Influences of Strain Rates on Tensile and Shear Performances of CF/PP and GF/PP Thermoplastic Composites
Abstract
1. Introduction
2. Materials and Tests
2.1. Thermal Properties of Polypropylene
2.2. Preparation of Specimens
2.3. Dynamic Tensile Tests
3. Results and Discussion
3.1. Mechanical Behaviors
3.2. Mechanical Parameters
3.3. Strain Rate Effects
3.4. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Specimen No. | Modulus ± (GPa) | Strength ± (MPa) | Failure Strain ± |
---|---|---|---|
C-U-1.7 × 10−6-1 | 23.440 | 293.000 | 0.013 |
C-U-1.7 × 10−6-2 | 23.310 | 300.717 | 0.013 |
C-U-1.7 × 10−6-3 | 22.110 | 294.005 | 0.013 |
Average | 22.950 ± 0.733 | 295.908 ± 4.196 | 0.013 ± 4.0 × 10−4 |
C-U-0.5-1 | 27.260 | 309.735 | 0.013 |
C-U-0.5-2 | 26.410 | 311.693 | 0.012 |
C-U-0.5-3 | 25.402 | 325.718 | 0.013 |
Average | 26.357 ± 0.931 | 315.716 ± 8.718 | 0.012 ± 3.6 × 10−4 |
C-U-5-1 | 26.673 | 340.651 | 0.014 |
C-U-5-2 | 26.591 | 337.566 | 0.014 |
C-U-5-3 | 26.879 | 339.551 | 0.013 |
Average | 26.714 ± 0.150 | 339.256 ± 1.564 | 0.014 ± 3.8 × 10−4 |
C-U-50-1 | 24.514 | 332.936 | 0.013 |
C-U-50-2 | 28.633 | 340.000 | 0.013 |
C-U-50-3 | 27.198 | 337.943 | 0.013 |
Average | 26.782 ± 2.092 | 336.960 ± 3.633 | 0.013 ± 4.0 × 10−4 |
C-U-250-1 | 30.815 | 379.389 | 0.014 |
C-U-250-2 | 24.093 | 360.340 | 0.014 |
C-U-250-3 | 29.125 | 360.360 | 0.013 |
Average | 28.011 ± 3.501 | 366.696 ± 10.992 | 0.014 ± 4.7 × 10−4 |
C-U-500-1 | 37.530 | 462.739 | 0.014 |
C-U-500-2 | 30.001 | 467.465 | 0.015 |
C-U-500-3 | 37.878 | 423.132 | 0.014 |
Average | 35.136 ± 4.452 | 451.112 ± 24.347 | 0.014 ± 2.6 × 10−4 |
C-B-1.7 × 10−6-1 | 1.141 | 30.850 | 0.665 |
C-B-1.7 × 10−6-2 | 1.166 | 31.713 | 0.635 |
C-B-1.7 × 10−6-3 | 1.302 | 33.147 | 0.694 |
Average | 1.203 ± 0.085 | 31.903 ± 1.160 | 0.665 ± 0.029 |
C-B-0.5-1 | 1.134 | 37.696 | 0.426 |
C-B-0.5-2 | 1.207 | 40.590 | 0.398 |
C-B-0.5-3 | 1.439 | 39.393 | 0.434 |
Average | 1.260 ± 0.161 | 39.227 ± 1.454 | 0.420 ± 0.019 |
C-B-5-1 | 1.330 | 43.113 | 0.434 |
C-B-5-2 | 1.598 | 43.966 | 0.413 |
C-B-5-3 | 1.515 | 45.544 | 0.458 |
Average | 1.481 ± 0.139 | 44.208 ± 1.233 | 0.435 ± 0.023 |
C-B-50-1 | 1.606 | 46.643 | 0.345 |
C-B-50-2 | 1.519 | 44.259 | 0.325 |
C-B-50-3 | 1.860 | 45.351 | 0.308 |
Average | 1.662 ± 0.176 | 45.418 ± 1.193 | 0.326 ± 0.019 |
C-B-250-1 | 1.820 | 44.191 | 0.235 |
C-B-250-2 | 1.654 | 48.639 | 0.266 |
C-B-250-3 | 1.958 | 49.222 | 0.256 |
Average | 1.810 ± 0.155 | 47.351 ± 2.752 | 0.252 ± 0.016 |
C-B-500-1 | 1.706 | 48.019 | 0.281 |
C-B-500-2 | 2.077 | 48.182 | 0.241 |
C-B-500-3 | 1.758 | 49.642 | 0.259 |
Average | 1.847 ± 0.201 | 48.614 ± 0.894 | 0.260 ± 0.020 |
Specimen No. | Modulus ± (GPa) | Strength ± (MPa) | Failure Strain ± |
---|---|---|---|
G-U-1.7 × 10−6-1 | 7.276 | 236.752 | 0.032 |
G-U-1.7 × 10−6-2 | 7.688 | 252.457 | 0.035 |
G-U-1.7 × 10−6-3 | 7.682 | 215.761 | 0.034 |
Average | 7.549 ± 0.234 | 234.990 ± 18.411 | 0.034 ± 1.8 × 10−3 |
