Synthesis of Jicama (Pachyrhizus erosus) Starch Particles by Electrospraying: Effect of the Hydrolysis Degree
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Starch Extraction
2.3. Starch Acid Hydrolysis
2.4. Hydrolysis Degree
2.5. Starch Purity
2.6. Amylose and Amylopectin Ratio
2.7. Optical Microscopy
2.8. Scanning Electron Microscopy
2.9. Differential Scanning Calorimetry
2.10. Fourier Transform Coupled Infrared Spectroscopy
2.11. X-Ray Diffraction
2.12. Visco-Amylographic Profile
2.13. Preparation of Electrosprayed Solutions
2.14. Apparent Viscosity
2.15. Surface Tension
2.16. Electrical Conductivity
2.17. Electrospray Synthesis of Jicama Starch Microspheres
2.18. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Characterization of Jicama (P. erosus) Native Starch
3.2. Morphology and Feret Diameter of Native Jicama Starch
3.3. Hydrolysis of Jicama Starch
3.4. Effect of Hydrolysis on Morphology and Jicama Starch Feret Diameter
3.5. Thermal Properties of Jicama Starch and Its Hydrolysates
3.6. Fourier Transform Infrared Spectroscopy
3.7. X-Ray Diffraction of Native and Hydrolyzed Jicama Starch
3.8. Viscoamylographic Profile Changes in Jicama Starch by Acid Hydrolysis
3.9. Effect of Jicama Starch Hydrolysis Time and Starch Concentration on EHDA Solution Physical Properties
3.9.1. Apparent Viscosity (η), and Rate Index (n)
3.9.2. Surface Tension (γ)
3.9.3. Electrical Conductivity
3.10. Morphometric Characteristics of the Electrosprayed Jicama Starch Particles
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dhiman, A.; Suhag, R.; Singh, A.; Prabhakar, P.K. Mechanistic understanding and potential application of electrospraying in food processing: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 8288–8306. [Google Scholar] [CrossRef]
- Yang, H.; Yang, Y.; Li, B.Z.; Adhikari, B.; Wang, Y.; Huang, H.L.; Chen, D. Production of protein-loaded starch microspheres using water-in-water emulsion method. Carbohydr. Polym. 2020, 231, 115692. [Google Scholar] [CrossRef]
- Gülmez, H.B.; Topuz, A. Electrospraying of phytosterols and their controlled release characteristics under in vitro digestive conditions. Food Chem. 2024, 435, 137549. [Google Scholar] [CrossRef]
- Tian, S.; Xue, X.A.; Wang, X.; Chen, Z. Preparation of starch-based functional food nano-microcapsule delivery system and its controlled release characteristics. Abbreviated Front. Nutr. 2022, 9, 982370. [Google Scholar] [CrossRef] [PubMed]
- Shan, Y.; Li, J.; Nie, M.; Li, D.; Zhang, Y.; Li, Y.; Wang, L.; Liu, L.; Wang, F.; Tong, L.T. A comprehensive review of starch-based technology for encapsulation of flavor: From methods, materials, and release mechanism to applications. Carbohydr. Polym. 2024, 348, 122816. [Google Scholar] [CrossRef]
- Rostamabadi, H.; Falsafi, S.R.; Rostamabadi, M.M.; Assadpour, E.; Jafari, S.M. Electrospraying as a novel process for the synthesis of particles/nanoparticles loaded with poorly water-soluble bioactive molecules. Adv. Colloid. Interface Sci. 2021, 290, 102384. [Google Scholar] [CrossRef]
