [CrossRef]
- Merzendorfer, H. Chitosan Derivatives and Grafted Adjuncts with Unique Properties. In Extracellular Sugar-Based Biopolymers Matrices; Cohen, E., Merzendorfer, H., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 95–151. [Google Scholar] [CrossRef]
- Stepnova, E.A.; Tikhonov, V.E.; Babushkina, T.A.; Klimova, T.P.; Vorontsov, E.V.; Babak, V.G.; Lopatin, S.A.; Yamskov, I.A. New approach to the quaternization of chitosan and its amphiphilic derivatives. Eur. Polym. J. 2007, 43, 2414–2421. [Google Scholar] [CrossRef]
- Guinesi, L.S.; Cavalheiro, É.T.G. Influence of some reactional parameters on the substitution degree of biopolymeric Schiff bases prepared from chitosan and salicylaldehyde. Carbohydr. Polym. 2006, 65, 557–561. [Google Scholar] [CrossRef]
- Hua, C.; Zhang, R.; Bai, F.; Lu, P.; Liang, X. Removal of chromium (VI) from aqueous solutions using quaternized chitosan microspheres. Chin. J. Chem. Eng. 2017, 25, 153–158. [Google Scholar] [CrossRef]
- Narita, Y.; Sakti, S.C.W.; Akemoto, Y.; Tanaka, S. Ultra-rapid removal of cationic organic dyes by novel single- and double-stranded DNA immobilized on quaternary ammonium magnetic chitosan. J. Environ. Chem. Eng. 2019, 7, 103308. [Google Scholar] [CrossRef]
- Huang, L.-Y.; Li, W.; Du, N.; Lu, H.-Q.; Meng, L.-D.; Huang, K.-Y.; Li, K. Preparation of quaternary ammonium magnetic chitosan microspheres and their application for Congo red adsorption. Carbohydr. Polym. 2022, 297, 119995. [Google Scholar] [CrossRef]
- Hirano, S.; Yamaguchi, R.; Matsuda, N.; Miura, O.; Kondo, Y. Chitosan-aldehyde gel A novel polysaccharide gel produced from chitosan and aldehydes. Agric. Biol. Chem. 1977, 41, 1547–1548. [Google Scholar] [CrossRef]
- Yang, K.; Wang, G.; Liu, F.; Zhao, Y. Removal of Cd(II) Ions from Wastewater by Compounding an O-Xanthogenated Chitosan Schiff Base and Fe(III) Ions. Macromol. Res. 2019, 27, 982–990. [Google Scholar] [CrossRef]
- Mahmoud, R.K.; Mohamed, F.; Gaber, E.O.Z.; Abdel-Gawad, O.F. Insights into the Synergistic Removal of Copper(II), Cadmium(II), and Chromium(III) Ions Using Modified Chitosan Based on Schiff Bases-g-poly(acrylonitrile). ACS Omega 2022, 7, 42012–42026. [Google Scholar] [CrossRef]
- Rahmanifar, E.; Shiri, F.; Shahraki, S.; Karimi, P. Experimental design for removal of lead ions from water samples using an engineered novel chitosan functionalized Schiff-base adsorbent. Chem. Eng. Commun. 2023, 210, 2022–2034. [Google Scholar] [CrossRef]
- Olugbemi, S.A.; Amoniyan, O.A. Assessment of the Adsorption Potential of Synthesized Chitosan-Pyrrole-2-Carboxaldehyde Schiff Base for Cr2+ and Pb2+ Ions from Dumpsite Leachate. Eur. J. Adv. Chem. Res. 2023, 4, 30–39. [Google Scholar] [CrossRef]
- Pawariya, V.; De, S.; Dutta, J. Synthesis and characterization of citric acid-modified chitosan Schiff base with enhanced antibacterial properties for the elimination of Bismarck Brown R and Rhodamine B dyes from wastewater. Int. J. Biol. Macromol. 2024, 264, 130664. [Google Scholar] [CrossRef] [PubMed]
- Sanati, M.; Dehno Khalaji, A.; Mokhtari, A.; Keyvanfard, M. Fast removal of methyl green from aqueous solution by adsorption onto new modified chitosan Schiff base. Prog. Chem. Biochem. Res. 2020, 2021, 319–330. [Google Scholar] [CrossRef]
- Khalifa, R.E.; Aboulhadeed, S.; Ahmed, H.M.; Omer, A.M.; Tamer, T.M.; Mohy-Eldin, M.S. Fabrication of a novel chitosan Schiff bases hydrogel derivatives for the removal of anionic dyes from wastewater. Desalination Water Treat. 2021, 244, 263–278. [Google Scholar] [CrossRef]
- Xu, B.; Wang, J. Radiation-induced modification of chitosan and applications for water and wastewater treatment. J. Clean. Prod. 2024, 467, 142924. [Google Scholar] [CrossRef]
- Hirano, S.; Zhang, M.; Chung, B.G.; Kim, S.K. The N-acylation of chitosan fibre and the N-deacetylation of chitin fibre and chitin–cellulose blended fibre at a solid state. Carbohydr. Polym. 2000, 41, 175–179. [Google Scholar] [CrossRef]
- Fujita, S.; Sakairi, N. Water soluble EDTA-linked chitosan as a zwitterionic flocculant for pH sensitive removal of Cu(II) ion. RSC Adv. 2016, 6, 10385–10392. [Google Scholar] [CrossRef]
- Yong, S.K.; Bolan, N.; Lombi, E.; Skinner, W. Synthesis and Characterization of Thiolated Chitosan Beads for Removal of Cu(II) and Cd(II) from Wastewater. Water Air Soil Pollut. 2013, 224, 1720. [Google Scholar] [CrossRef]