G-U-0.5-1 | 8.370 | 253.382 | 0.034 |
G-U-0.5-2 | 8.590 | 253.378 | 0.034 |
G-U-0.5-3 | 7.805 | 256.261 | 0.034 |
Average | 8.255 ± 0.402 | 254.340 ± 1.664 | 0.034 ± 3.5 × 10−4 |
G-U-5-1 | 9.306 | 282.198 | 0.034 |
G-U-5-2 | 7.815 | 257.986 | 0.034 |
G-U-5-3 | 9.095 | 285.008 | 0.034 |
Average | 8.739 ± 0.806 | 275.064 ± 14.856 | 0.034 ± 2.1 × 10−4 |
G-U-50-1 | 8.945 | 317.076 | 0.035 |
G-U-50-2 | 9.030 | 310.141 | 0.034 |
G-U-50-3 | 9.035 | 301.062 | 0.036 |
Average | 9.003 ± 0.049 | 309.426 ± 8.031 | 0.035 ± 1.0 × 10−3 |
G-U-250-1 | 10.090 | 360.417 | 0.039 |
G-U-250-2 | 9.590 | 365.097 | 0.039 |
G-U-250-3 | 10.025 | 363.902 | 0.040 |
Average | 9.902 ± 0.272 | 363.139 ± 2.432 | 0.040 ± 6.8 × 10−4 |
G-U-500-1 | 10.721 | 416.767 | 0.044 |
G-U-500-2 | 11.753 | 405.105 | 0.044 |
G-U-500-3 | 12.540 | 387.413 | 0.044 |
Average | 11.671 ± 0.913 | 403.095 ± 14.780 | 0.044 ± 5.8 × 10−5 |
G-B-1.7 × 10−6-1 | 0.486 | 23.626 | 0.766 |
G-B-1.7 × 10−6-2 | 1.842 | 22.402 | 0.760 |
G-B-1.7 × 10−6-3 | 1.351 | 21.199 | 0.793 |
Average | 1.227 ± 0.686 | 22.409 ± 1.213 | 0.773 ± 0.018 |
G-B-0.5-1 | 1.416 | 26.327 | 0.418 |
G-B-0.5-2 | 1.753 | 23.219 | 0.428 |
G-B-0.5-3 | 0.649 | 24.143 | 0.420 |
Average | 1.273 ± 0.686 | 24.563 ± 1.596 | 0.422 ± 0.005 |
G-B-5-1 | 2.697 | 32.765 | 0.322 |
G-B-5-2 | 1.230 | 39.987 | 0.447 |
G-B-5-3 | 1.081 | 35.458 | 0.426 |
Average | 1.669 ± 0.686 | 36.070 ± 3.650 | 0.398 ± 0.067 |
G-B-50-1 | 1.293 | 37.773 | 0.395 |
G-B-50-2 | 1.994 | 41.078 | 0.376 |
G-B-50-3 | 2.355 | 40.172 | 0.427 |
Average | 1.881 ± 0.540 | 39.674 ± 1.708 | 0.400 ± 0.026 |
G-B-250-1 | 3.243 | 41.445 | 0.245 |
G-B-250-2 | 3.248 | 39.426 | 0.292 |
G-B-250-3 | 1.821 | 40.406 | 0.297 |
Average | 2.771 ± 0.540 | 40.426 ± 1.010 | 0.278 ± 0.029 |
G-B-500-1 | 2.258 | 44.315 | 0.276 |
G-B-500-2 | 1.777 | 42.552 | 0.319 |
G-B-500-3 | 4.613 | 42.393 | 0.316 |
Average | 2.883 ± 0.540 | 43.086 ± 1.067 | 0.304 ± 0.024 |
References
- Cascino, A.; Meli, E.; Rindi, A. Comparative Analysis and Dynamic Size Optimization of Aluminum and Carbon Fiber Thin-Walled Structures of a Railway Vehicle Car Body. Materials 2025, 18, 1501. [Google Scholar] [CrossRef]
- Wang, X.; Yuan, S.; Sun, W.; Hao, W.; Zhang, X.; Yang, Z. Analysis and Validation of Lightweight Carriage Structures Using Basalt Fiber Composites. Materials 2024, 17, 5723. [Google Scholar] [CrossRef] [PubMed]
- Chalicheemalapalli Jayasankar, D.; Stallmeister, T.; Lückenkötter, J.; Tröster, T.; Marten, T. Process Development for Hybrid Brake Pedals Using Compression Molding with Integrated In-Mold Assembly. Polymers 2025, 17, 1644. [Google Scholar] [CrossRef]
- Farooq, U.; Bertana, V.; Mossotti, G.; Ferrero, S.; Scaltrito, L. Sustainable Manufacturing of Lightweight Hybrid Nanocomposites for Electric Vehicle Battery Enclosures. Polymers 2025, 17, 1056. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Song, K.; Yang, J.; Wang, F.; Dong, L.; Jin, S.; Zhu, G.; Wang, Z. Structure Design on Thermoplastic Composites Considering Forming Effects. Polymers 2024, 16, 2905. [Google Scholar] [CrossRef]
