Structural Properties, Mechanical Behavior, and Food Protecting Ability of Chickpea Protein-Derived Biopolymer Films
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Production of Chickpea Protein
2.3. Fabrication of Edible Film
2.4. Analyses
2.4.1. Amino Acid Profile of Proteins
2.4.2. Fourier Transform Infrared Spectroscopy (FTIR)
2.4.3. Scanning Electron Microscopy (SEM)
2.4.4. Moisture Content
2.4.5. Thickness
2.4.6. Color and Opacity
2.4.7. Swelling Ratio and Solubility
2.4.8. Water Vapor Permeability
2.4.9. Oxygen Permeability
2.4.10. Mechanical Behaviors
2.4.11. Release Profile in Food Simulants for Quercetin
2.4.12. Strawberry Preservation Using Edible Coating Films
pH and Titratable Acidity
Weight Loss and Hardness
2.4.13. Statistical Analysis
3. Results and Discussions
3.1. Amino Acid Composition
3.2. FTIR Spectroscopy
3.3. Visual and SEM Appearance
3.4. Physicochemical Properties, Solubility, and Swelling Ratio
3.5. Water Vapor Permeability and Oxygen Barrier Attributes of Chickpea Protein-Derived Films
3.6. Mechanical Properties of Chickpea Protein-Derived Films
3.7. Release of Quercetin in Different Simulants
3.8. Food Application
3.8.1. pH and Titratable Acidity
3.8.2. Weight Loss and Hardness
3.8.3. Appearance of Strawberry During Storage
4. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Gasti, T.; Dixit, S.; Hiremani, V.D.; Chougale, R.B.; Masti, S.P.; Vootla, S.K.; Mudigoudra, B.S. Chitosan/Pullulan Based Films Incorporated with Clove Essential Oil Loaded Chitosan-ZnO Hybrid Nanoparticles for Active Food Packaging. Carbohydr. Polym. 2022, 277, 118866. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, N.; Sharanagat, V.S.; Mor, R.S.; Kumar, K. Active and Intelligent Biodegradable Packaging Films Using Food and Food Waste-Derived Bioactive Compounds: A Review. Trends Food Sci. Technol. 2020, 105, 385–401. [Google Scholar] [CrossRef]
- Zhang, W.; Roy, S.; Ezati, P.; Yang, D.-P.; Rhim, J.-W. Tannic Acid: A Green Crosslinker for Biopolymer-Based Food Packaging Films. Trends Food Sci. Technol. 2023, 136, 11–23. [Google Scholar] [CrossRef]
- Weber Macena, M.; Carvalho, R.; Cruz-Lopes, L.P.; Guiné, R.P.F. Plastic Food Packaging: Perceptions and Attitudes of Portuguese Consumers about Environmental Impact and Recycling. Sustainability 2021, 13, 9953. [Google Scholar] [CrossRef]
- Cheng, J.; Li, Z.; Wang, J.; Zhu, Z.; Yi, J.; Chen, B.; Cui, L. Structural Characteristics of Pea Protein Isolate (PPI) Modified by High-Pressure Homogenization and Its Relation to the Packaging Properties of PPI Edible Film. Food Chem. 2022, 388, 132974. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.; Song, Y.-Z.; Thakur, K.; Zhang, J.-G.; Khan, M.R.; Ma, Y.-L.; Wei, Z.-J. Blueberry Anthocyanin Based Active Intelligent Wheat Gluten Protein Films: Preparation, Characterization, and Applications for Shrimp Freshness Monitoring. Food Chem. 2024, 453, 139676. [Google Scholar] [CrossRef] [PubMed]
- Easdani, M.; Ahammed, S.; Saqib, M.N.; Liu, F.; Zhong, F. Engineering Biodegradable Controlled Gelatin-Zein Bilayer Film with Improved Mechanical Strength and Flexibility. Food Hydrocoll. 2024, 148, 109430. [Google Scholar] [CrossRef]
- Wrońska, N.; Katir, N.; Nowak-Lange, M.; El Kadib, A.; Lisowska, K. Biodegradable Chitosan-Based Films as an Alternative to Plastic Packaging. Foods 2023, 12, 3519. [Google Scholar] [CrossRef] [PubMed]
- Dehghani, S.; Hosseini, S.V.; Regenstein, J.M. Edible Films and Coatings in Seafood Preservation: A Review. Food Chem. 2018, 240, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Polo, J.; Monasterio, A.; Cantero-López, P.; Osorio, F.A. Combining Edible Coatings Technology and Nanoencapsulation for Food Application: A Brief Review with an Emphasis on Nanoliposomes. Food Res. Int. 2021, 145, 110402. [Google Scholar] [CrossRef] [PubMed]
- Smaoui, S.; Chaari, M.; Agriopoulou, S.; Varzakas, T. Green Active Films/Coatings Based on Seafood by-Products (Chitosan and Gelatin): A Powerful Tool in Food Packaging. Biomass Convers. Biorefin. 2025, 15, 8331–8350. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, W.; Zhu, W.; McClements, D.J.; Liu, X.; Liu, F. A Review of Multilayer and Composite Films and Coatings for Active Biodegradable Packaging. npj Sci. Food 2022, 6, 18. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Han, R.; Yu, D.; Wang, Z.; Zhuansun, X.; Li, Y. Characterization of Thyme Essential Oil Composite Film Based on Soy Protein Isolate and Its Application in the Preservation of Cherry Tomatoes. LWT 2024, 191, 115686. [Google Scholar] [CrossRef]