- Morsy, A.M.A. Adsorptive removal of uranium ions from liquid waste solutions by phosphorylated chitosan. Environ. Technol. Innov. 2015, 4, 299–310. [Google Scholar] [CrossRef]
- Gu, F.; Geng, J.; Li, M.; Chang, J.; Cui, Y. Synthesis of Chitosan–Ignosulfonate Composite as an Adsorbent for Dyes and Metal Ions Removal from Wastewater. ACS Omega 2019, 4, 21421–21430. [Google Scholar] [CrossRef]
- Nath, J.; Sharma, K.; Kumar, S.; Kumar, V. 3—Ionotropic cross-linking methods for different types of biopolymeric hydrogels. In Ionotropic Cross-Linking of Biopolymers; Nayak, A.K., Hasnain, M.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 63–98. [Google Scholar] [CrossRef]
- Medellín-Castillo, N.A.; Isaacs-Páez, E.D.; Rodríguez-Méndez, I.; González-García, R.; Labrada-Delgado, G.J.; Aragón-Piña, A.; García-Arreola, M. Formaldehyde and tripolyphosphate crosslinked chitosan hydrogels: Synthesis, characterization and modeling. Int. J. Biol. Macromol. 2021, 183, 2293–2304. [Google Scholar] [CrossRef]
- Khapre, M.A.; Pandey, S.; Jugade, R.M. Glutaraldehyde-cross-linked chitosan–alginate composite for organic dyes removal from aqueous solutions. Int. J. Biol. Macromol. 2021, 190, 862–875. [Google Scholar] [CrossRef]
- Kaczmarek-Szczepańska, B.; Mazur, O.; Michalska-Sionkowska, M.; Łukowicz, K.; Osyczka, A.M. The preparation and characterization of chitosan-based hydrogels cross-linked by glyoxal. Materials 2021, 14, 2449. [Google Scholar] [CrossRef]
- Rosli, N.; Yahya, W.Z.N.; Wirzal, M.D.H. Crosslinked chitosan/poly(vinyl alcohol) nanofibers functionalized by ionic liquid for heavy metal ions removal. Int. J. Biol. Macromol. 2022, 195, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Dumont, V.C.; Isadora, C.C.; Vanessa, B.A.; Marcos Ade, S.; Anderson, J.F.; Sandhra, M.C.; Mansur, A.A.P.; Mansur, H.S. Nanohydroxyapatite reinforced chitosan and carboxymethyl-chitosan biocomposites chemically crosslinked with epichlorohydrin for potential bone tissue repair. Int. J. Polym. Mater. Polym. Biomater. 2022, 71, 740–755. [Google Scholar] [CrossRef]
- Vargas-Osorio, Z.; González Castillo, E.I.; Mutlu, N.; Vidomanová, E.; Michálek, M.; Galusek, D.; Boccaccini, A.R. Tailorable mechanical and degradation properties of KCl-reticulated and BDDE-crosslinked PCL/chitosan/κ-carrageenan electrospun fibers for biomedical applications: Effect of the crosslinking-reticulation synergy. Int. J. Biol. Macromol. 2024, 265, 130647. [Google Scholar] [CrossRef] [PubMed]
- Bashandeh, Z.; Khalaji, A.D. Effective Removal of Methyl Green from Aqueous Solution Using Epichlorohydrine Cross-Linked Chitosan. Adv. J. Chem. Sect. A 2021, 4, 270–277. [Google Scholar] [CrossRef]
- Yang, S.; Liu, L.; Chen, H.; Wei, Y.; Dai, L.; Liu, J.; Yuan, F.; Mao, L.; Chen, F.; Gao, Y. Impact of different crosslinking agents on functional properties of curcumin-loaded gliadin-chitosan composite nanoparticles. Food Hydrocoll. 2021, 112, 106258. [Google Scholar] [CrossRef]
- Babakhani, A.; Sartaj, M. Synthesis, characterization, and performance evaluation of ion-imprinted crosslinked chitosan (with sodium tripolyphosphate) for cadmium biosorption. J. Environ. Chem. Eng. 2022, 10, 107147. [Google Scholar] [CrossRef]
- Xie, W.; Xu, P.; Liu, Q.; Xue, J. Graft-copolymerization of methylacrylic acid onto hydroxypropyl chitosan. Polym. Bull. 2002, 49, 47–54. [Google Scholar] [CrossRef]
- Zubair, N.A.; Moawia, R.M.; Nasef, M.M.; Hubbe, M.; Zakeri, M. A Critical Review on Natural Fibers Modifications by Graft Copolymerization for Wastewater Treatment. J. Polym. Environ. 2022, 30, 1199–1227. [Google Scholar] [CrossRef]
- Moja, T.N.; Bunekar, N.; Mishra, S.B.; Tsai, T.-Y.; Hwang, S.S.; Mishra, A.K. Melt processing of polypropylene-grafted-maleic anhydride/Chitosan polymer blend functionalized with montmorillonite for the removal of lead ions from aqueous solutions. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef]
- Moridi, H.; Talebi, M.; Jafarnezhad, B.; Mousavi, S.E.; Abbasizadeh, S. The role of chitosan grafted copolymer/zeolite Schiff base nanofiber in adsorption of copper and zinc cations from aqueous media. Int. J. Biol. Macromol. 2024, 278, 135003. [Google Scholar] [CrossRef]