- Bulut, M.S.; Ordu, M.; Der, O.; Basar, G. Sustainable Thermoplastic Material Selection for Hybrid Vehicle Battery Packs in the Automotive Industry: A Comparative Multi-Criteria Decision-Making Approach. Polymers 2024, 16, 2768. [Google Scholar] [CrossRef] [PubMed]
- Wazeer, A.; Das, A.; Abeykoon, C.; Sinha, A.; Karmakar, A. Composites for electric vehicles and automotive sector: A review. Green Energy Intell. Transp. 2023, 2, 100043. [Google Scholar] [CrossRef]
- Yan, L.; Xu, H. Lightweight composite materials in automotive engineering: State-of-the-art and future trends. Alex. Eng. J. 2025, 118, 1–10. [Google Scholar] [CrossRef]
- Du, B.; Li, Z.; Bai, H.; Li, Q.; Zheng, C.; Liu, J.; Qiu, F.; Fan, Z.; Hu, H.; Chen, L. Mechanical Property of Long Glass Fiber Reinforced Polypropylene Composite: From Material to Car Seat Frame and Bumper Beam. Polymers 2022, 14, 1814. [Google Scholar] [CrossRef]
- Fu, W.; Xiong, H.; Liao, Z.; Ma, J.; Fu, Y.; Wang, B. A 3D Elastoplastic Constitutive Model Considering Progressive Damage Behavior for Thermoplastic Composites of T700/PEEK. Materials 2024, 17, 3317. [Google Scholar] [CrossRef]
- Wang, F.; Hu, X.; Fu, R.; Ge, L.; Ju, P.; Jia, Z. Theoretical analysis of cutting mechanisms for CF/epoxy and CF/PEEK considering their elasto-plastic properties. Compos. Part A Appl. Sci. Manuf. 2025, 196, 109007. [Google Scholar] [CrossRef]
- Pan, Z.; Yang, C.; Huang, S.; Wang, M.; Wu, Z.; Gu, B. High strain-rate compression behavior of woven CF/PEEK thermoplastic composites at the glassy state and high-elastic state. Int. J. Mech. Sci. 2022, 235, 107740. [Google Scholar] [CrossRef]
- Wei, G.; Hao, C.; Jin, H.; Deng, Y. Experimental investigation of high-velocity impact response and compression after impact behavior of continuous carbon fiber thermoplastic composites. Thin-Walled Struct. 2024, 205, 112578. [Google Scholar] [CrossRef]
- Wu, Z.; Zhao, T.; Qiu, Z.; Su, B.; Yi, J.; Li, Y. A study on the thermo-mechanical dynamic response characteristics of unidirectional CF/PEEK composite laminates under high strain rates. Compos. Sci. Technol. 2025, 266, 111162. [Google Scholar] [CrossRef]
- de Araujo, G.P.; Donadon, M.V.; Salerno, G.; Sales, R.D.C.M. Temperature effects on the mechanical behaviour of PAEK thermoplastic composites subjected to high strain rates under compression loading. Compos. Struct. 2021, 261, 113299. [Google Scholar] [CrossRef]
- Wang, Z.; Bailey, W.; Song, J.; Huang, L.; Yang, Y. Evaluating the potential of thermoplastic polymers for cryogenic sealing applications: Strain rate and temperature effects. Int. J. Hydrogen Energy 2025, 114, 279–294. [Google Scholar] [CrossRef]
- Yildirim, C.; Ulus, H.; Sas, H.S.; Yildiz, M. Evaluating the Influence of Service Conditions on the Out-of-Plane and In-Plane Loading Performance and Damage Behavior of Unidirectional CF/PEKK Composites for Aerospace Applications. Compos. Part B Eng. 2025, 304, 112637. [Google Scholar] [CrossRef]
