Development of a Method for Blocking Polysodiumoxy(methyl)siloxane Obtained in an Alcohol Medium
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Synthesis of Polysodiumoxy(methyl)siloxane
2.4. Blocking of Polysodiumoxy(methyl)siloxane Under Blocking Conditions 1
2.5. Blocking of Polysodiumoxy(methyl)siloxane Under Blocking Conditions 2
2.6. Blocking of Polysodiumoxy(methyl)siloxane Under Blocking Conditions 3
2.7. Blocking of Polysodiumoxy(methyl)siloxane Under Blocking Conditions 4
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GPC | Gel permeation chromatography |
Si-OH | Silanol groups |
PC | Polycondensation |
DEDMS | Diethoxydimethylsilane |
VDMCS | Vinyldimethylchlorosilane |
TMCS | Trimethylchlorosilane |
HPC | Hydrolytic polycondensation |
References
- Eduok, U.; Faye, O.; Szpunar, J. Recent developments and applications of protective silicone coatings: A review of PDMS functional materials. Prog. Org. Coat. 2017, 111, 124–163. [Google Scholar] [CrossRef]
- Kirillov, A.A.; Mikheev, S.P.; Kuzmin, M.V.; Koltsov, N.I. Development of organosilicon decorative coating with craquelure effect. Butlerov Commun. 2020, 64, 85–89. [Google Scholar] [CrossRef]
- Zielecka, M.; Rabajczyk, A.; Cygańczuk, K.; Pastuszka, Ł.; Jurecki, L. Silicone Resin-Based Intumescent Paints. Materials 2020, 13, 4785. [Google Scholar] [CrossRef] [PubMed]
- Kichigina, G.A.; Kushch, P.P.; Kiryukhin, D.P.; Kumeeva, T.Y. Use of Radiation-Synthesized Tetrafluoroethylene Telomers with Silane End Groups for Hydrophobization of Polyester Fabric. High Energy Chem. 2020, 54, 123–129. [Google Scholar] [CrossRef]
- Yuryevna, L.; Adikovna, A. Development of hydrophobic textile materials with organosilicon impregnation. IOP Conf. Ser. Mater. Sci. Eng. 2020, 953, 012080. [Google Scholar] [CrossRef]
- Wang, W.; Fan, H.; Song, L.; Wang, Z.; Li, H.; Xiang, J.; Huang, Q.; Chen, X. Organosilicon leather coating technology based on carbon peak strategy. J. Leather Sci. Eng. 2022, 4, 27. [Google Scholar] [CrossRef]
- Yoo, S.S.; Kim, D.E. Minimum lubrication technique using silicone oil for friction reduction of stainless steel. Int. J. Precis. Eng. Manuf. 2013, 14, 875–880. [Google Scholar] [CrossRef]
- Chen, H.L.; Jiao, X.N.; Zhou, J.T. The research progress of polyhedral oligomeric silsesquioxane (POSS) applied to electrical energy storage elements. Funct. Mater. Lett. 2017, 10, 1730001. [Google Scholar] [CrossRef]
- Yook, J.Y.; Park, J.C.; Hwang, J.; Hwang, J.C. 40-3: Ultraviolet Curable Optically Clear Silicone Resin for Automotive Displays. SID Symp. Dig. Tech. Pap. 2017, 48, 570–573. [Google Scholar] [CrossRef]
- Hu, C.C.; Zheng, Y.J.; Hsu, Y.F.; Ye, Z.T. Design and Application of Liquid Silicone Rubber Light Guide in Compact Automotive Headlamps. Int. J. Optomechatron. 2024, 18, 2343407. [Google Scholar] [CrossRef]
- Zeng, Y.; Xia, J. UV-cured silicone pressure-sensitive adhesive with adjustable adhesion and viscoelastic properties via thiol-ene chemistry. Prog. Org. Coatings 2024, 194, 108545. [Google Scholar] [CrossRef]