- Gabris, M.A.; Rezania, S.; Rafieizonooz, M.; Khankhaje, E.; Devanesan, S.; AlSalhi, M.S.; Aljaafreh, M.J.; Shadravan, A. Chitosan magnetic graphene grafted polyaniline doped with cobalt oxide for removal of Arsenic(V) from water. Environ. Res. 2022, 207, 112209. [Google Scholar] [CrossRef]
- Alshahrani, H.; Abdulhameed, A.S.; Khan, M.K.A.; Al Omari, R.H.; Algburi, S. Functionalization of chitosan/alumina nanoparticles with carboxylic groups using phthalic anhydride for adsorption of methylene blue dye via response surface methodology. Polym. Bull. 2025, 82, 87–109. [Google Scholar] [CrossRef]
- Niu, Y.; Hu, W. Preparation, characterization and application in environmental protection of low-molecular-weight chitosan: A review. Sustain. Environ. Res. 2024, 34, 29. [Google Scholar] [CrossRef]
- Fatullayeva, S.; Tagiyev, D.; Zeynalov, N.; Mammadova, S.; Aliyeva, E. Recent advances of chitosan-based polymers in biomedical applications and environmental protection. J. Polym. Res. 2022, 29, 259. [Google Scholar] [CrossRef]
- Safina, V.R.; Melentiev, A.I.; Galimzianova, N.F.; Gilvanova, E.A.; Kuzmina LYu Lopatin, S.A.; Varlamov, V.P.; Baymiev, A.H.; Aktuganov, G.E. Efficiency of Chitosan Depolymerization by Microbial Chitinases and Chitosanases with Respect to the Antimicrobial Activity of Generated Chitooligomers. Appl. Biochem. Microbiol. 2021, 57, 626–635. [Google Scholar] [CrossRef]
- Águila-Almanza, E.; Salgado-Delgado, R.; Vargas-Galarza, Z.; García-Hernández, E.; Hernández-Cocoletzi, H. Enzymatic Depolimerization of Chitosan for the Preparation of Functional Membranes. J. Chem. 2019, 2019, 1–8. [Google Scholar] [CrossRef]
- Pankaj, S.K.; Shi, H.; Keener, K.M. A review of novel physical and chemical decontamination technologies for aflatoxin in food. Trends Food Sci. Technol. 2018, 71, 73–83. [Google Scholar] [CrossRef]
- Pandit, A.; Indurkar, A.; Deshpande, C.; Jain, R.; Dandekar, P. A systematic review of physical techniques for chitosan degradation. Carbohydr. Polym. Technol. Appl. 2021, 2, 100033. [Google Scholar] [CrossRef]
- Al-Jbour, N.D.; Beg, M.D.H.; Gimbun, J. Acid Hydrolysis of Chitosan to Oligomers Using Hydrochloric Acid. Chem. Eng. Technol. 2019, 42, 1741–1746. [Google Scholar] [CrossRef]
- Alves, H.J.; Vieceli, M.; Alves, C.; de Muñiz, G.I.B.; Oliveira, C.L.P.; Feroldi, M.; Arantes, M.K. Chitosan Depolymerization and Nanochitosan Production Using a Single Physical Procedure. J. Polym. Environ. 2018, 26, 3913–3923. [Google Scholar] [CrossRef]
- Lichtfouse, E.; Morin-Crini, N.; Fourmentin, M.; Zemmouri, H.; Nascimento IOdo, C.; Queiroz, L.M.; Tadza, M.Y.M.; Picos-Corrales, L.A.; Pei, H.; Wilson, L.D.; et al. Chitosan for direct bioflocculation of wastewater. Environ. Chem. Lett. 2019, 17, 1603–1621. [Google Scholar] [CrossRef]
- Macêdo, M.d.O.C.; de Macêdo, H.R.A.; Araujo, A.L.C. Chitosan as a Strategy in the Treatment of Effluent. Res. Soc. Dev. 2022, 11, e22111636819. [Google Scholar] [CrossRef]
- Picos-Corrales, L.A.; Sarmiento-Sánchez, J.I.; Ruelas-Leyva, J.P.; Crini, G.; Hermosillo-Ochoa, E.; Gutierrez-Montes, J.A. Environment-Friendly Approach toward the Treatment of Raw Agricultural Wastewater and River Water via Flocculation Using Chitosan and Bean Straw Flour as Bioflocculants. ACS Omega 2020, 5, 3943–3951. [Google Scholar] [CrossRef]
- Wei, T.; Wu, L.; Yu, F.; Lv, Y.; Chen, L.; Shi, Y.; Dai, B. pH-responsive chitosan-based flocculant for precise dye flocculation control and the recycling of textile dyeing effluents. RSC Adv. 2018, 8, 39334–39340. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Chen, A.; Pan, S.Y.; Sun, W.; Zhu, C.; Shah, K.J.; Zheng, H. Novel chitosan-based flocculants for chromium and nickle removal in wastewater via integrated chelation and flocculation. J. Environ. Manag. 2019, 248, 109241. [Google Scholar] [CrossRef]
- Sirajudheen, P.; Vigneshwaran, S.; Karthikeyan, P.; Nabeena, C.P.; Meenakshi, S. Technological Advancement in Photocatalytic Degradation of Dyes Using Metal-Doped Biopolymeric Composites—Present and Future Perspectives. In Nanomaterials and Nanocomposites for Environmental Remediation; Singh, S.P., Rathinam, K., Gupta, T., Agarwal, A.K., Eds.; Springer: Singapore, 2021; pp. 205–255. [Google Scholar] [CrossRef]