- Kim, Y.H.; Kumar, S.; Lee, K.M.; Kim, S.Y.; Yoon, S.W.; Bae, S.Y.; Shin, D.H. Advancing carbon fiber and its composites technology: Korea’s strategic growth and innovation. Compos. Part B Eng. 2025, 296, 112266. [Google Scholar] [CrossRef]
- Khan, F.; Hossain, N.; Mim, J.J.; Rahman, S.M.; Iqbal, M.J.; Billah, M.; Chowdhury, M.A. Advances of composite materials in automobile applications–A review. J. Eng. Res. 2024, 13, 1001–1023. [Google Scholar] [CrossRef]
- Khan, M.S.; Din, I.U.; Khan, K.A.; Shah, S.A.; Jan, A. A review of design, materials, and manufacturing techniques in bumper beam system. Compos. Part C Open 2024, 14, 100496. [Google Scholar]
- Li, M.; Sang, L.; Liu, Z.; Duan, S.; Hou, W. Crashworthiness optimization of variable stiffness B-pillar with thermoplastic composites. Int. J. Mech. Sci. 2024, 278, 109457. [Google Scholar] [CrossRef]
- Joo, G.; Kim, Y.C.; Jang, H.K.; Kim, J.; Jeong, M. Crash analysis of glass mat thermoplastic (GF/PA6) tubes considering splaying failure mode and energy absorption. Int. J. Impact Eng. 2024, 193, 105044. [Google Scholar] [CrossRef]
- Ebert, C.; Hufenbach, W.; Langkamp, A.; Gude, M. Modelling of strain rate dependent deformation behaviour of polypropylene. Polym. Test. 2011, 30, 183–187. [Google Scholar] [CrossRef]
- Yudhanto, A.; Lubineau, G.; Wafai, H.; Mulle, M.; Pulungan, D.; Yaldiz, R.; Verghese, N. Monotonic and cyclic responses of impact polypropylene and continuous glass fiber-reinforced impact polypropylene composites at different strain rates. Polym. Test. 2016, 51, 93–100. [Google Scholar] [CrossRef]
- Dasari, A.; Misra, R.D.K. On the strain rate sensitivity of high density polyethylene and polypropylenes. Mater. Sci. Eng. A 2003, 358, 356–371. [Google Scholar] [CrossRef]
- Shan, G.F.; Yang, W.; Yang, M.B.; Xie, B.H.; Feng, J.M.; Fu, Q. Effect of temperature and strain rate on the tensile deformation of polyamide 6. Polymer 2007, 48, 2958–2968. [Google Scholar] [CrossRef]
- Chang, B.; Wang, X.; Long, Z.; Li, Z.; Gu, J.; Ruan, S.; Shen, C. Constitutive modeling for the accurate characterization of the tension behavior of PEEK under small strain. Polym. Test. 2018, 69, 514–521. [Google Scholar] [CrossRef]
- Schoßig, M.; Bierögel, C.; Grellmann, W.; Mecklenburg, T. Mechanical behavior of glass-fiber reinforced thermoplastic materials under high strain rates. Polym. Test. 2008, 27, 893–900. [Google Scholar] [CrossRef]
- Notta-Cuvier, D.; Nciri, M.; Lauro, F.; Delille, R.; Chaari, F.; Robache, F.; Haugou, G.; Maalej, Y. Coupled influence of strain rate and heterogeneous fibre orientation on the mechanical behaviour of short-glass-fibre reinforced polypropylene. Mech. Mater. 2016, 100, 186–197. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, C.; Liu, C.; Miao, Y.; Wong, S.C.; Li, Y. Rate-dependent tensile failure behavior of short fiber reinforced PEEK. Compos. Part B Eng. 2018, 136, 187–196. [Google Scholar] [CrossRef]