- Żołek-Tryznowska, Z.; Kałuża, A. The Influence of Starch Origin on the Properties of Starch Films: Packaging Performance. Materials 2021, 14, 1146. [Google Scholar] [CrossRef] [PubMed]
- Rawdkuen, S.; Faseha, A.; Benjakul, S.; Kaewprachu, P. Application of Anthocyanin as a Color Indicator in Gelatin Films. Food Biosci. 2020, 36, 100603. [Google Scholar] [CrossRef]
- Tang, Q.; Roos, Y.H.; Miao, S. Structure, Gelation Mechanism of Plant Proteins versus Dairy Proteins and Evolving Modification Strategies. Trends Food Sci. Technol. 2024, 147, 104464. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, R.; Han, J.; Ren, L.; Jiang, L. Protein-Based Packaging Films in Food: Developments, Applications, and Challenges. Gels 2024, 10, 418. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chen, F.; Lai, S.; Wang, H.; Yang, H. Impact of Soybean Protein Isolate-Chitosan Edible Coating on the Softening of Apricot Fruit during Storage. LWT 2018, 96, 604–611. [Google Scholar] [CrossRef]
- Dong, M.; Tian, L.; Li, J.; Jia, J.; Dong, Y.; Tu, Y.; Liu, X.; Tan, C.; Duan, X. Improving Physicochemical Properties of Edible Wheat Gluten Protein Films with Proteins, Polysaccharides and Organic Acid. LWT 2022, 154, 112868. [Google Scholar] [CrossRef]
- Rocca-Smith, J.R.; Marcuzzo, E.; Karbowiak, T.; Centa, J.; Giacometti, M.; Scapin, F.; Venir, E.; Sensidoni, A.; Debeaufort, F. Effect of Lipid Incorporation on Functional Properties of Wheat Gluten Based Edible Films. J. Cereal Sci. 2016, 69, 275–282. [Google Scholar] [CrossRef]
- Fernandes, R.F.; Kalita, N.K.; Liguori, A.; Urquieta Gonzalez, E.A.; Hakkarainen, M.; Sobral, P.J.A.; Otoni, C.G. Exploring the Potential of H-Zeolites as Heterogeneous Catalysts for the Chemical Recycling of Polysaccharides and Their Flexible Films. ChemSusChem 2025, 18, e202402413. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Xu, F.; Chen, D.; Liu, J. Quaternary Ammonium Chitosan-Based Active Packaging Films Incorporated with Dialdehyde Guar Gum-Proanthocyanidins Conjugates: Characterization and Application in the Edible Coating of Pork. Food Hydrocoll. 2025, 158, 110597. [Google Scholar] [CrossRef]
- Lin, D.; Lu, W.; Kelly, A.L.; Zhang, L.; Zheng, B.; Miao, S. Interactions of Vegetable Proteins with Other Polymers: Structure-Function Relationships and Applications in the Food Industry. Trends Food Sci. Technol. 2017, 68, 130–144. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, H.; Hu, L. Recent Advances of Proteins, Polysaccharides and Lipids-Based Edible Films/Coatings for Food Packaging Applications: A Review. Food Biophys. 2024, 19, 29–45. [Google Scholar] [CrossRef]
- Grabowska, K.J.; Tekidou, S.; Boom, R.M.; van der Goot, A.-J. Shear Structuring as a New Method to Make Anisotropic Structures from Soy-Gluten Blends. Food Res. Int. 2014, 64, 743–751. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhang, J.; He, J.; Xu, Y.; Guo, X. Effects of High-Pressure Homogenization on the Physicochemical, Foaming, and Emulsifying Properties of Chickpea Protein. Food Res. Int. 2023, 170, 112986. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Tavassoli, M.; Sani, M.A.; Khezerlou, A.; Ehsani, A.; McClements, D.J. Multifunctional Nanocomposite Active Packaging Materials: Immobilization of Quercetin, Lactoferrin, and Chitosan Nanofiber Particles in Gelatin Films. Food Hydrocoll. 2021, 118, 106747. [Google Scholar] [CrossRef]
- Benbettaïeb, N.; Chambin, O.; Karbowiak, T.; Debeaufort, F. Release Behavior of Quercetin from Chitosan-Fish Gelatin Edible Films Influenced by Electron Beam Irradiation. Food Control 2016, 66, 315–319. [Google Scholar] [CrossRef]