- Lotito, S.; Cignolo, D.; Gubitosa, J.; Barucca, G.; Mengucci, P.; Striccoli, M.; Palumbo, F.; Cosma, P.; Fini, P.; Murgolo, S.; et al. Nanoengineering of Chitosan Sponges Via Atomic Layer Deposition of ZnO for Water Remediation Technologies. Adv. Mater. Interfaces 2024, 12, 2400831. [Google Scholar] [CrossRef]
- Nyamiati, R.D.; Timotius, D.; Rahmawati, S.; Carissavila, C.; Amalia, N. Effect of Chitosan-TiO2 Membrane Performance for the Degradation of Batik Waste with a Photocatalytic Hybrid System. Eksergi 2024, 21, 44. [Google Scholar] [CrossRef]
- Ali, N.; Farhan, M.; Malik, S.; Khan, A.; Ali, S.; Kianat, S.; Ghazal, S.; Salim, B.; Al Balushi, R.A.; Al-Hinaai, M.M.; et al. Robust regenerable metal-selenide-chitosan photocatalyst for the effective removal of Bromothymol Blue (BB) from wastewater. Int. J. Biol. Macromol. 2024, 281, 136419. [Google Scholar] [CrossRef]
- Arghavan, F.S.; Al-Musawi, T.J.; Rumman, G.A.; Pelalak, R.; Khataee, A.; Khataee, A.; Nasseh, N.; Nasseh, N. Photocatalytic performance of a nickel ferrite/chitosan/bismuth(III) oxyiodide nanocomposite for metronidazole degradation under simulated sunlight illumination. J. Environ. Chem. Eng. 2021, 9, 105619. [Google Scholar] [CrossRef]
- Machodi, M.J.; Daramola, M.O. Synthesis and performance evaluation of PES/chitosan membranes coated with polyamide for acid mine drainage treatment. Sci. Rep. 2019, 9, 17657. [Google Scholar] [CrossRef] [PubMed]
- Bassyouni, M.; Eteba, A.; ElZahar, M.M.H.; Elshikhiby Mohamed, Z. Utilization of Biodegradable Nanofiltration Membrane for Efficient Removal of Anionic Textile Dye. Egypt. J. Chem. 2024, 67, 987–995. [Google Scholar] [CrossRef]
- Ponnuchamy, M.; Kapoor, A.; Senthil Kumar, P.; Vo, D.-V.N.; Balakrishnan, A.; Mariam Jacob, M.; Sivaraman, P. Sustainable adsorbents for the removal of pesticides from water: A review. Environ. Chem. Lett. 2021, 19, 2425–2463. [Google Scholar] [CrossRef]
- Verma, M.; Ahmad, W.; Park, J.-H.; Vlaskin, M.S.; Vaya, D.; Kim, H. One-step functionalization of chitosan using EDTA: Kinetics and isotherms modeling for multiple heavy metals adsorption and their mechanism. J. Water Process Eng. 2022, 49, 102989. [Google Scholar] [CrossRef]
- Balakrishnan, A.; Appunni, S.; Chinthala, M.; Jacob, M.M.; Vo, D.-V.N.; Reddy, S.S.; Kunnel, E.S.; Ponnuchamy, M. Chitosan-based beads as sustainable adsorbents for wastewater remediation: A review. Environ. Chem. Lett. 2023, 21, 1881–1905. [Google Scholar] [CrossRef]
- Muda, M.S.; Kamari, A.; Bakar, S.A.; Yusoff, S.N.M.; Fatimah, I.; Phillip, E.; Din, S.M. Chitosan-graphene oxide nanocomposites as water-solubilising agents for rotenone pesticide. J. Mol. Liq. 2020, 318, 114066. [Google Scholar] [CrossRef]
- Keshvardoostchokami, M.; Majidi, M.; Zamani, A.; Liu, B. Adsorption of phenol on environmentally friendly Fe3O4/ chitosan/ zeolitic imidazolate framework-8 nanocomposite: Optimization by experimental design methodology. J. Mol. Liq. 2021, 323, 115064. [Google Scholar] [CrossRef]
- Luo, Q.; Ren, T.; Lei, Z.; Huang, Y.; Huang, Y.; Xu, D.; Wan, C.; Guo, X.; Wu, Y. Non-toxic chitosan-based hydrogel with strong adsorption and sensitive detection abilities for tetracycline. Chem. Eng. J. 2022, 427, 131738. [Google Scholar] [CrossRef]
- Saeed, T.; Naeem, A.; Din, I.U.; Farooq, M.; Khan, I.W.; Hamayun, M.; Hamayun, M.; Malik, T. Synthesis of chitosan composite of metal-organic framework for the adsorption of dyes; kinetic and thermodynamic approach. J. Hazard. Mater. 2022, 427, 127902. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Bai, Z.; Zhu, Y. Fast removal of Co(ii) from aqueous solution using porous carboxymethyl chitosan beads and its adsorption mechanism. RSC Adv. 2018, 8, 13370–13387. [Google Scholar] [CrossRef] [PubMed]
- Rathinam, K.; Singh, S.P.; Arnusch, C.J.; Kasher, R. An environmentally-friendly chitosan-lysozyme biocomposite for the effective removal of dyes and heavy metals from aqueous solutions. Carbohydr. Polym. 2018, 199, 506–515. [Google Scholar] [CrossRef]
- Kyomuhimbo, H.D.; McHunu, W.; Arnold, M.; Feleni, U.; Haneklaus, N.; Brink, H.G. Synthesis and Dye Adsorption Dynamics of Chitosan–Polyvinylpolypyrrolidone (PVPP) Composite. Polymers 2024, 16, 2555. [Google Scholar] [CrossRef]