- Abdo, D.; Gleadall, A.; Silberschmidt, V.V. Failure behaviour of short-fibre-reinforced PBT composites: Effect of strain rate. Eng. Fail. Anal. 2019, 105, 466–476. [Google Scholar] [CrossRef]
- Lienhard, J.; Schulenberg, L. Strain rate dependent multiaxial characterization of long fiber reinforced plastic. Compos. Part B Eng. 2018, 141, 164–173. [Google Scholar] [CrossRef]
- Coussa, F.; Renard, J.; Joannes, S.; Teissedre, J.C.; Bompoint, R.; Feld, N. A consistent experimental protocol for the strain rate characterization of thermoplastic fabrics. Strain 2017, 53, e12220. [Google Scholar] [CrossRef]
- Feld, N.; Coussa, F.; Delattre, B. A novel approach for the strain rate dependent modelling of woven composites. Compos. Struct. 2018, 192, 568–576. [Google Scholar] [CrossRef]
- Todo, M.; Takahashi, K.; Béguelin, P.; Kausch, H.H. Strain-rate dependence of the tensile fracture behaviour of woven-cloth reinforced polyamide composites. Compos. Sci. Technol. 2000, 60, 763–771. [Google Scholar] [CrossRef]
- Brown, K.A.; Brooks, R.; Warrior, N.A. The static and high strain rate behaviour of a commingled E-glass/polypropylene woven fabric composite. Compos. Sci. Technol. 2010, 70, 272–283. [Google Scholar] [CrossRef]
- Shah, S.Z.H.; Karuppanan, S.; Megat-Yusoff, P.S.M.; Sajid, Z. Impact resistance and damage tolerance of fiber reinforced composites: A review. Compos. Struct. 2019, 217, 100–121. [Google Scholar] [CrossRef]
- Hamada, H.; Coppola, J.C.; Hull, D.; Maekawa, Z.; Sato, H. Comparison of energy absorption of carbon/epoxy and carbon/PEEK composite tubes. Composites 1992, 23, 245–252. [Google Scholar] [CrossRef]
- Benoit, V.; Cédric, L.; Alexis, C. Post fire behavior of carbon fibers Polyphenylene Sulfide-and epoxy-based laminates for aeronautical applications: A comparative study. Mater. Des. 2014, 63, 56–68. [Google Scholar] [CrossRef]
- Vieille, B.; Taleb, L. About the influence of temperature and matrix ductility on the behavior of carbon woven-ply PPS or epoxy laminates: Notched and unnotched laminates. Compos. Sci. Technol. 2011, 71, 998–1007. [Google Scholar] [CrossRef]
- Sun, G.; Kong, X.; Wang, Z.; Luo, Q.; Li, Q. Experimental investigation into stamping of woven CF/PP laminates: Influences of molding temperature on thermal, mesoscopic and macroscopic properties. Compos. Struct. 2021, 263, 113507. [Google Scholar] [CrossRef]
- Xin, S.H.; Wen, H.M. A progressive damage model for fiber reinforced plastic composites subjected to impact loading. Int. J. Impact Eng. 2015, 75, 40–52. [Google Scholar] [CrossRef]
- Chen, D.; Sun, X.; Xiao, S.; Yang, G.; Yang, B.; Zhu, T.; Wang, M. On axial crushing behavior of double hat-shaped CFRP and GFRP structures. Compos. Struct. 2023, 319, 117117. [Google Scholar] [CrossRef]
Fiber | Matrix | Fiber Diameter | Yarn Width | Thickness | Density |