- Saglik, A.; Koyuncu, I.; Gonel, A.; Yalcin, H.; Adibelli, F.M.; Toptan, M. Metabolomics Analysis in Pterygium Tissue. Int. Ophthalmol. 2019, 39, 2325–2333. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Ren, Z.; Shi, L.; Weng, W. Effect of W/O Pre-Emulsion Prepared with Different Emulsifiers on the Physicochemical Properties of Soy Protein Isolate-Based Emulsion Films. Food Hydrocoll. 2023, 139, 108440. [Google Scholar] [CrossRef]
- Akalan, M.; Karakuş, M.Ş.; Alaşalvar, H.; Karaaslan, M.; Başyiğit, B. Facile Synthesis of Olive Oil-Incorporated Oleofilms via High-Power Ultrasonic Emulsification: A Sustainable Packaging Model. Food Chem. 2025, 473, 142989. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, L.A.; Aguilera, J.M.; Rodriguez-Turienzo, L.; Cobos, A.; Diaz, O. Characterization and Microstructure of Films Made from Mucilage of Salvia hispanica and Whey Protein Concentrate. J. Food Eng. 2012, 111, 511–518. [Google Scholar] [CrossRef]
- Liu, M.; Chen, H.; Pan, F.; Wu, X.; Zhang, Y.; Fang, X.; Li, X.; Tian, W.; Peng, W. Propolis Ethanol Extract Functionalized Chitosan/Tenebrio Molitor Larvae Protein Film for Sustainable Active Food Packaging. Carbohydr. Polym. 2024, 343, 122445. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, Y.; Zhen, M.; Wu, Y.; Ma, M.; Cheng, Y.; Jin, Y. Effect of Catechin and Tannins on the Structural and Functional Properties of Sodium Alginate/Gelatin/Poly(Vinylalcohol) Blend Films. Food Hydrocoll. 2023, 135, 108141. [Google Scholar] [CrossRef]
- Cheng, J.; Wang, J.; Li, Z.; Chen, B.; Cui, L. Improving the Mechanical and Water-Resistance Properties of Pea Protein-Based Edible Film via Wet-Heating Maillard Reaction: Insights into the Simultaneous Effect of Heating and Maillard Reaction. Food Packag. Shelf Life 2023, 35, 101024. [Google Scholar] [CrossRef]
- Kaewprachu, P.; Osako, K.; Tongdeesoontorn, W.; Rawdkuen, S. The Effects of Microbial Transglutaminase on the Properties of Fish Myofibrillar Protein Film. Food Packag. Shelf Life 2017, 12, 91–99. [Google Scholar] [CrossRef]
- Bhatia, S.; Shah, Y.A.; Al-Harrasi, A.; Jawad, M.; Khan, T.S.; Alam, T.; Dıblan, S.; Koca, E.; Aydemir, L.Y. Pectin/Sodium Alginate Films Tailored with Acetyl-11-Keto-Beta-Boswellic Acid for Active Packaging. Int. J. Biol. Macromol. 2024, 261, 129698. [Google Scholar] [CrossRef] [PubMed]
- Glicerina, V.; Siroli, L.; Gottardi, D.; Ticchi, N.; Capelli, F.; Accorsi, R.; Gherardi, M.; Minelli, M.; Fiorini, M.; Andrisano, V.; et al. Influence of an Innovative, Biodegradable Active Packaging on the Quality of Sunflower Oil and “Pesto” Sauce during Storage. Appl. Food Res. 2023, 3, 100313. [Google Scholar] [CrossRef]
- Thi Nguyen, T.; Pham, B.-T.T.; Nhien Le, H.; Bach, L.G.; Thuc, C.N.H. Comparative Characterization and Release Study of Edible Films of Chitosan and Natural Extracts. Food Packag. Shelf Life 2022, 32, 100830. [Google Scholar] [CrossRef]
- Zhuo, Y.; Liang, Y.; Xu, D.; McClements, D.J.; Wang, S.; Li, Q.; Han, Y.; Liu, F.; Chen, S. Improvement of Physicochemical Stability and Digestive Properties of Quercetagetin Using Zein-Chondroitin Sulfate Particles Prepared by Antisolvent Co-Precipitation. Int. J. Biol. Macromol. 2023, 242, 125109. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Cheng, Y.; Li, Z.; Yue, T.; Yuan, Y. An Alginate-Based Edible Coating Containing Lactic Acid Bacteria Extends the Shelf Life of Fresh Strawberry (Fragaria × Ananassa Duch.). Int. J. Biol. Macromol. 2024, 274, 133273. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Yu, L.; Hu, Y.; Zhu, Z.; Zhuang, C.; Zhao, Y.; Zhong, Y. The Preservation Performance of Chitosan Coating with Different Molecular Weight on Strawberry Using Electrostatic Spraying Technique. Int. J. Biol. Macromol. 2020, 151, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Shukla, P.; Das, K.; Katiyar, V. Chitosan/Water Caltrop Pericarp Extract Reinforced Active Edible Film and Its Efficacy as Strawberry Coating for Prolonging Shelf Life. Int. J. Biol. Macromol. 2025, 307, 142115. [Google Scholar] [CrossRef] [PubMed]
- Daliri, H.; Ahmadi, R.; Pezeshki, A.; Hamishehkar, H.; Mohammadi, M.; Beyrami, H.; Khakbaz Heshmati, M.; Ghorbani, M. Quinoa Bioactive Protein Hydrolysate Produced by Pancreatin Enzyme-Functional and Antioxidant Properties. LWT 2021, 150, 111853. [Google Scholar] [CrossRef]