- Jacob, M.M.; Ponnuchamy, M.; Kapoor, A.; Sivaraman, P. Adsorptive decontamination of organophosphate pesticide chlorpyrifos from aqueous systems using bagasse-derived biochar alginate beads: Thermodynamic, equilibrium, and kinetic studies. Chem. Eng. Res. Des. 2022, 186, 241–251. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, N.; Feng, C.; Zhang, Z. Adsorption for phosphate by crosslinked/non-crosslinked-chitosan-Fe(III) complex sorbents: Characteristic and mechanism. Chem. Eng. J. 2018, 353, 361–372. [Google Scholar] [CrossRef]
- Lyu, F.; Yu, H.; Hou, T.; Yan, L.; Zhang, X.; Du, B. Efficient and fast removal of Pb2+ and Cd2+ from an aqueous solution using a chitosan/Mg-Al-layered double hydroxide nanocomposite. J. Colloid Interface Sci. 2019, 539, 184–193. [Google Scholar] [CrossRef]
- Chandra, D.; Molla, M.d.T.H.; Bashar, M.d.A.; Islam, M.d.S.; Ahsan, M.d.S. Chitosan-based nano-sorbents: Synthesis, surface modification, characterisation and application in Cd (II), Co (II), Cu (II) and Pb (II) ions removal from wastewater. Dent. Sci. Rep. 2023, 13, 1–17. [Google Scholar] [CrossRef]
- Dong, L.C.; Shan, C.; Liu, Y.; Sun, H.; Yao, B.; Gong, G.; Jin, X.; Wang, S. Characterization and Mechanistic Study of Heavy Metal Adsorption by Facile Synthesized Magnetic Xanthate-Modified Chitosan/Polyacrylic Acid Hydrogels. Int. J. Environ. Res. Public Health 2022, 19, 11123. [Google Scholar] [CrossRef]
- Wang, F.; Gao, J.; Jia, L.; Wang, S.; Ning, P. Green synthesis of a novel functionalized chitosan adsorbent for Cu(II) adsorption from aqueous solution. Environ. Sci. Pollut. Res. 2021, 29, 989–998. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.-L.; Zaoui, A.; Sekkal, W. Adsorption efficiency of highly methylene blue dye concentrations with multilayer chitosan-modified clays for a precise nanofiltration performance of polluted water. J. Water Process Eng. 2024, 57, 104651. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, X.; Zhao, S.; Jing, Z.; Jin, Y.; Pi, X.; Du, Q.; Chen, L.; Li, Y.; Chen, B. High-efficient removal of anionic dye from aqueous solution using metal-organic frameworks@chitosan aerogel rich in benzene structure. Int. J. Biol. Macromol. 2023, 256, 128433. [Google Scholar] [CrossRef]
- Khnifira, M.; Boumya, W.; Attarki, J.; Mahsoune, A.; Abdennouri, M.; Sadiq, M.; Kaya, S.; Barka, N. Elucidating the adsorption mechanisms of anionic dyes on chitosan (110) surface in aqueous medium by quantum chemical and molecular dynamics. Mater. Today Commun. 2022, 33, 104488. [Google Scholar] [CrossRef]
- Wang, H.; Dai, K.; Xiang, H.; Kou, J.; Guo, H.; Ying, H.; Wu, J. High adsorption capacities for dyes by a pH-responsive sodium alginate/sodium lignosulfonate/carboxylated chitosan/polyethyleneimine adsorbent. Int. J. Biol. Macromol. 2024, 278, 135005. [Google Scholar] [CrossRef] [PubMed]
- Chiu, C.-W.; Wu, M.-T.; Lin, C.-L.; Li, J.-W.; Huang, C.-Y.; Soong, Y.-C.; Lee, J.C.-M.; Lee Sanchez, W.A.; Lin, H.-Y. Adsorption Performance for Reactive Blue 221 Dye of β-Chitosan/Polyamine Functionalized Graphene Oxide Hybrid Adsorbent with High Acid–Alkali Resistance Stability in Different Acid–Alkaline Environments. Nanomaterials 2020, 10, 748. [Google Scholar] [CrossRef]
- Abdulhameed, A.S.; Wu, R.; Musa, S.A.; Agha, H.M.; Alothman, Z.; Jawad, A.H.; Algburi, S. Bisphenol-A-diglycidyl ether modified chitosan/nano-SiO2 via hydrothermal process: A statistical modeling and adsorption mechanism for reactive orange 16 dye removal. Int. J. Biol. Macromol. 2023, 256, 128267. [Google Scholar] [CrossRef]
- Wu, R.; Abdulhameed, A.S.; Jawad, A.H.; Kong, Y.; Li, H.; Alothman, Z.; Wilson, L.D.; Algburi, S. Development of the chitosan/nanosilica with arene functionalization via hydrothermal synthesis for acid red 88 dye removal: A comparative study for optimized adsorption. Int. J. Biol. Macromol. 2023, 252, 126342. [Google Scholar] [CrossRef]
- Chelu, M.; Musuc, A.M.; Popa, M.; Calderon Moreno, J.M. Chitosan Hydrogels for Water Purification Applications. Gels 2023, 9, 664. [Google Scholar] [CrossRef]
- Norouzi, S.; Heidari, M.; Alipour, V.; Rahmanian, O.; Fazlzadeh, M.; Mohammadi-moghadam, F.; Nourmoradi, H.; Goudarzi, B.; Dindarloo, K. Preparation, characterization and Cr(VI) adsorption evaluation of NaOH-activated carbon produced from Date Press Cake; an agro-industrial waste. Bioresour. Technol. 2018, 258, 48–56. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, X.; Wang, G.; Hao, C.; Li, X.; Li, T. Adsorption performance of a polysaccharide composite hydrogel based on crosslinked glucan/chitosan for heavy metal ions. Compos. B Eng. 2019, 169, 45–54. [Google Scholar] [CrossRef]