- Raimondo, M.; Russo, S.; Guadagno, L.; Longo, P.; Chirico, S.; Mariconda, A.; Bonnaud, L.; Murariu, O.; Dubois, P. Effect of incorporation of POSS compounds and phosphorous hardeners on thermal and fire resistance of nanofilled aeronautic resins. RSC Adv. 2015, 5, 10974–10986. [Google Scholar] [CrossRef]
- Alagar, M.; Thanikai Velan, T.V.; Ashok Kumar, A.; Mohan, V. Synthesis and Characterization of High Performance Polymeric Hybrid Siliconized Epoxy Composites for Aerospace Applications. Mater. Manuf. Process. 1999, 14, 67–83. [Google Scholar] [CrossRef]
- Ansari, S.; Varghese, J.M.; Dayas, K.R. Polydimethylsiloxane-cristobalite composite adhesive system for aerospace applications. Polym. Adv. Technol. 2009, 20, 459–465. [Google Scholar] [CrossRef]
- Hao, D.; Li, D.; Liao, Y. Hyperelasticity, dynamic mechanical property, and rheology of addition-type silicone rubber (VPDMS cured by PMHS). J. Appl. Polym. Sci. 2015, 13, 42036. [Google Scholar] [CrossRef]
- De Buyl, F. Silicone sealants and structural adhesives. Int. J. Adhes. Adhes. 2001, 21, 411–422. [Google Scholar] [CrossRef]
- Bamoharram, F.F.; Heravi, M.M.; Saneinezhad, S.; Ayati, A. Synthesis of a nano organo-silicon compound for building materials waterproofing, using heteropolyacids as a green and eco-friendly catalyst. Prog. Org. Coat. 2013, 76, 384–387. [Google Scholar] [CrossRef]
- Brachaczek, W. Comparative analysis of organosilicon polymers of varied chemical composition in respect of their application in silicone-coating manufacture. Prog. Org. Coat. 2014, 77, 609–615. [Google Scholar] [CrossRef]
- Szubert, K. The fatty acids based organofunctional silane protective coatings for concrete. Mater. De Construcción 2021, 71, e238. [Google Scholar] [CrossRef]
- D’Yakov, V. Organosilicon Compounds in Medicine and Cosmetics. Organosilicon Chem. Set Mol. Mater. 2003, 59, 348–351. [Google Scholar]
- Ivanova, E.V.; Minyaylo, E.O.; Temnikov, M.N.; Mukhtorov, L.G.; Atroshchenko, Y.M. Silicones in Cosmetics. Polym. Sci. Ser. B 2023, 65, 578–594. [Google Scholar] [CrossRef]
- Bains, P.; Kaur, S. Silicone in Dermatology: An Update. J. Cutan. Aesthet. Surg. 2023, 16, 14–20. [Google Scholar] [PubMed]
- Sayyed, A.; Kulkarni, R. Silicone chemicals in cosmetics applications and their implications to the environment, health and sustainability. Euro Cosmet. 2022, 30, 18–24. [Google Scholar]
- Abbasi, F.; Mirzadeh, H.; Katbab, A.A. Modification of polysiloxane polymers for biomedical applications: A review. Polym. Int. 2001, 50, 1279–1287. [Google Scholar] [CrossRef]
- Hao, X.; Jeffery, J.L.; Wilkie, J.S.; Meijs, G.F.; Clayton, A.B.; Watling, J.D.; Ho, A.; Fernandez, V.; Acosta, C.; Yamamoto, H.; et al. Functionalised polysiloxanes as injectable, in situ curable accommodating intraocular lenses. Biomaterials 2010, 31, 8153–8163. [Google Scholar] [CrossRef] [PubMed]