- Nor Amalini, A.; Norziah, M.H.; Khan, I.; Haafiz, M.K.M. Exploring the Properties of Modified Fish Gelatin Films Incorporated with Different Fatty Acid Sucrose Esters. Food Packag. Shelf Life 2018, 15, 105–112. [Google Scholar] [CrossRef]
- Khodaman, E.; Barzegar, H.; Jokar, A.; Jooyandeh, H. Production and Evaluation of Physicochemical, Mechanical and Antimicrobial Properties of Chia (Salvia hispanica L.) Mucilage-Gelatin Based Edible Films Incorporated with Chitosan Nanoparticles. J. Food Meas. Charact. 2022, 16, 3547–3556. [Google Scholar] [CrossRef]
- Xie, H.; Li, H.; Liu, L.; Cai, X.; Wang, T.; Jiao, Q.; Lv, N.; Huang, M.; Wu, R.; Cao, Z.; et al. How the Ovalbumin Modulates the Conformation of Zein through Protein-Protein Interactions. Food Hydrocoll. 2025, 159, 110696. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, S.; Liu, X.; Zhao, G.; Yang, L.; Song, H.; Zhang, G.; He, Y.; Liu, H. Application of Soy Protein Isolate Fiber and Soy Soluble Polysaccharide Non-Covalent Complex: A Potential Way for PH-Triggered Release. Food Chem. 2023, 402, 134494. [Google Scholar] [CrossRef] [PubMed]
- Bing, J.; Xiao, X.; McClements, D.J.; Biao, Y.; Chongjiang, C. Protein Corona Formation around Inorganic Nanoparticles: Food Plant Proteins-TiO2 Nanoparticle Interactions. Food Hydrocoll. 2021, 115, 106594. [Google Scholar] [CrossRef]
- Dietzen, D.J. Amino Acids, Peptides, and Proteins. In Principles and Applications of Molecular Diagnostics; Elsevier: Amsterdam, The Netherlands, 2018; pp. 345–380. [Google Scholar]
- Barth, A. Infrared Spectroscopy of Proteins. Biochim. Biophys. Acta Bioenerg. 2007, 1767, 1073–1101. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Tian, H.; Huang, R.; Liu, H.; Wu, H.; Guo, G.; Xiao, J. Fabrication and Characterization of Natural Polyphenol and ZnO Nanoparticles Loaded Protein-Based Biopolymer Multifunction Electrospun Nanofiber Films, and Application in Fruit Preservation. Food Chem. 2023, 418, 135851. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhou, X.; Fang, C.; Wang, D. Characterization of the Antimicrobial Edible Film Based on Grasshopper Protein/Soy Protein Isolate/Cinnamaldehyde Blend Crosslinked With Xylose. Front. Nutr. 2022, 9, 796356. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, R.; Kulandhaivelu, S.V.; Roy, S.; Viswanathan, V.P. Characterisation of Ternary Blend Film of Alginate/Carboxymethyl Cellulose/Starch for Packaging Applications. Ind. Crops Prod. 2023, 193, 116114. [Google Scholar] [CrossRef]
- Nicolai, T. Gelation of Food Protein-Protein Mixtures. Adv. Colloid Interface Sci. 2019, 270, 147–164. [Google Scholar] [CrossRef] [PubMed]
- Omar-Aziz, M.; Gharaghani, M.; Hosseini, S.S.; Khodaiyan, F.; Mousavi, M.; Askari, G.; Kennedy, J.F. Effect of Octenylsuccination of Pullulan on Mechanical and Barrier Properties of Pullulan-Chickpea Protein Isolate Composite Film. Food Hydrocoll. 2021, 121, 107047. [Google Scholar] [CrossRef]
- Bhatia, S.; Shah, Y.A.; Al-Harrasi, A.; Jawad, M.; Koca, E.; Aydemir, L.Y. Novel Applications of Black Pepper Essential Oil as an Antioxidant Agent in Sodium Caseinate and Chitosan Based Active Edible Films. Int. J. Biol. Macromol. 2024, 254, 128045. [Google Scholar] [CrossRef] [PubMed]
- Tavares, K.M.; de Campos, A.; Luchesi, B.R.; Resende, A.A.; de Oliveira, J.E.; Marconcini, J.M. Effect of Carboxymethyl Cellulose Concentration on Mechanical and Water Vapor Barrier Properties of Corn Starch Films. Carbohydr. Polym. 2020, 246, 116521. [Google Scholar] [CrossRef] [PubMed]
- Blanchard, A.; Gouanvé, F.; Espuche, E. Effect of Humidity on Mechanical, Thermal and Barrier Properties of EVOH Films. J. Memb. Sci. 2017, 540, 1–9. [Google Scholar] [CrossRef]
- Siddique, S.; Zahid, M.; Anum, R.; Shakir, H.F.; Rehan, Z.A. Fabrication and Characterization of PVC Based Flexible Nanocomposites for the Shielding against EMI, NIR, and Thermal Imaging Signals. Results Phys. 2021, 24, 104183. [Google Scholar] [CrossRef]
- Ebrahimi, S.E.; Koocheki, A.; Milani, E.; Mohebbi, M. Interactions between Lepidium perfoliatum Seed Gum—Grass Pea (Lathyrus sativus) Protein Isolate in Composite Biodegradable Film. Food Hydrocoll. 2016, 54, 302–314. [Google Scholar] [CrossRef]