- Vieira, T.; Artifon, S.E.S.; Cesco, C.T.; Vilela, P.B.; Becegato, V.A.; Paulino, A.T. Chitosan-based hydrogels for the sorption of metals and dyes in water: Isothermal, kinetic, and thermodynamic evaluations. Colloid. Polym. Sci. 2021, 299, 649–662. [Google Scholar] [CrossRef]
- Amiri, H.; Taheriyoun, M. Mapping chitosan potentials for treating antibiotics in aquaculture wastewater. Planet. Sustain. 2024, 2, 61–85. [Google Scholar] [CrossRef]
- Xu, B.; Huiyu, T.; Jianbo, C.; Lifeng, W.; Kai, W.; Wang, J. Efficient adsorption of Cs(I) and Sr(II) ions from solution by xanthate modified sponge-like chitosan. Nucl. Eng. Des. 2025, 437, 114031. [Google Scholar] [CrossRef]
- Zhu, Y. Application of chitosan-based materials in wastewater treatment. Highlights Sci. Eng. Technol. 2023, 69, 489–497. [Google Scholar] [CrossRef]
- Gonçalves, J.O.; Strieder, M.M.; Silva, L.F.; dos Reis, G.S.; Dotto, G.L. Advanced technologies in water treatment: Chitosan and its modifications as effective agents in the adsorption of contaminants. Int. J. Biol. Macromol. 2024, 270, 132307. [Google Scholar] [CrossRef]
- Divya, K.; Jisha, M.S. Chitosan nanoparticles preparation and applications. Environ. Chem. Lett. 2018, 16, 101–112. [Google Scholar] [CrossRef]
- Rahman, T.U.; Roy, H.; Shoronika, A.Z.; Fariha, A.; Hasan, M.; Islam, M.d.S.; Marwani, H.M.; Islam, A.; Hasan, M.M.; Alsukaibi, M.R. Sustainable toxic dye removal and degradation from wastewater using novel chitosan-modified TiO2 and ZnO nanocomposites. J. Mol. Liq. 2023, 388, 122764. [Google Scholar] [CrossRef]
- Liu, L.; Ma, Y.; Yang, W.; Chen, C.; Li, M.; Lin, D.; Pan, Q. Reusable ZIF-8@chitosan sponge for the efficient and selective removal of congo red. New J. Chem. 2020, 44, 15459–15466. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, Z.; Lin, H.; Feng, Q.; Xue, B.; Li, M.; Xu, B.; Li, Y. The static and dynamic adsorptive performance of a nitrogen and sulfur functionalized 3D chitosan sponge for mercury and its machine learning evaluation. Carbohydr. Polym. 2025, 348, 122866. [Google Scholar] [CrossRef]
- Zhang, X.; Qi, X.; Ma, Q.; Guo, X.; Wu, Y. Spherical sponge-inspired design of chitosan/silver cluster-loaded cellulose nanofibrils/Cu-ZIF-8 gel beads for efficient removal of Cr(VI). Chem. Eng. J. 2024, 499, 155767. [Google Scholar] [CrossRef]
- Ren, K.; Fan, Y.; Xing, G.; Zhai, M.; Sheng, J.; Song, Y. Rapid and convenient synthesis of “green” ammonium-modified chitosan composite sponge with the existence of ascorbic acid for highly efficient removal of Congo red (CR). Carbohydr. Polym. 2024, 324, 121444. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.; Peng, R.; Gao, D.; Lin, J.; Zeng, J.; Li, Z.; Ke, F.; Xia, Z.; Wang, D. Chitosan-alginate sponge with multiple cross-linking networks for adsorption of anionic dyes: Preparation, property evaluation, mechanism exploration, and application. J. Chromatogr. A 2024, 1713, 464507. [Google Scholar] [CrossRef]
- Xiao, P.; Xu, J.; Shi, H.; Du, F.; Du, H.; Li, G. Simultaneous Cr(VI) reduction and Cr(III) sequestration in a wide pH range by using magnetic chitosan-based biopolymer. Int. J. Biol. Macromol. 2023, 253, 127398. [Google Scholar] [CrossRef]
- Han, S.; Zhou, X.; Xie, H.; Wang, X.; Yang, L.; Wang, H.; Hao, C. Chitosan-based composite microspheres for treatment of hexavalent chromium and EBBR from aqueous solution. Chemosphere 2022, 305, 135486. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Huang, Y.; He, Q.; Wang, Y.; Zheng, H.; Hu, Y. Adsorption of tetracycline antibiotics by nitrilotriacetic acid modified magnetic chitosan-based microspheres from aqueous solutions. Environ. Technol. Innov. 2021, 24, 101895. [Google Scholar] [CrossRef]
- Lin, X.; Wang, L.; Jiang, S.; Cui, L.; Wu, G. Iron-doped chitosan microsphere for As(III) adsorption in aqueous solution: Kinetic, isotherm and thermodynamic studies. Korean J. Chem. Eng. 2019, 36, 1102–1114. [Google Scholar] [CrossRef]