- Simmons, A.; Padsalgikar, A.D.; Ferris, L.M.; Poole-Warren, L.A. Biostability and biological performance of a PDMS-based polyurethane for controlled drug release. Biomaterials 2008, 29, 2987–2995. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Liu, Z.; Shen, J.; Lu, C.; Hu, X.; Dong, N.; Yang, G.; Chen, Z.; Nie, J. Biodegradable Inorganic-Organic POSS-PEG Hybrid Hydrogels as Scaffolds for Tissue Engineering. Macromol. Mater. Eng. 2017, 302, 1700142. [Google Scholar] [CrossRef]
- Ghanbari, H.; Cousins, B.G.; Seifalian, A.M. A Nanocage for Nanomedicine: Polyhedral Oligomeric Silsesquioxane (POSS). Macromol. Rapid Commun. 2011, 32, 1032–1046. [Google Scholar] [CrossRef] [PubMed]
- Dyson, E.; Sikkink, S.; Nocita, D.; Twigg, P.; Westgate, G.; Swift, T. Evaluating the Irritant Factors of Silicone and Hydrocolloid Skin Contact Adhesives Using Trans-Epidermal Water Loss, Protein Stripping, Erythema, and Ease of Removal. ACS Appl. Bio Mater. 2024, 7, 284–296. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, K.; Shi, X.; Fukazawa, K.; Yamaoka, T.; Yao, G.; Wu, J.-Y. Biomimetic-Engineered Silicone Hydrogel Contact Lens Materials. ACS Appl. Bio Mater. 2023, 6, 3600–3616. [Google Scholar] [CrossRef] [PubMed]
- Blagodatskikh, I.V.; Shchegolikhina, O.I.; Pozdnyakova, Y.A.; Molodtsova, Y.A.; Zhdanov, A.A. Application of size exclusion chromatography to the structural study of polyorganometallosiloxanes. Russ. Chem. Bull. 1994, 43, 993–998. [Google Scholar] [CrossRef]
- Vasnev, V.A.; Rodlovskaya, E.N.; Markova, G.D. Synthesis of polytitaniumorganosilsesquioxanes. Russ. Chem. Bull. 2024, 73, 162–167. [Google Scholar] [CrossRef]
- Abe, Y.; Gunji, T. Oligo- and polysiloxanes. Prog. Polym. Sci. 2004, 29, 149–182. [Google Scholar] [CrossRef]
- Gorodov, V.V. Synthesis and Properties of Carboxyl-Containing Polydimethylsiloxanes. Ph.D. Thesis, Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, Moscow, Russia, 29 November 2018; 159p. (In Russian). [Google Scholar]
- Stranix, B.R.; Liu, H.Q.; Darling, G.D. Functional Polymers from (Vinyl)polystyrene. Recyclable Polymer-Supported Organosilicon Protecting Groups for Solid-Phase Synthesis. J. Org. Chem. 1997, 62, 6183–6186. [Google Scholar] [CrossRef]
- Meshkov, I.B.; Kalinina, A.A.; Gorodov, V.V.; Bakirov, A.V.; Krasheninnikov, S.V.; Chvalun, S.N.; Muzafarov, A.M. New Principles of Polymer Composite Preparation. MQ Copolymers as an Active Molecular Filler for Polydimethylsiloxane Rubbers. Polymers 2021, 13, 2848. [Google Scholar] [CrossRef] [PubMed]
- Migulin, D.; Milenin, S.; Cherkaev, G.; Svidchenko, E.; Surin, N.; Muzafarov, A. Sodiumoxy(aminopropyl)alkoxysilanes-AB2 type monomers for the synthesis of hyperbranched poly(aminopropyl)alkoxysiloxanes and their derivatives. J. Organomet. Chem. 2018, 859, 24–32. [Google Scholar] [CrossRef]
- Trankina, E.S.; Zavin, B.G.; Chogovadze, E.G.; Polshchikova, N.V.; Kondrashova, A.A.; Ikonnikov, N.S. Cascade cocondensation of trifunctional chloro-and alkoxysilanes RSiX3 in nonaqueous media. Russ. Chem. Bull. 2019, 68, 125–131. [Google Scholar] [CrossRef]