- Tonyali, B.; Cikrikci, S.; Oztop, M.H. Physicochemical and Microstructural Characterization of Gum Tragacanth Added Whey Protein Based Films. Food Res. Int. 2018, 105, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kök, M.; Pekdemir, M.E.; Öner, E.Ö.; Coşkun, M.; Hekim, S. MWCNT Nanocomposite Films Prepared Using Different Ratios of PVC/PCL: Combined FT-IR/DFT, Thermal and Shape Memory Properties. J. Mol. Struct. 2023, 1279, 134989. [Google Scholar] [CrossRef]
- Kraśniewska, K.; Gniewosz, M. Active Packaging Based on a PET/PP Food-Grade Film Coated with Pullulan and Clove Essential Oil: Physicochemical and Antimicrobial Properties. Molecules 2025, 30, 2118. [Google Scholar] [CrossRef] [PubMed]
- Cao, N.; Fu, Y.; He, J. Preparation and Physical Properties of Soy Protein Isolate and Gelatin Composite Films. Food Hydrocoll. 2007, 21, 1153–1162. [Google Scholar] [CrossRef]
- Yasmeen, F.; Karamat, H.; Rehman, R.; Akram, M.; Ghfar, A.A.; Abdelghani, H.T.M.; Dar, A.; Mitu, L. Fabrication and Testing of Edible Films Incorporated with ZnO Nanoparticles to Enhance the Shelf Life of Bread. Food Biosci. 2023, 56, 103111. [Google Scholar] [CrossRef]
- Ahammed, S.; Liu, F.; Wu, J.; Khin, M.N.; Yokoyama, W.H.; Zhong, F. Effect of Transglutaminase Crosslinking on Solubility Property and Mechanical Strength of Gelatin-Zein Composite Films. Food Hydrocoll. 2021, 116, 106649. [Google Scholar] [CrossRef]
- Hosseini, S.F.; Rezaei, M.; Zandi, M.; Farahmandghavi, F. Fabrication of Bio-Nanocomposite Films Based on Fish Gelatin Reinforced with Chitosan Nanoparticles. Food Hydrocoll. 2015, 44, 172–182. [Google Scholar] [CrossRef]
- Liu, F.; Avena-Bustillos, R.J.; Chiou, B.-S.; Li, Y.; Ma, Y.; Williams, T.G.; Wood, D.F.; McHugh, T.H.; Zhong, F. Controlled-Release of Tea Polyphenol from Gelatin Films Incorporated with Different Ratios of Free/Nanoencapsulated Tea Polyphenols into Fatty Food Simulants. Food Hydrocoll. 2017, 62, 212–221. [Google Scholar] [CrossRef]
- Goycoolea, F.M.; Argüelles-Monal, W.M.; Lizardi, J.; Peniche, C.; Heras, A.; Galed, G.; Díaz, E.I. Temperature and PH-Sensitive Chitosan Hydrogels: DSC, Rheological and Swelling Evidence of a Volume Phase Transition. Polym. Bull. 2007, 58, 225–234. [Google Scholar] [CrossRef]
- Chen, H.; Lan, X.; Zhang, S.; Zhang, Q.; Zhang, X.; Chi, H.; Meng, Q.; Fan, F.; Tang, J. Properties of Gelatin-Zein Films Prepared by Blending Method and Layer-by-Layer Self-Assembly Method. Int. J. Biol. Macromol. 2025, 292, 139172. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Cui, L.; Wang, H.; Chen, Q.; Guan, Y.; Zhang, Y. Tough, Resilient, Adhesive, and Anti-Freezing Hydrogels Cross-Linked with a Macromolecular Cross-Linker for Wearable Strain Sensors. ACS Appl. Mater. Interfaces 2021, 13, 42052–42062. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Wang, W.; Li, Y.; Gao, G.; Zhang, K.; Zhou, J.; Wu, Z. Cross-Linking and Film-Forming Properties of Transglutaminase-Modified Collagen Fibers Tailored by Denaturation Temperature. Food Chem. 2019, 271, 527–535. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Lan, X.; Zhang, Q.; Liu, H.; Ren, H.; Du, M.; Tang, J. Improving the Comprehensive Properties of Gelatin Films by Transglutaminase and Chitosan. Food Hydrocoll. 2024, 151, 109854. [Google Scholar] [CrossRef]
- Shroti, G.K.; Saini, C.S. Development of Edible Films from Protein of Brewer’s Spent Grain: Effect of PH and Protein Concentration on Physical, Mechanical and Barrier Properties of Films. Appl. Food Res. 2022, 2, 100043. [Google Scholar] [CrossRef]
- Kim, T.-K.; Yong, H.I.; Kim, Y.-B.; Jung, S.; Kim, H.-W.; Choi, Y.-S. Effects of Organic Solvent on Functional Properties of Defatted Proteins Extracted from Protaetia brevitarsis Larvae. Food Chem. 2021, 336, 127679. [Google Scholar] [CrossRef] [PubMed]
- Kanmani, P.; Lim, S.T. Development and Characterization of Novel Probiotic-Residing Pullulan/Starch Edible Films. Food Chem. 2013, 141, 1041–1049. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xue, J.; Zhang, Y. Preparation and Characterization of Curcumin Loaded Caseinate/Zein Nanocomposite Film Using PH-Driven Method. Ind. Crops Prod. 2019, 130, 71–80. [Google Scholar] [CrossRef]