- Castro-Coelho, S.; Nogueiro-Estevinho, B.N.; Rocha, F. Encapsulation in food industry with emerging electrohydrodynamic techniques: Electrospinning and electrospraying—A review. Food Chem. 2021, 339, 127850. [Google Scholar] [CrossRef]
- Liu, L.; Tao, L.; Chen, J.; Zhang, T.; Xu, J.; Ding, M.; Wang, X.; Zhong, J. Fish oil-gelatin core-shell electrospun nanofibrous membranes as promising edible films for the encapsulation of hydrophobic and hydrophilic nutrients. LWT 2021, 146, 111500. [Google Scholar] [CrossRef]
- Cuellar-Sánchez, V.; González-Vázquez, M.G.; García-Hernández, A.B.; Serrano-Villa, F.S.; de la Paz Salgado Cruz, M.; García-Bórquez, A.; Morales-Sánchez, E.; Farrera-Rebollo, R.R.; Calderón-Domínguez, G. Starch Biodegradable Films Produced by Electrospraying. In Starch—Evolution and Recent Advances, 1st ed.; Martins, O.E., Ed.; ItechOpen: London, UK, 2022; ISSN 2632-0983. [Google Scholar]
- Lim, L.T. Electrospinning and electrospraying technologies for food and packaging applications. In Electrospun Polymers and Composites; Woodhead Publishing: Cambridge, UK, 2021; Volume 3, pp. 217–259. [Google Scholar]
- Gürtler, A.L.; Linseisen, I.; Grohganz, H.; Heinz, A. Coaxial electrospinning of polycaprolactone—A design of experiments approach. Eur. Polym. J. 2024, 208, 112886. [Google Scholar] [CrossRef]
- Contreras-Jiménez, B.; Vázquez-Contreras, G.; de los Ángeles Cornejo-Villegas, M.; del Real-López, A.; Rodríguez-García, M.E. Structural, morphological, chemical, vibrational, pasting, rheological, and thermal characterization of isolated jicama (Pachyrhizus spp.) starch and jicama starch added with Ca(OH)2. Food Chem. 2019, 283, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, I.; Pooja, N.; Mal, S.S.; Paul, U.C.; Rahman, M.H.; Mazumder, N. An insight into the gelatinization properties influencing the modified starches used in food industry: A review. Food Bioprocess Technol. 2022, 15, 1195–1223. [Google Scholar] [CrossRef]
- Sánchez-de la Concha, B.B.; Agama-Acevedo, E.; Nuñez-Santiago, M.C.; Bello-Perez, L.A.; Garcia, H.S.; Alvarez-Ramirez, J. Acid hydrolysis of waxy starches with different granule size for nanocrystal production. J. Cereal Sci. 2018, 79, 193–200. [Google Scholar] [CrossRef]
- Chiu, C.; Solarek, D. Modification of Starches. In Starch: Chemistry and Technology, 3rd ed.; Academic Press: Cambridge, MA, USA, 2009; pp. 629–655. [Google Scholar]
- Kong, X.; Kasapis, S.; Bao, J.; Corke, H. Influence of acid hydrolysis on thermal and rheological properties of amaranth starches varying in amylose content. JSFA 2012, 92, 1800–1807. [Google Scholar] [CrossRef]
- Pratiwi, M.; Faridah, D.N.; Lioe, H.N. Structural changes to starch after acid hydrolysis, debranching, autoclaving-cooling cycles, and heat moisture treatment (HMT): A review. Starch-Stärke 2018, 70, 1700028. [Google Scholar] [CrossRef]
- Rostamabadi, H.; Falsafi, S.R.; Jafari, S.M. Nanostructures of starch for encapsulation of food ingredients. In Biopolymer Nanostructures for Food Encapsulation Purposes; Academic Press: Cambridge, MA, USA, 2019; pp. 419–462. [Google Scholar]