- Parshina, M.S. Hybrid Materials Based on Epoxy Oligomers and Functional Organo(alkoxy)(metal)siloxanes. Ph.D. Thesis, Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, Moscow, Russia, 13 June 2024; 155p. (In Russian). [Google Scholar]
- Meshkov, I.B. Polymethylsiloxane Nanogels and Composites Based on Them. Ph.D. Thesis, Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, Moscow, Russia, 27 June 2024; 147p. (In Russian). [Google Scholar]
- Rebrov, E.A. Synthesis of Highly Functional Branched Organosiloxane Oligomers Based on Sodiumoxyorganoethoxysilanes. Ph.D. Thesis, Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, Moscow, Russia, 29 May 1992; 201p. (In Russian). [Google Scholar]
- Talalaeva, E.V.; Kalinina, A.A.; Vasilenko, N.G.; Demchenko, N.V.; Cherkaev, G.V.; Goloveshkin, A.S.; Muzafarov, A.M. Selective formation of 1,5-disodiumoxyhexamethyltrisiloxane in the reaction of dimethylsiloxanes and sodium hydroxide. J. Organomet. Chem. 2020, 906, 121050. [Google Scholar] [CrossRef]
- Kalinina, A.; Strizhiver, N.; Vasilenko, N.; Perov, N.; Demchenko, N.; Muzafarov, A. Polycondensation of Diethoxydimethylsilane in Active Medium. Silicon 2015, 7, 95–106. [Google Scholar] [CrossRef]
- Obrezkova, M.A.; Vasilenko, N.G.; Myakushev, V.D.; Muzafarov, A.M. Hydrolytic polycondensation of sodiumoxymethyl(dialkoxy)silanes as a method for producing linear poly[(sodiumoxy)methylsilsesquioxane]. Polym. Sci. Ser. B 2009, 51, 457–464. [Google Scholar] [CrossRef]
- Boldyrev, K.; Tatarinova, E.; Meshkov, I.; Vasilenko, N.; Buzin, M.; Novikov, R.; Vasil’ev, V.; Shtykova, E.; Feigin, L.; Bystrova, A.; et al. New approach to the synthesis of polymethylsilsesquioxane dendrimers. Polymer 2019, 174, 159–169. [Google Scholar] [CrossRef]
- Rebrov, E.A.; Muzafarov, A.M. Monosodiumoxyorganoalkaxysilanes: Synthesis and properties. Heteroatom Chem. 2006, 17, 514–541. [Google Scholar] [CrossRef]
- Obrezkova, M.A.; Kalinina, A.A.; Pavlichenko, I.V.; Vasilenko, N.G.; Mironova, M.V.; Semakov, A.V.; Kulichikhin, V.G.; Buzin, M.I.; Muzafarov, A.M. Comb-Like Polymethylsiloxanes. Synthesis, Structure and Properties. Silicon 2015, 7, 177–189. [Google Scholar] [CrossRef]
- Tikhonov, P.A.; Vasilenko, N.G.; Gallyamov, M.O.; Cherkaev, G.V.; Vasil’ev, V.G.; Demchenko, N.V.; Buzin, M.I.; Vasil’ev, S.G.; Muzafarov, A.M. Multiarm Star-Shaped Polydimethylsiloxanes with a Dendritic Branching Center. Molecules 2021, 26, 3280–3294. [Google Scholar] [CrossRef] [PubMed]
- Meshkov, I.B.; Kalinina, A.A.; Mazhorova, N.G.; Muzafarov, A.M.; Kholkina, A.S.; Zaikov, Y.P.; Dalyaev, I.Y. Methyldiphenylsiloxane MQ Nanogels as Viscosity Regulators for Liquid Sealing Compositions. INEOS Open 2023, 6, 86–90. [Google Scholar] [CrossRef]
- Migulin, D.; Tatarinova, E.; Meshkov, I.; Cherkaev, G.; Vasilenko, N.; Buzin, M.; Muzafarov, A. Synthesis of the first hyperbranched polyorganoethoxysilsesquioxanes and their chemical transformations to functional core–shell nanogel systems. Polym. Int. 2016, 65, 72–83. [Google Scholar] [CrossRef]