- Akay, K.B.; Akalan, M.; Karakuş, M.Ş.; Yücetepe, M.; Şimşek, E.; Başyiğit, B.; Karaaslan, A.; Karaaslan, M. Bioengineering Novel Hydrogel Systems: Nucleic Acid Nanoparticles and Protein Polymeric Networks for Sustained Model Drug Delivery. Food Bioprocess Technol. 2025, 18, 5549–5571. [Google Scholar] [CrossRef]
- Zeng, Y.-F.; Chen, Y.-Y.; Deng, Y.-Y.; Zheng, C.; Hong, C.-Z.; Li, Q.-M.; Yang, X.-F.; Pan, L.-H.; Luo, J.-P.; Li, X.-Y.; et al. Preparation and Characterization of Lotus Root Starch Based Bioactive Edible Film Containing Quercetin-Encapsulated Nanoparticle and Its Effect on Grape Preservation. Carbohydr. Polym. 2024, 323, 121389. [Google Scholar] [CrossRef] [PubMed]
- Akay, K.B.; Başyiğit, B.; Karaaslan, M. Fatty-Acid Incorporation Improves Hydrophobicity of Pea Protein Based Films towards Better Oxygen/Water Barrier Properties and Fruit Protecting Ability. Int. J. Biol. Macromol. 2024, 276, 133965. [Google Scholar] [CrossRef] [PubMed]
- Yavari Maroufi, L.; Shahabi, N.; Fallah, A.A.; Mahmoudi, E.; Al-Musawi, M.H.; Ghorbani, M. Soy Protein Isolate/Kappa-Carrageenan/Cellulose Nanofibrils Composite Film Incorporated with Zenian Essential Oil-Loaded MOFs for Food Packaging. Int. J. Biol. Macromol. 2023, 250, 126176. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhao, Y.; Li, Y.; Zhu, L.; Fang, Z.; Shi, Q. Physicochemical, Mechanical and Structural Properties of Composite Edible Films Based on Whey Protein Isolate/Psyllium Seed Gum. Int. J. Biol. Macromol. 2020, 153, 892–901. [Google Scholar] [CrossRef] [PubMed]
- Gallego, M.; Barat, J.M.; Grau, R.; Talens, P. Compositional, Structural Design and Nutritional Aspects of Texture-Modified Foods for the Elderly. Trends Food Sci. Technol. 2022, 119, 152–163. [Google Scholar] [CrossRef]
- Sapper, M.; Wilcaso, P.; Santamarina, M.P.; Roselló, J.; Chiralt, A. Antifungal and Functional Properties of Starch-Gellan Films Containing Thyme (Thymus zygis) Essential Oil. Food Control 2018, 92, 505–515. [Google Scholar] [CrossRef]
- Liu, L.; Lin, W.-J.; Liu, H.-Z.; Shi, A.-M.; Hu, H.; Nasir, M.N.; Deleu, M.; Wang, Q. Effect of Xylose on the Structural and Physicochemical Properties of Peanut Isolated Protein Based Films. RSC Adv. 2017, 7, 52357–52365. [Google Scholar] [CrossRef]
- Urango, A.C.M.; Silva, E.K. Impact of Adding Dietary Fibers and Maltodextrin on the Mechanical, Morphological, Optical, Barrier and Thermal Properties of Potato Starch-Based Edible Films. Innov. Food Sci. Emerg. Technol. 2025, 102, 104012. [Google Scholar] [CrossRef]
- Luzi, F.; Puglia, D.; Dominici, F.; Fortunati, E.; Giovanale, G.; Balestra, G.M.; Torre, L. Effect of Gallic Acid and Umbelliferone on Thermal, Mechanical, Antioxidant and Antimicrobial Properties of Poly (Vinyl Alcohol-Co-Ethylene) Films. Polym. Degrad. Stab. 2018, 152, 162–176. [Google Scholar] [CrossRef]
- Patil, S.S.; Jena, H.M. Performance Assessment of Polyvinyl Chloride Films Plasticized with Citrullus lanatus Seed Oil Based Novel Plasticizer. Polym. Test. 2021, 101, 107271. [Google Scholar] [CrossRef]
- Jubinville, D.; Esmizadeh, E.; Tzoganakis, C.; Mekonnen, T. Thermo-Mechanical Recycling of Polypropylene for the Facile and Scalable Fabrication of Highly Loaded Wood Plastic Composites. Compos. Part B Eng. 2021, 219, 108873. [Google Scholar] [CrossRef]
- Guo, W.; Yu, Z.; Wei, W.; Meng, Z.; Mao, H.; Hua, L. Effect of Film Types on Thermal Response, Cellular Structure, Forming Defects and Mechanical Properties of Combined in-Mold Decoration and Microcellular Injection Molding Parts. J. Mater. Sci. Technol. 2021, 92, 98–108. [Google Scholar] [CrossRef]
- Xue, R.-C.; Li, L.; Yu, L.-P.; Wang, B. Design and Synthesis of Y-Shaped Triblock Copolymer for Enhanced Antibiofouling Polyvinyl Chloride (PVC) Plastics. Eur. Polym. J. 2025, 235, 114067. [Google Scholar] [CrossRef]
- Rezvanian, K.; Panickar, R.; Soso, F.; Rangari, V. Mathematical Modeling and Optimization of Poly(Ethylene Vinyl Alcohol) Film Thickness and Ethylene Composition Based on I-Optimal Design. J. Appl. Polym. Sci. 2025, 142, e56827. [Google Scholar] [CrossRef]
- Peng, Y.; Wu, Y.; Li, Y. Development of Tea Extracts and Chitosan Composite Films for Active Packaging Materials. Int. J. Biol. Macromol. 2013, 59, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Rhim, J.-W. Fabrication of Chitosan-Based Functional Nanocomposite Films: Effect of Quercetin-Loaded Chitosan Nanoparticles. Food Hydrocoll. 2021, 121, 107065. [Google Scholar] [CrossRef]