- de Siqueira, G.L.D.A.; Hornung, P.S.; da Silveira, A.C.; da Silveira Lazzarotto, S.R.; do Prado Cordoba, L.; Schnitzler, E.; Lazzarotto, M. Impact of treatment with HCL/alcoholic in the modifica tion of corn starch. JTAC 2017, 129, 1705–1713. [Google Scholar]
- Li, C.; Hu, Y. Effects of acid hydrolysis on the evolution of starch fine molecular structures and gelatinization properties. Food Chem. 2021, 353, 129449. [Google Scholar] [CrossRef] [PubMed]
- BeMiller, J.N. Dextrins. In Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Academic Press: Cambridge, MA, USA, 2003; pp. 1773–1775. [Google Scholar]
- Singh, G.P.; Bangar, S.P.; Aayush, K.; Yang, T.; Verma, R.; Kuca, K.; Kumar, D.; Phimolsiripol, Y. Value addition of mango kernel for development and characterization of starch with starch nanoparticles for packaging applications. Int. J. Biol. Macromol. 2024, 274, 133185. [Google Scholar] [CrossRef]
- Kishore, A.; Patil, R.J.; Singh, A.; Pati, K. Jicama (Pachyrhizus spp.) a nonconventional starch: A review on isolation, composition, structure, properties, modifications and its application. Int. J. Biol. Macromol. 2024, 258, 129095. [Google Scholar] [CrossRef]
- Ramírez-Miranda, M.; Ribotta, P.D.; Silva-González, A.Z.Z.; Salgado-Cruz, M.D.L.P.; Andraca-Adame, J.A.; Chanona-Pérez, J.J.; Calderón-Domínguez, G. Morphometric and crystallinity changes on jicama starch (Pachyrizus erosus) during gelatinization and their relation with in vitro glycemic index. Starch-Stärke 2017, 69, 1600281. [Google Scholar] [CrossRef]
- González-Lemus, L.B.; Calderón-Domínguez, G.; Salgado-Cruz, M.D.L.P.; Díaz-Ramírez, M.; Ramírez-Miranda, M.; Chanona-Pérez, J.J.; Gϋemes-Vera, N.; Farrera-Rebollo, R.R. Ultrasound-assisted extraction of starch from frozen jicama (P. erosus) roots: Effect on yield, structural characteristics and thermal properties. CYTA—J. Food 2018, 10, 1146–1158. [Google Scholar] [CrossRef]
- Fonseca, L.M.; da Cruz, E.P.; Crizel, R.L.; Jansen-Alves, C.; Dias, A.R.G.; da Rosa Zavareze, E. New advances of electrospun starch fibers, encapsulation, and food applications: A review. Trends Food Sci. Technol. 2024, 147, 104467. [Google Scholar] [CrossRef]
- Pareta, R.; Edirisinghe, M.J. A novel method for the preparation of biodegradable microspheres for protein drug delivery. J. R. Soc. Interface 2006, 3, 573–582. [Google Scholar] [CrossRef]
- Ghaeb, M.; Tavanai, H.; Kadivar, M. Electrosprayed maize starch and its constituents (amylose and amylopectin) nanoparticles. Polym. Adv. Technol. 2015, 26, 917–923. [Google Scholar] [CrossRef]
- Zaeim, D.; Sarabi-Jamab, M.; Ghorani, B.; Kadkhodaee, R. Double layer co-encapsulation of probiotics and prebiotics by electro-hydrodynamic atomization. LWT 2019, 110, 102–109. [Google Scholar] [CrossRef]
- Lin, Q.; Liu, Y.; Zhou, L.; Ji, N.; Xiong, L.; Sun, Q. Green preparation of debranched starch nanoparticles with different crystalline structures by electrostatic spraying. Food Hydr. 2022, 127, 107513. [Google Scholar] [CrossRef]
- Pérez-Masiá, R.; Lagaron, J.M.; López-Rubio, A. Surfactant-aided electrospraying of low molecular weight carbohydrate polymers from aqueous solutions. Carbohydr. Polym. 2014, 101, 249–255. [Google Scholar] [CrossRef]