---|---|---|---|---|---|
Carbon | polypropylene | 0.007 mm | 0.9 mm | 0.3 mm | 1.08 g/cm3 |
Glass | polypropylene | 0.01 mm | 0.7 mm | 0.3 mm | 1.22 g/cm3 |
Specimen No. | Material | Stacking Sequence | Velocity (m/s) | Strain Rate (s−1) |
---|---|---|---|---|
C-U-1.7 × 10−6 | CF/PP | (0°,90°)6 | 3.3 × 10−5 | 1.7 × 10−6 |
C-U-0.5 | CF/PP | (0°, 90°)6 | 0.01 | 0.5 |
C-U-5 | CF/PP | (0°, 90°)6 | 0.1 | 5 |
C-U-50 | CF/PP | (0°, 90°)6 | 1.0 | 50 |
C-U-250 | CF/PP | (0°, 90°)6 | 5.0 | 250 |
C-U-500 | CF/PP | (0°, 90°)6 | 10.0 | 500 |
C-B-1.7 × 10−6 | CF/PP | (+45°, −45°)6 | 3.3 × 10−5 | 1.7 × 10−6 |
C-B-0.5 | CF/PP | (+45°, −45°)6 | 0.01 | 0.5 |
C-B-5 | CF/PP | (+45°, −45°)6 | 0.1 | 5 |
C-B-50 | CF/PP | (+45°, −45°)6 | 1.0 | 50 |
C-B-250 | CF/PP | (+45°, −45°)6 | 5.0 | 250 |
C-B-500 | CF/PP | (+45°, −45°)6 | 10.0 | 500 |
G-U-1.7 × 10−6 | GF/PP | (0°, 90°)6 | 3.3 × 10−5 | 1.7 × 10−6 |
G-U-0.5 | GF/PP | (0°, 90°)6 | 0.01 | 0.5 |
G-U-5 | GF/PP | (0°, 90°)6 | 0.1 | 5 |
G-U-50 | GF/PP | (0°, 90°)6 | 1.0 | 50 |
G-U-250 | GF/PP | (0°, 90°)6 | 5.0 | 250 |
G-U-500 | GF/PP | (0°, 90°)6 | 10.0 | 500 |
G-B-1.7 × 10−6 | GF/PP | (+45°, −45°)6 | 3.3 × 10−5 | 1.7 × 10−6 |
G-B-0.5 | GF/PP | (+45°, −45°)6 | 0.01 | 0.5 |
G-B-5 | GF/PP | (+45°, −45°)6 | 0.1 | 5 |
G-B-50 | GF/PP | (+45°, −45°)6 | 1.0 | 50 |
G-B-250 | GF/PP | (+45°, −45°)6 | 5.0 | 250 |
G-B-500 | GF/PP | (+45°, −45°)6 | 10.0 | 500 |
Materials | Mechanical Properties | Symbols | A | B | C |
---|---|---|---|---|---|
CF/PP | Elastic modulus | 3.988 | 0.858 | 6.002 | |
Shear modulus | 4.240 | 0.524 | 4.913 | ||
Elastic strength | 0.859 | 0.901 | 1.319 | ||
Shear strength | 1.217 | 0.334 | 1.775 | ||
GF/PP | Elastic modulus | 4.068 | 0.835 | 6.991 | |
Shear modulus | 2.845 | 0.604 | 4.075 | ||
Elastic strength | 2.274 | 0.775 | 2.097 | ||
Shear strength | 1.898 | 0.423 | 2.434 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Lv, J.; Chen, Y.; Miao, X.; Liu, Q.; Wang, Z.; Zhu, G.; Song, K. Influences of Strain Rates on Tensile and Shear Performances of CF/PP and GF/PP Thermoplastic Composites. Polymers 2025, 17, 2446. https://doi.org/10.3390/polym17182446
Liu C, Lv J, Chen Y, Miao X, Liu Q, Wang Z, Zhu G, Song K. Influences of Strain Rates on Tensile and Shear Performances of CF/PP and GF/PP Thermoplastic Composites. Polymers. 2025; 17(18):2446. https://doi.org/10.3390/polym17182446
Chicago/Turabian StyleLiu, Changye, Juncheng Lv, Yixin Chen, Xinyue Miao, Qinghao Liu, Zhen Wang, Guohua Zhu, and Kai Song. 2025. "Influences of Strain Rates on Tensile and Shear Performances of CF/PP and GF/PP Thermoplastic Composites" Polymers 17, no. 18: 2446. https://doi.org/10.3390/polym17182446
APA StyleLiu, C., Lv, J., Chen, Y., Miao, X., Liu, Q., Wang, Z., Zhu, G., & Song, K. (2025). Influences of Strain Rates on Tensile and Shear Performances of CF/PP and GF/PP Thermoplastic Composites. Polymers, 17(18), 2446. https://doi.org/10.3390/polym17182446