- Sánchez-González, L.; Cháfer, M.; González-Martínez, C.; Chiralt, A.; Desobry, S. Study of the Release of Limonene Present in Chitosan Films Enriched with Bergamot Oil in Food Simulants. J. Food Eng. 2011, 105, 138–143. [Google Scholar] [CrossRef]
- Yu, M.; Hou, Y.; Zheng, L.; Han, Y.; Wang, D. Soy Protein Isolate-Based Active Films Functionalized with Zanthoxylum bungeanum by-Products: Effects on Barrier, Mechanical, Antioxidant and Cherry Tomato Preservation Performance. Int. J. Biol. Macromol. 2023, 253, 127539. [Google Scholar] [CrossRef] [PubMed]
- Suhag, R.; Kumar, N.; Petkoska, A.T.; Upadhyay, A. Film Formation and Deposition Methods of Edible Coating on Food Products: A Review. Food Res. Int. 2020, 136, 109582. [Google Scholar] [CrossRef] [PubMed]
- Elhadef, K.; Chaari, M.; Akermi, S.; Ben Hlima, H.; Ennouri, M.; Abdelkafi, S.; Agriopoulou, S.; Ali, D.S.; Boulekbache-Makhlouf, L.; Mellouli, L.; et al. pH-Sensitive Films Based on Carboxymethyl Cellulose/Date Pits Anthocyanins: A Convenient Colorimetric Indicator for Beef Meat Freshness Tracking. Food Biosci. 2024, 57, 103508. [Google Scholar] [CrossRef]
- Perdones, A.; Sánchez-González, L.; Chiralt, A.; Vargas, M. Effect of Chitosan–Lemon Essential Oil Coatings on Storage-Keeping Quality of Strawberry. Postharvest Biol. Technol. 2012, 70, 32–41. [Google Scholar] [CrossRef]
- Campos-Requena, V.H.; Rivas, B.L.; Pérez, M.A.; Figueroa, C.R.; Figueroa, N.E.; Sanfuentes, E.A. Thermoplastic Starch/Clay Nanocomposites Loaded with Essential Oil Constituents as Packaging for Strawberries—In vivo Antimicrobial Synergy over Botrytis cinerea. Postharvest Biol. Technol. 2017, 129, 29–36. [Google Scholar] [CrossRef]
- Phuong, N.T.H.; Koga, A.; Nkede, F.N.; Tanaka, F.; Tanaka, F. Application of Edible Coatings Composed of Chitosan and Tea Seed Oil for Quality Improvement of Strawberries and Visualization of Internal Structure Changes Using X-Ray Computed Tomography. Prog. Org. Coat. 2023, 183, 107730. [Google Scholar] [CrossRef]
- Wang, R.; Fan, W.; Zhu, L.; Wang, W.; Luo, X.; Yan, W.; Wang, T.; Zhang, H. Edible Rice Starch Films Incorporated with Curcumin Nanoparticles Exerting Anti-Microbial Properties for Strawberry Preservation. Int. J. Biol. Macromol. 2025, 310, 142993. [Google Scholar] [CrossRef] [PubMed]
- Bayrak Akay, K.; Alaşalvar, H.; Başyiğit, B.; Karaaslan, M. Design and Characterization of a Pea Protein/Nucleic Acid-Based Biopolymeric Film for Strawberry Preservation. Food Packag. Shelf Life 2025, 50, 101557. [Google Scholar] [CrossRef]
- Yan, Y.; Duan, S.; Zhang, H.; Liu, Y.; Li, C.; Hu, B.; Liu, A.; Wu, D.; He, J.; Wu, W. Preparation and Characterization of Konjac Glucomannan and Pullulan Composite Films for Strawberry Preservation. Carbohydr. Polym. 2020, 243, 116446. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Zhou, L.; Huang, H.; Xu, J.; Li, Y.; Yu, W.; Peng, S.; Zou, L.; Liu, W. The Improvement of Water Barrier Property in Gelatin/Carboxymethyl Cellulose Composite Film by Electrostatic Interaction Regulation and Its Application in Strawberry Preservation. Food Chem. 2024, 450, 139352. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Liu, G.; Ye, W.; Xu, Z.; Li, W.; Zhuang, J.; Zhang, X.; Wang, L.; Lei, B.; Hu, C.; et al. Multifunctional Carbon Dots Reinforced Gelatin-Based Coating Film for Strawberry Preservation. Food Hydrocoll. 2024, 147, 109327. [Google Scholar] [CrossRef]
- Guo, H.; Li, A.; Huang, G.; Jin, X.; Xiao, Y.; Gan, R.-Y.; Gao, H. Development of Apple Pectin/Soy Protein Isolate-Based Edible Films Containing Punicalagin for Strawberry Preservation. Int. J. Biol. Macromol. 2024, 273, 133111. [Google Scholar] [CrossRef] [PubMed]
- Hassan, B.; Chatha, S.A.S.; Hussain, A.I.; Zia, K.M.; Akhtar, N. Recent Advances on Polysaccharides, Lipids and Protein Based Edible Films and Coatings: A Review. Int. J. Biol. Macromol. 2018, 109, 1095–1107. [Google Scholar] [CrossRef] [PubMed]
Sample | Chickpea Protein (%) | Whey Protein (%) | Quercetin (mg/g Dry Matter) | Glycerol (g/g Protein) |