- Aguirre-Güitrón, L.; Calderón-Santoyo, M.; Lagarón, J.M.; Prieto, C.; Ragazzo-Sánchez, J.A. Formulation of the biological control yeast Meyerozyma caribbica by electrospraying process: Effect on postharvest control of anthracnose in mango (Mangifera indica L.) and papaya (Carica papaya L.). JSFA. 2021, 102, 696–706. [Google Scholar] [CrossRef]
- Biduski, B.; Kringel, D.H.; Colussi, R.; dos Santos Hackbart, H.C.; Lim, L.T.; Dias, A.R.G.; da Rosa Zavareze, E. Electrosprayed octenyl succinic anhydride starch capsules for rosemary essential oil encapsulation. Int. J. Biol. Macromol. 2019, 132, 300–307. [Google Scholar] [CrossRef]
- Fonseca, L.M.; dos Santos Cruxen, C.E.; Bruni, G.P.; Fiorentini, Â.M.; da Rosa Zavareze, E.; Lim, L.T.; Dias, A.R.G. Development of antimicrobial and antioxidant electrospun soluble potato starch nanofibers loaded with carvacrol. Int. J. Biol. Macromol. 2019, 139, 1182–1190. [Google Scholar] [CrossRef] [PubMed]
- Pacheco-da Cruz, E.; Martins-Fonseca, L.; Radünz, M.; Tavares-da Silva, F.; Avila-Gandra, E.; da Rosa-Zavareze, E.; Dellinghausen-Borges, C. Pinhão coat extract encapsulated in starch ultrafine fibers: Thermal, antioxidant, and antimicrobial properties and in vitro biological digestion. J. Food Sci. 2021, 86, 2886–2897. [Google Scholar] [CrossRef] [PubMed]
- López-Hernández, R.E.; García-Solís, S.E.; Monroy-Rodríguez, I.; Cornejo-Mazón, M.; Calderón-Domínguez, G.; Alamilla-Beltrán, L.; Hernández-Sánchez, H.; Gutiérrez-López, G.F. Preparation and characterization of canola oil-in-water Pickering emulsions stabilized by barley starch nanocrystals. J. Food Eng. 2022, 326, 111037. [Google Scholar] [CrossRef]
- González-Vázquez, M.; Calderón-Domínguez, G.; Mora-Escobedo, R.; Salgado-Cruz, M.P.; Arreguín-Centeno, J.H.; Monterrubio-López, R. Polysaccharides of nutritional interest in jicama (Pachyrhizus erosus) during root development. Food Sci. Nutr. 2022, 10, 1146–1158. [Google Scholar] [CrossRef]
- Yun, S.H.; Matheson, N.K. Estimation of amylose content of starches after precipitation of amylopectin by concanavalin-A. Starch-Stärke 1990, 42, 302–305. [Google Scholar] [CrossRef]
- Lu, X.; Xiao, J.; Huang, Q. Pickering emulsions stabilized by media-milled starch particles. Food Res. Int. 2018, 105, 140–149. [Google Scholar] [CrossRef]
- Babu, A.S.; Parimalavalli, R.; Rudra, S.G. Effect of citric acid concentration and hydrolysis time on physicochemical properties of sweet potato starches. Int. J. Biol. Macromol. 2015, 80, 557–565. [Google Scholar] [CrossRef]
- Shoukat, R.; Cappai, M.; Pilia, L.; Pia, G. Rice Starch Chemistry, Functional Properties, and Industrial Applications: A Review. Polymers 2025, 17, 110. [Google Scholar] [CrossRef] [PubMed]
- Mauro, R.R.; Vela, A.J.; Ronda, F. Impact of starch concentration on the pasting and rheological properties of gluten-free gels. Effects of amylose content and thermal and hydration properties. Foods 2023, 12, 2281. [Google Scholar] [CrossRef]