- Gordon, A.J.; Ford, R.F. The Chemist’s Companion; Wiley: New York, NY, USA; London, UK; Sydney, Australia; Toronto, ON, Canada, 1972; p. 537. [Google Scholar]
- Armarego, W.L.F.; Perrin, D.D. Purification of Laboratory Chemicals, 4th ed.; Butterworth-Heinemann: Oxford, UK, 1996; p. 529. [Google Scholar]
- Morton, M.; Bostick, E.E. Anionic polymerization of octamethylcyclotetrasiloxane in tetrahydrofuran solution. J. Polym. Sci. Part A Gen. Pap. 1964, 2, 523–538. [Google Scholar] [CrossRef]
- Noll, W. Chemistry and Technology of Silicones; Academic Press: New York, NY, USA, 1968; p. 716. [Google Scholar]
- Voronkov, M.G.; Deich, A.Y. The donor-acceptor properties of the siloxane bond. J. Struct. Chem. 1964, 5, 443–448. [Google Scholar] [CrossRef]
- Rücker, C.; Kümmerer, K. Environmental Chemistry of Organosiloxanes. Chem. Rev. 2015, 115, 466–524. [Google Scholar] [CrossRef] [PubMed]
Blocking Conditions | Solvent | 1H NMR HMe/H(Me)2/HVi 3:6:3 | GPC, 104 Å, Toluene | ||
---|---|---|---|---|---|
MN | MW | MW/MN | |||
4 | methanol | 3:8.73:3.28 | 6700 | 54,900 | 8.24 |
Blocking Conditions | Solvent | 1H NMR HMe/H(Me)2/HVi 3:6:3 | GPC, 104 Å, Toluene | ||
---|---|---|---|---|---|
MN | MW | MW/MN | |||
1 | methanol | 3:6.39:3.21 | 2700 | 3000 | 1.14 |
ethanol | 3:6.00:3.03 | 2900 | 3900 | 1.32 | |
propan-2-ol | 3:6.44:3.28 | 2900 | 3400 | 1.19 | |
n-butanol | 3:6.05:3.09 | 3200 | 3900 | 1.20 | |
2 | methanol | 3:5.79:2.84 | 3600 | 11,500 | 3.18 |
ethanol | 3:5.65:2.77 | 3500 | 11,100 | 3.14 | |
propan-2-ol | 3:5.92:2.95 | 3500 | 8900 | 2.58 | |
n-butanol | 3:5.60:2.77 | 3500 | 5100 | 1.47 | |
3 | methanol | 3:5.98:3.02 | 3400 | 7800 | 2.30 |
ethanol | 3:5.57:2.81 | 4000 | 16,800 | 4.22 | |
propan-2-ol | 3:6.03:3.06 | 3300 | 8000 | 2.41 | |
n-butanol | 3:5.86:2.94 | 3900 | 6300 | 1.62 |
Blocking Conditions | 1H NMR HMe/H(Me)2/HVi 3:6:3 | GPC, 104 Å, Toluene | ||
---|---|---|---|---|
MN | MW | MW/MN | ||
1 | 3:6.14:3.13 | 2900 | 3500 | 1.21 |
2 | 3:6.04:2.82 | 2800 | 4000 | 1.41 |
3 | 3:5.75:2.90 | 3300 | 4900 | 1.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obrezkova, M.A.; Nesterkina, A.A.; Muzafarov, A.M. Development of a Method for Blocking Polysodiumoxy(methyl)siloxane Obtained in an Alcohol Medium. Polymers 2025, 17, 2023. https://doi.org/10.3390/polym17152023
Obrezkova MA, Nesterkina AA, Muzafarov AM. Development of a Method for Blocking Polysodiumoxy(methyl)siloxane Obtained in an Alcohol Medium. Polymers. 2025; 17(15):2023. https://doi.org/10.3390/polym17152023
Chicago/Turabian StyleObrezkova, Marina A., Alina A. Nesterkina, and Aziz M. Muzafarov. 2025. "Development of a Method for Blocking Polysodiumoxy(methyl)siloxane Obtained in an Alcohol Medium" Polymers 17, no. 15: 2023. https://doi.org/10.3390/polym17152023
APA StyleObrezkova, M. A., Nesterkina, A. A., & Muzafarov, A. M. (2025). Development of a Method for Blocking Polysodiumoxy(methyl)siloxane Obtained in an Alcohol Medium. Polymers, 17(15), 2023. https://doi.org/10.3390/polym17152023