---|---|---|---|---|
CF | 100 | 0 | 50 | 0.30 |
CWF1 | 90 | 10 | 50 | 0.30 |
CWF2 | 80 | 20 | 50 | 0.30 |
CWF3 | 70 | 30 | 50 | 0.30 |
CWF4 | 60 | 40 | 50 | 0.30 |
CWF5 | 50 | 50 | 50 | 0.30 |
Samples | ||
---|---|---|
Essential Amino Acids | Chickpea Protein (%) | Whey Protein (%) |
Histidine | 1.26 ± 0.00 | 0.41 ± 0.00 |
Leucine | 1.73 ± 0.05 | 1.16 ± 0.01 |
Isoleucine | 0.01 ± 0.00 | 0.85 ± 0.00 |
Lysine | 4.23 ± 0.07 | 1.41 ± 0.01 |
Methionine | 1.30 ± 0.02 | 1.17 ± 0.04 |
Phenylalanine | 2.28 ± 0.05 | 0.73 ± 0.03 |
Threonine | 1.57 ± 0.05 | 0.56 ± 0.00 |
Tryptophan | 2.65 ± 0.03 | 0.06 ± 0.00 |
Valine | 1.44 ± 0.06 | 1.73 ± 0.03 |
Sum | 16.48 ± 0.10 | 8.09 ± 0.08 |
Non-essential amino acids | Chickpea protein (%) | Whey protein (%) |
Alanine | 2.20 ± 0.05 | 60.02 ± 0.25 |
Anserine | 2.74 ± 0.00 | 7.78 ± 0.05 |
Arginine | 34.16 ± 0.24 | 0.78 ± 0.03 |
Argininosuccinic acid | 0.89 ± 0.01 | 0.00 ± 0.00 |
Asparagine | 3.28 ± 0.02 | 0.59 ± 0.00 |
Aspartic acid | 2.32 ± 0.07 | 1.05 ± 0.02 |
Beta-alanine | 0.17 ± 0.00 | 0.07 ± 0.00 |
Beta amino iso butyric acid | 0.20 ± 0.05 | 0.11 ± 0.02 |
Citrulline | 2.11 ± 0.05 | 0.18 ± 0.01 |
Etanolamine | 4.24 ± 0.10 | 0.65 ± 0.00 |
Gamma amino butyric acid | 0.15 ± 0.02 | 0.11 ± 0.02 |
Glutamic acid | 12.30 ± 0.11 | 1.82 ± 0.05 |
Glutamine | 1.08 ± 0.01 | 1.65 ± 0.01 |
Glycine | 4.65 ± 0.09 | 4.81 ± 0.06 |
Histamine | 0.01 ± 0.00 | 0.50 ± 0.05 |
Hydroxyproline | 0.70 ± 0.04 | 0.45 ± 0.01 |
Ornithine | 4.24 ± 0.09 | 0.43 ± 0.02 |
Proline | 3.67 ± 0.10 | 3.71 ± 0.04 |
Sarcosine | 0.41 ± 0.02 | 4.69 ± 0.04 |
Serine | 2.21 ± 0.04 | 1.77 ± 0.03 |
Thia proline | 0.61 ± 0.03 | 0.03 ± 0.00 |
Tyrosine | 1.18 ± 0.06 | 0.41 ± 0.02 |
Sum | 83.52 ± 0.25 | 91.91 ± 0.19 |
Sample | Moisture Content (%) | Thickness (mm) | L* | a* | b* | Opacity (Abs/mm) |
---|---|---|---|---|---|---|
CF | 17.86 ± 0.11 b | 0.10 ± 0.01 c | 82.08 ± 0.01 f | −0.28 ± 0.01 a | 28.37 ± 0.01 a | 1.73 ± 0.01 d |
CWF1 | 17.99 ± 0.04 b | 0.10 ± 0.01 c | 84.15 ± 0.01 e | −0.34 ± 0.02 a | 27.00 ± 0.18 b | 1.85 ± 0.01 bc |
CWF2 | 17.76 ± 0.31 b | 0.11 ± 0.01 bc | 84.73 ± 0.05 d | −0.44 ± 0.02 b | 26.07 ± 0.08 c | 1.76 ± 0.01 d |
CWF3 | 18.01 ± 0.47 b | 0.12 ± 0.01 b | 85.51 ± 0.02 c | −0.66 ± 0.01 c | 25.54 ± 0.05 d | 1.84 ± 0.01 c |
CWF4 | 16.12 ± 0.32 c | 0.10 ± 0.01 c | 85.94 ± 0.01 b | −0.70 ± 0.05 cd | 24.89 ± 0.03 e | 1.93 ± 0.01 b |
CWF5 | 20.18 ± 0.23 a | 0.15 ± 0.01 a | 86.32 ± 0.21 a | −0.76 ± 0.04 d | 24.35 ± 0.08 f | 2.55 ± 0.01 a |
Sample | Solubility (%) | Swelling Ratio (%) | ||||
---|---|---|---|---|---|---|
Water | 50% Ethanol | %95 Ethanol | Water | 50% Ethanol | %95 Ethanol | |
CF | 73.05 ± 0.88 a | 69.97 ± 0.66 a | 35.24 ± 0.16 a | 171.85 ± 2.13 d | 159.95 ± 0.86 d | 52.41 ± 0.37 f |
CWF1 | 70.33 ± 0.68 bc | 67.67 ± 0.31 b | 33.01 ± 0.31 c | 186.09 ± 2.02 c | 171.12 ± 0.94 c | 58.12 ± 0.32 d |
CWF2 | 68.23 ± 0.31 d | 67.00 ± 0.33 bc | 32.06 ± 0.07 d | 188.79 ± 2.20 c | 172.12 ± 0.47 c | 65.05 ± 0.25 c |
CWF3 | 69.06 ± 0.62 cd | 66.29 ± 0.23 c | 31.20 ± 0.36 e | 266.32 ± 3.02 b | 246.00 ± 1.20 b | 70.16 ± 0.41 b |
CWF4 | 60.62 ± 0.74 e | 58.40 ± 0.27 d | 27.91 ± 0.52 f | 282.02 ± 1.83 a | 260.06 ± 0.87 a | 66.06 ± 0.40 a |
CWF5 | 71.15 ± 0.50 b | 69.39 ± 0.50 a | 33.95 ± 0.23 b | 164.16 ± 1.67 e | 153.05 ± 0.72 e | 54.45 ± 0.31 e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karakuş, M.Ş. Structural Properties, Mechanical Behavior, and Food Protecting Ability of Chickpea Protein-Derived Biopolymer Films. Polymers 2025, 17, 1938. https://doi.org/10.3390/polym17141938
Karakuş MŞ. Structural Properties, Mechanical Behavior, and Food Protecting Ability of Chickpea Protein-Derived Biopolymer Films. Polymers. 2025; 17(14):1938. https://doi.org/10.3390/polym17141938
Chicago/Turabian StyleKarakuş, Mehmet Şükrü. 2025. "Structural Properties, Mechanical Behavior, and Food Protecting Ability of Chickpea Protein-Derived Biopolymer Films" Polymers 17, no. 14: 1938. https://doi.org/10.3390/polym17141938
APA StyleKarakuş, M. Ş. (2025). Structural Properties, Mechanical Behavior, and Food Protecting Ability of Chickpea Protein-Derived Biopolymer Films. Polymers, 17(14), 1938. https://doi.org/10.3390/polym17141938