- Li, S.; Kong, L.; Ziegler, G.R. Electrospinning of octenylsuccinylated starch-pullulan nanofibers from aqueous dispersions. Carbohydr. Polym. 2021, 258, 116933. [Google Scholar] [CrossRef]
- Rentería-Ortega, M.; Salgado-Cruz, M.D.L.P.; Morales-Sánchez, E.; Alamilla-Beltrán, L.; Farrera-Rebollo, R.R.; Valdespino León, M.; Calderón-Domínguez, G. Effect of electrohydrodynamic atomization conditions on morphometric characteristics and mechanical resistance of chia mucilage-alginate particles. CYTA—J. Food. 2020, 18, 461–471. [Google Scholar] [CrossRef]
- Kong, L.; Ziegler, G.R. Quantitative relationship between electrospinning parameters and starch fiber diameter. Carbohydr. Polym. 2013, 92, 1416–1422. [Google Scholar] [CrossRef]
- Wang, S.; Chao, C.; Huang, S.; Yu, J. Phase Transitions of Starch and Molecular Mechanisms. In Starch Structure, Functionality and Application in Foods; Wang, S., Ed.; Springer: Singapore, 2020; pp. 9–27. [Google Scholar]
- Stevenson, D.G.; Jane, J.L.; Inglett, G.E. Characterization of Jicama (Mexican Potato) (Pachyrhizus erosus L. Urban) Starch from taproots Grown in USA and Mexico. Starch/Stärke 2007, 59, 132–140. [Google Scholar] [CrossRef]
- Amaya-Llano, S.L.; Martínez-Bustos, F.; Martínez Alegría, A.L.; de Jesús Zazueta-Morales, J. Comparative studies on some physico-chemical, thermal, morphological, and pasting properties of acid-thinned jicama and maize starches. Food Bioprocess Technol. 2011, 4, 48–60. [Google Scholar] [CrossRef]
- Kim, H.Y.; Lee, J.H.; Kim, J.Y.; Lim, W.J.; Lim, S.T. Characterization of nanoparticles prepared by acid hydrolysis of various starches. Starch-Stärke 2012, 64, 367–373. [Google Scholar] [CrossRef]
- Martínez-Bustos, F.; Amaya-Llano, S.L.; Carbajal-Arteaga, J.A.; Chang, Y.K.; Zazueta-Morales, J.D.J. Physicochemical properties of cassava, potato and jicama starches oxidised with organic acids. J. Sci. Food Agric. 2007, 87, 1207–1214. [Google Scholar] [CrossRef]
- Fatokun, O.T. Micrometrics and morphological properties of starch. In Chemical Properties of Starch, 1st ed.; Martins, E., Ed.; IntechOpen: London, UK, 2019; p. 143. [Google Scholar]
- Guo, C.; Geng, S.; Shi, Y.; Yuan, C.; Liu, B. Effect of sulfuric acid hydrolysis on the structure and Pickering emulsifying capacity of acorn starch. Food Chem. X 2024, 22, 101277. [Google Scholar] [CrossRef]
- Vidal, B.C., Jr.; Rausch, K.D.; Tumbleson, M.E.; Singh, V. Kinetics of Granular Starch Hydrolysis in Corn Dry-Grind Process. Starch-Stärke 2009, 61, 448–456. [Google Scholar] [CrossRef]
- Nijman, M. Thermal Analysis. In Practice: Tips and Hints; Mettler Toledo: Greifensee, Switzerland, 2018; Volume 2. [Google Scholar]
- Mason, W.R. Starch use in foods. In Starch; Academic Press: Cambridge, MA, USA, 2009; pp. 745–795. [Google Scholar]
- Wang, S.; Copeland, L. Effect of acid hydrolysis on starch structure and functionality: A review. CRFSN 2015, 55, 1081–1097. [Google Scholar] [CrossRef]
- Shi, X.D.; Huang, J.J.; Han, J.Z.; Wang, S.Y. Physicochemical and functional properties of starches from pachyrhizus erosus with low digestibility. eFood 2021, 2, 154–161. [Google Scholar] [CrossRef]