- Jaafari, J.; Barzanouni, H.; Mazloomi, S.; Amir Abadi Farahani, N.; Sharafi, K.; Soleimani, P.; Haghighat, G.A. Effective adsorptive removal of reactive dyes by magnetic chitosan nanoparticles: Kinetic, isothermal studies and response surface methodology. Int. J. Biol. Macromol. 2020, 164, 344–355. [Google Scholar] [CrossRef]
- Xia, T.; Yin, L.; Xie, Y.; Ji, Y. Efficiently remove of Cs(I) by metals hexacyanoferrate modified magnetic Fe3O4-chitosan nanoparticles. Chem. Phys. Lett. 2020, 746, 137293. [Google Scholar] [CrossRef]
- Hamza, M.F.; Abdel-Rahman, A.A.H.; Negm, A.S.; Hamad, D.M.; Khalafalla, M.S.; Fouda, A.; Wei, Y.; Amer, H.H.; Alotaibi, S.H.; Goda, A.E.-S. Grafting of Thiazole Derivative on Chitosan Magnetite Nanoparticles for Cadmium Removal—Application for Groundwater Treatment. Polymers 2022, 14, 1240. [Google Scholar] [CrossRef]
- Hamza, M.F.; Wei, Y.; Althumayri, K.; Fouda, A.; Hamad, N.A. Synthesis and Characterization of Functionalized Chitosan Nanoparticles with Pyrimidine Derivative for Enhancing Ion Sorption and Application for Removal of Contaminants. Materials 2022, 15, 4676. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, X.; Peng, J. Highly selective removal and recovery of Ni(II) from aqueous solution using magnetic ion-imprinted chitosan nanoparticles. Carbohydr. Polym. 2021, 271, 118435. [Google Scholar] [CrossRef] [PubMed]
- Elamin, N.Y.; Elamin, M.R.; Alhussain, H.; Alotaibi, M.T.; Alluhaybi, A.A.; El-Bindary, A.A. Electrospun nanofibers of polycaprolactone loaded with chitosan/carbon quantum dots composite for adsorptive removal of Cd(II) ions from wastewater: Adsorption, kinetics, thermodynamics, and BOX Behnken design. Int. J. Biol. Macromol. 2025, 308, 142680. [Google Scholar] [CrossRef]
- Bahmani, E.; Koushkbaghi, S.; Darabi, M.; ZabihiSahebi, A.; Askari, A.; Irani, M. Fabrication of novel chitosan-g-PNVCL/ZIF-8 composite nanofibers for adsorption of Cr(VI), As(V) and phenol in a single and ternary systems. Carbohydr. Polym. 2019, 224, 115148. [Google Scholar] [CrossRef] [PubMed]
- Alatawi, R.A.S. Electrospun nanofiber chitosan/polyvinyl alcohol loaded with metal organic framework nanofiber for efficient adsorption and removal of industrial dyes from waste water: Adsorption isotherm, kinetic, thermodynamic, and optimization via Box-Behnken design. Int. J. Biol. Macromol. 2025, 299, 140086. [Google Scholar] [CrossRef] [PubMed]
- Alam, J.; Ali, F.A.A.; Shukla, A.K.; Haider, S.; Riaz, U.; Alhoshan, M. Crosslinked Chitosan-Sulfonated Polyphenylsulfone Electrospun Nanofibers: A Highly Water-Stable and Versatile Adsorbent for Organic Dye Removal. Fibers Polym. 2024, 25, 3307–3321. [Google Scholar] [CrossRef]
- Luo, R.; Zhang, K.; Qin, Y.; Xie, L.; Chai, X.; Zhang, L.; Du, G.; Ge, S.; Rezakazemi, M.; Aminabhavi, T.M. Amine-functionalized UiO-66 incorporated electrospun cellulose/chitosan porous nanofibrous membranes for removing copper ions. Chem. Eng. J. 2024, 480, 148077. [Google Scholar] [CrossRef]
- Hu, Q.H.; Tang, D.Y.; Xiang, Y.L.; Chen, X.; Lin, J.; Zhou, Q.H. Magnetic ion-imprinted polyacrylonitrile-chitosan electro-spun nanofibrous membrane as recyclable adsorbent with selective heavy metal removal and antibacterial fouling in water treatment. Int. J. Biol. Macromol. 2023, 241, 124620. [Google Scholar] [CrossRef]
- Kakoria, A.; Sinha-Ray, S.; Sinha-Ray, S. Industrially scalable Chitosan/Nylon-6 (CS/N) nanofiber-based reusable adsorbent for efficient removal of heavy metal from water. Polymer 2021, 213, 123333. [Google Scholar] [CrossRef]
- Vedula, S.S.; Yadav, G.D. Wastewater treatment containing methylene blue dye as pollutant using adsorption by chitosan lignin membrane: Development of membrane, characterization and kinetics of adsorption. J. Indian Chem. Soc. 2022, 99, 100263. [Google Scholar] [CrossRef]
- Abdelaziz, M.M.; Abdelaziz, M.A.; Omer, N.; Jame, R.; Alamri, E.S.; Mohamed, E.L.I.; Eledum, H.; Alhuwaiti, A.M.; Al-Balawi, R.S.; Al-Qarni, G. Cost-effective zinc ferrite-functionalized hydroxyethyl cellulose/chitosan film for efficient removal of methyl orange dye from aqueous solutions. Int. J. Biol. Macromol. 2025, 307, 142232. [Google Scholar] [CrossRef]
- Zeng, H.Q.; Hao, H.Y.; Wang, X.; Shao, Z. Chitosan-based composite film adsorbents reinforced with nanocellulose for removal of Cu(II) ion from wastewater: Preparation, characterization, and adsorption mechanism. Int. J. Biol. Macromol. 2022, 213, 369–380. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, H.; Yaseen, M.; Tong, Z.; Chen, N.; Shi, H. Carboxymethylcellulose-chitosan film modified magnetic alkaline Ca-bentonite for the efficient removal of Pb(II) and Cd(II) from aqueous solution. Environ. Sci. Pollut. Res. 2021, 28, 30312–30322. [Google Scholar] [CrossRef]
- Kloster, G.A.; Valiente, M.; Marcovich, N.E.; Mosiewicki, M.A. Adsorption of arsenic onto films based on chitosan and chitosan/nano-iron oxide. Int. J. Biol. Macromol. 2020, 165, 1286–1295. [Google Scholar] [CrossRef]
- Rizzi, V.; Romanazzi, F.; Gubitosa, J.; Fini, P.; Romita, R.; Agostiano, A.; Petrella, A.; Cosma, P. Chitosan film as eco-friendly and recyclable bio-adsorbent to remove/recover diclofenac, ketoprofen, and their mixture from wastewater. Biomolecules 2019, 9, 571. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, H.; Tuzen, M.; Siddiqui, A.; Umar, A.R. Effective adsorption of Congo red azo dye from different water and wastewater by using porous Fe3O4-bentonite@chitosan nanocomposite: A multivariate optimization. Int. J. Biol. Macromol. 2025, 310, 143439. [Google Scholar] [CrossRef] [PubMed]
- Saberi-Zare, M.; Bodaghifard, M.A. A Schiff base-functionalized chitosan magnetic bio-nanocomposite for efficient removal of Pb (II) and Cd (II) ions from aqueous solutions. Int. J. Biol. Macromol. 2025, 296, 139794. [Google Scholar] [CrossRef]
- Nassar, A.A.; Mubarak, M.F.; El-Sawaf, A.K.; Zayed, M.A.; Hemdan, M. Efficient lead ion removal from aqueous solutions for wastewater treatment using a novel cross-linked alginate-rice husk ash-graphene oxide-chitosan nanocomposite. Int. J. Biol. Macromol. 2025, 284, 137983. [Google Scholar] [CrossRef]
- Elumalai, N.S.; Jaisankar, S.M.; Kumaran, C. Utilization of Graphene Oxide-Chitosan Nanocomposite for the Removal of Heavy Metals: Kinetics, Isotherm, and Error Analysis. Water Conserv. Sci. Eng. 2024, 9, 9. [Google Scholar] [CrossRef]
- Vieira, T.; Becegato, V.A.; Paulino, A.T. Equilibrium Isotherms, Kinetics, and Thermodynamics of the Adsorption of 2,4-Dichlorophenoxyacetic Acid to Chitosan-Based Hydrogels. Water Air Soil Pollut. 2021, 232, 1–16. [Google Scholar] [CrossRef]
- Arafa, E.G.; Mahmoud, R.; GadelHak, Y.; Gawad, O.F.A. Design, preparation, and performance of different adsorbents based on carboxymethyl chitosan/sodium alginate hydrogel beads for selective adsorption of Cadmium (II) and Chromium (III) metal ions. Int. J. Biol. Macromol. 2024, 273, 132809. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, Y.-F.; Tang, J.; Tan, Y.; Lei, H.; Li, Y.; Huang, P.; Li, Y. Efficient removal and recycle of acid blue 93 dye from aqueous solution by acrolein crosslinked chitosan hydrogel. Colloids Surf. A Physicochem. Eng. Asp. 2022, 632, 127825. [Google Scholar] [CrossRef]
- Wang, S.; Chen, J.; Sun, H.; Qian, P.; Wang, D.; Zhuang, W.; Dong, L. Enhancing Adsorption Performance of Ce(III) by Amine-Thiourea and Aniline-Modified Magnetic Chitosan Nanocomposites. Langmuir 2024, 40, 23398–23405. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Y.; Yang, A.; Zhu, Q.; Sun, H.; Sun, P.; Yao, B.; Zang, Y.; Du, X.; Dong, L. Xanthate-Modified Magnetic Fe3O4@SiO2-Based Polyvinyl Alcohol/Chitosan Composite Material for Efficient Removal of Heavy Metal Ions from Water. Polymers 2022, 14, 1107. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dambuza, A.; Mokolokolo, P.P.; Makhatha, M.E.; Sibeko, M.A. Chitosan-Based Materials as Effective Materials to Remove Pollutants. Polymers 2025, 17, 2447. https://doi.org/10.3390/polym17182447
Dambuza A, Mokolokolo PP, Makhatha ME, Sibeko MA. Chitosan-Based Materials as Effective Materials to Remove Pollutants. Polymers. 2025; 17(18):2447. https://doi.org/10.3390/polym17182447
Chicago/Turabian StyleDambuza, Anathi, Pennie P. Mokolokolo, Mamookho E. Makhatha, and Motshabi A. Sibeko. 2025. "Chitosan-Based Materials as Effective Materials to Remove Pollutants" Polymers 17, no. 18: 2447. https://doi.org/10.3390/polym17182447
APA StyleDambuza, A., Mokolokolo, P. P., Makhatha, M. E., & Sibeko, M. A. (2025). Chitosan-Based Materials as Effective Materials to Remove Pollutants. Polymers, 17(18), 2447. https://doi.org/10.3390/polym17182447