- Wigati, L.P.; Wardana, A.A.; Tanaka, F.; Tanaka, F. Edible film of native jicama starch, agarwood Aetoxylon Bouya essential oil and calcium propionate: Processing, mechanical, thermal properties and structure. Int. J. Biol. Macromol. 2022, 209, 597–607. [Google Scholar] [CrossRef]
- Marta, H.; Hasya, H.N.L.; Lestari, Z.I.; Cahyana, Y.; Arifin, H.R.; Nurhasanah, S. Study of changes in crystallinity and functional properties of modified sago starch (Metroxylon sp.) using physical and chemical treatment. Polymers 2022, 14, 4845. [Google Scholar] [CrossRef]
- Zhao, X.; Xing, J.J.; An, N.N.; Li, D.; Wang, L.J.; Wang, Y. Succeeded high-temperature acid hydrolysis of granular maize starch by introducing heat-moisture pre-treatment. Int. J. Biol. Macromol. 2022, 222, 2868–2877. [Google Scholar] [CrossRef]
- Kanyuck, K.M.; Mills, T.B.; Norton, I.T.; Norton-Welch, A.B. Temperature influences on network formation of low DE maltodextrin gels. Carbohydr. Polym. 2019, 218, 170–178. [Google Scholar] [CrossRef]
- Chen, X.; Hou, Y.; Wang, Z.; Liao, A.; Pan, L.; Zhang, M.; Xue, Y.; Wang, J.; Huang, J. A comparative study of resistant dextrins and resistant maltodextrins from different tuber crop starches. Polymers 2023, 15, 4545. [Google Scholar] [CrossRef] [PubMed]
- Van der Sman, R.G.M.; Ubbink, J.; Dupas-Langlet, M.; Kristiawan, M.; Siemons, I. Scaling relations in rheology of concentrated starches and maltodextrins. Food Hydrocoll. 2022, 124, 107306. [Google Scholar] [CrossRef]
- Iranshahi, K.; Defraeye, T.; Rossi, R.M.; Müller, U.C. Electrohydrodynamics and its applications: Recent advances and future perspectives. Int. J. Heat. Mass. Transf. 2024, 232, 125895. [Google Scholar] [CrossRef]
- Pires, J.B.; Fonseca, L.M.; Siebeneichler, T.J.; Crizel, R.L.; Santos, F.N.; Hackbart, H.C.S.H.; Kringel, D.H.; Meinhart, A.D.; Zavareze, E.R.; Dias, A.R.G. Curcumin encapsulation in capsules and fibers of potato starch by electrospraying and electrospinning: Thermal resistance and antioxidant activity. Food Res. Int. 2024, 162, 112111. [Google Scholar] [CrossRef]
- Stijnman, A.C.; Bodnar, I.; Tromp, R.H. Electrospinning of food-grade polysaccharides. Food Hydrocoll. 2011, 25, 1393–1398. [Google Scholar] [CrossRef]
- Cai, J.; Zhang, D.; Zhou, R.; Zhu, R.; Fei, P.; Zhu, Z.-Z.; Cheng, S.Y.; Ding, W. Hydrophobic interface starch nanofibrous film for food packaging: From bioinspired design to self-cleaning action. J. Agric. Food Chem. 2021, 69, 5067–5075. [Google Scholar] [CrossRef]
Starch Hydrolysis Time (h) | Starch Concentration (% w/v) | Voltage (kV) |
---|---|---|
1 | 10 | 10 |
1 | 10 | 15 |
1 | 20 | 10 |
1 | 20 | 15 |
6 | 15 | 12.5 |
12.5 | 6.6 | 12.5 |
12.5 | 15 | 8.3 |
12.5 | 15 | 12.5 |
12.5 | 15 | 12.5 |
12.5 | 15 | 12.5 |
12.5 | 15 | 12.5 |
12.5 | 15 | 12.5 |
12.5 | 15 | 12.5 |
12.5 | 15 | 16.7 |
12.5 | 23.4 | 12.5 |
24 | 10 | 10 |
24 | 10 | 15 |
24 | 20 | 10 |
24 | 20 | 15 |
Purity (g/100 g Starch) | Maltodextrins (g/100 g Starch) | D-Glucose (g/100 g Starch) | Amylose (g/100 g Starch) | Amylopectin (g/100 g Starch) | Humidity (% RH) |
---|---|---|---|---|---|
93.2 ± 2.9 | 7.5 ± 0.6 | 1.23 ± 0.04 | 20.2 ± 0.3 | 79.8 ± 0.3 | 10.1 ± 0.7 |
Hydrolysis Time (h) | Hydrolysis Degree (DE 1) |
---|---|
1 | 0.4 ± 0.1 a |
3 | 0.8 ± 0.1 a |
6 | 6.3 ± 0.3 b |
9 | 10.3 ± 0.2 c |
12 | 19.3 ± 0.5 d |
24 | 42.7 ± 0.7 e |
Hydrolysis Time (h) | Tp | ΔH | IR Ratios (FTIR Parameters) | Relative Crystallinity | |
---|---|---|---|---|---|
(°C) | (J/g) | Double Helix Degree (995/1022) | Order Degree (1047/1022) | (%) | |
0 | 66.91 ± 0.12 a | 2.72 ± 0.06 a | 0.9985 | 1.0085 | 39.97 |
1 | 64.35 ± 0.06 b | 2.85 ± 0.18 a | 0.9985 | 1.0271 | 37.12 |
6 | 69.25 ± 0.22c | 2.74 ± 0.44 a | 0.9988 | 1.0344 | 37.29 |
12 | 65.86 ± 0.17 d | 1.45 ± 0.21 b | 0.9986 | 1.0220 | 36.8 |
24 | ND | ND | 1.0019 | 1.0230 | 41.86 |
Hydrolysis Time | PT | PV | PkT | TV | BDV | FV | SBV | Tp |
---|---|---|---|---|---|---|---|---|
(h) | (°C) | (mPa.s) | (°C) | (mPa.s) | (mPa.s) | (mPa.s) | (mPa.s) | (s) |
0 | 76 ± 1 a | 2137.4 ± 98.4 a | 94.6 ± 0.1 a | 1003.1 ± 43.2 a | 1134.3 ± 58.9 a | 1661.5 ± 102.8 a | 658.4 ± 61.4 a | 410.2 ± 6.9 a |
1 | 75.4 ± 0 a | 58.5 ± 0 b | 84.8 ± 1 bc | 22.7 ± 0 b | 11.9 ± 0 b | 33.4 ± 0 b | 3.6 ± 0 b | 406.2 ± 0 a |
3 | 74.8 ± 0.6 a | 21 ± 1.9 b | 83.1 ± 1.2 bc | 15.2 ± 1.1 b | 5.8 ± 0.9 b | 20.9 ± 1.4 b | 5.7 ± 0.3 b | 398.1 ± 6.9 a |
6 | 76.8 ± 1.6 a | 16.1 ± 1.9 b | 83.8 ± 0.3 b | 11.5 ± 1 b | 4.5 ± 1 b | 16.5 ± 1.1 b | 4.9 ± 0.3 b | 412.5 ± 10.8 a |
9 | 73.7 ± 5.7 a | 13.3 ± 0.6 b | 80.8 ± 1.5 c | 9.9 ± 0.2 b | 3.4 ± 0.4 b | 14.4 ± 0.3 b | 4.5 ± 0.2 b | 397.3 ± 33.2 a |
12 | 74.8 ± 4.5 a | 13.8 ± 0.3 b | 81.2 ± 1.9 bc | 9.9 ± 0.1 b | 3.8 ± 0.3 b | 14.7 ± 0.4 b | 4.7 ± 0.3 b | 405.1 ± 29.6 a |
24 | 62.8 ± 4.2 b | 14.9 ± 0.2 b | 69.5 ± 1.2 d | 9.8 ± 0.1 b | 5.1 ± 0.3 b | 14.1 ± 0.1 b | 4.3 ± 0.2 b | 326.2 ± 24 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serrano-Villa, F.S.; Morales-Sánchez, E.; Téllez-Morales, J.A.; Cuellar-Sánchez, V.; Farrera-Rebollo, R.R.; Calderón-Domínguez, G. Synthesis of Jicama (Pachyrhizus erosus) Starch Particles by Electrospraying: Effect of the Hydrolysis Degree. Polymers 2025, 17, 2069. https://doi.org/10.3390/polym17152069
Serrano-Villa FS, Morales-Sánchez E, Téllez-Morales JA, Cuellar-Sánchez V, Farrera-Rebollo RR, Calderón-Domínguez G. Synthesis of Jicama (Pachyrhizus erosus) Starch Particles by Electrospraying: Effect of the Hydrolysis Degree. Polymers. 2025; 17(15):2069. https://doi.org/10.3390/polym17152069
Chicago/Turabian StyleSerrano-Villa, Fatima Sarahi, Eduardo Morales-Sánchez, José Alfredo Téllez-Morales, Verónica Cuellar-Sánchez, Reynold R. Farrera-Rebollo, and Georgina Calderón-Domínguez. 2025. "Synthesis of Jicama (Pachyrhizus erosus) Starch Particles by Electrospraying: Effect of the Hydrolysis Degree" Polymers 17, no. 15: 2069. https://doi.org/10.3390/polym17152069
APA StyleSerrano-Villa, F. S., Morales-Sánchez, E., Téllez-Morales, J. A., Cuellar-Sánchez, V., Farrera-Rebollo, R. R., & Calderón-Domínguez, G. (2025). Synthesis of Jicama (Pachyrhizus erosus) Starch Particles by Electrospraying: Effect of the Hydrolysis Degree. Polymers, 17(15), 2069. https://doi.org/10.3390/polym17152069