Investigation of Shape Memory Polyurethane Properties in Cold Programming Process Towards Its Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Specimens
2.2. Differential Scanning Calorimetry (DSC) and Modulated Differential Scanning Calorimetry (MDSC)
2.3. Dynamic Mechanical Analysis (DMA)
2.4. The Mechanical and Thermomechanical Investigation of PU-SMP
3. Results and Discussion
3.1. Results and Analysis of the Structural Characterization of PU-SMP Tg = 65 °C
3.1.1. Differential Scanning Calorimetry and Modulated Differential Scanning Calorimetry
3.1.2. Dynamic Mechanical Analysis Results
3.2. Results and Analysis of Mechanical Characteristics of PU-SMP Tg = 65 °C at Various Temperatures
3.3. Characterization of PU-SMP Tg = 65 °C Shape Memory Properties
3.3.1. Investigation of PU-SMP Tg = 65 °C Shape Memory Properties at Temperature of 25 °C
3.3.2. Investigation of PU-SMP Tg = 65 °C Shape Memory Properties at 45 °C
3.3.3. Investigation of PU-SMP Shape Memory Properties at Tg = 65 °C
3.3.4. Determination and Comparison of Shape Fixity and Shape Recovery Parameters of PU-SMP Tg = 65 °C Obtained in Various Conditions
- εm—the maximum strain,
- εun—the strain obtained after unloading,
- εir—the irrecoverable strain obtained after heating up to Tg + 5 °C under no-load conditions.
- εh—the strain after holding for 30 min at room temperature.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hayashi, S.; Kondo, S.; Kapadia, P.; Ushioda, E. Room-temperature-functional shape-memory polymers. Plast. Eng. 1995, 51, 29–31. [Google Scholar]
- Lendlein, A.; Kelch, S. Shape-memory polymers. Angew. Chem. Int. Ed. 2002, 41, 2034–2057. Available online: https://onlinelibrary.wiley.com/doi/10.1002/1521-3773(20020617)41:12%3C2034::AID-ANIE2034%3E3.0.CO;2-M (accessed on 15 September 2023). [CrossRef]
- Zhao, Q.; Qi, H.J.; Xie, T. Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding. Prog. Polym. Sci. 2015, 49–50, 79–120. [Google Scholar] [CrossRef]
- Wang, X.; He, Y.; Liu, Y.; Leng, J. Advances in shape memory polymers: Remote actuation, multi-stimuli control, 4D printing and prospective applications. Mater. Sci. Eng. R Rep. 2022, 151, 100702. [Google Scholar] [CrossRef]
- Tobushi, H.; Matsui, R.; Takeda, K.; Pieczyska, E.A. Mechanical Properties of Shape Memory Materials; Nova Science Publishers: NewYork, NY, USA, 2013. [Google Scholar]
- Li, G.; Wang, Y.; Wang, S.; Liu, Z.; Liu, Z.; Jiang, J. A thermo- and moisture-responsive zwitterionic shape memory polymer for novel self-healable wound dressing applications. Macromol. Mater. Eng. 2019, 304, 1800603. [Google Scholar] [CrossRef]
- Staszczak, M.; Nabavian Kalat, M.; Golasiński, K.M.; Urbański, L.; Takeda, K.; Matsui, R.; Pieczyska, E.A. Characterization of polyurethane shape memory polymer and determination of shape fixity and shape recovery in subsequent thermomechanical cycles. Polymers 2022, 14, 4775. [Google Scholar] [CrossRef]
- Wu, M.; Sukyai, P.; Lv, D.; Zhang, F.; Wang, P.; Liu, C.; Li, B. Water and humidity-induced shape memory cellulose nanopaper with quick response, excellent wet strength and folding resistance. Chem. Eng. J. 2020, 392, 123673. [Google Scholar] [CrossRef]
- Xue, J.; Ge, Y.; Liu, Z.; Liu, Z.; Jiang, J.; Li, G. Photoprogrammable moisture-responsive actuation of a shape memory polymer film. ACS Appl. Mater. Interfaces 2022, 14, 10836–10843. [Google Scholar] [CrossRef]
- Wang, T.; Farajollahi, M.; Choi, Y.S.; Lin, I.-T.; Marshall, J.E.; Thompson, N.M.; Kar-Narayan, S.; Madden, J.D.W.; Smoukov, S.K. Electroactive polymers for sensing. Interface Focus 2016, 6, 20160026. [Google Scholar] [CrossRef]
- Ramezani, M.; Monroe, M.B.B. Biostable segmented thermoplastic polyurethane shape memory polymers for smart biomedical applications. ACS Appl. Polym. Mater. 2022, 4, 1956–1965. [Google Scholar] [CrossRef]
- Kocak, G.; Tuncera, C.; Bütün, V. pH-Responsive polymers. Polym. Chem. 2017, 8, 144–176. [Google Scholar] [CrossRef]
- Zhang, Y.; Liao, J.; Wang, T.; Sun, W.; Tong, Z. Polyampholyte Hydrogels with pH Modulated Shape Memory and Spontaneous Actuation. Adv. Funct. Mater. 2018, 28, 1707245. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Wang, Y.-Z.; Shu, J.-C.; Cao, W.-Q.; Li, C.-S.; Cao, M.-S. Graphene Implanted Shape Memory Polymers with Dielectric Gene Dominated Highly Efficient Microwave Drive. Adv. Funct. Mater. 2023, 33, 2303560. [Google Scholar] [CrossRef]
- Jiang, H.Y.; Kelch, S.; Lendlein, A. Polymers Move in Response to Light. Adv. Mater. 2006, 18, 1471–1475. [Google Scholar] [CrossRef]
- Jin, X.; Liu, X.; Li, X.; Du, L.; Su, L.; Ma, Y.; Ren, S. High lignin, light-driven shape memory polymers with excellent mechanical performance. Int. J. Biol. Macromol. 2022, 219, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Nabavian Kalat, M.; Staszczak, M.; Urbański, L.; Fernandez, C.; Vega, C.; Cristea, M.; Ionita, D.; Lantada, A.; Pieczyska, E.A. Investigating a shape memory epoxy resin and its application to engineering shape-morphing devices empowered through kinematic chains and compliant joints. Mater. Des. 2023, 233, 112263. [Google Scholar] [CrossRef]
- Roudaut, G.; Simatos, D.; Champion, D.; Contreras-Lopez, E.; Le Meste, M. Molecular mobility around the glass transition temperature: A mini review. Innov. Food Sci. Emerg. Technol. 2004, 5, 127–134. [Google Scholar] [CrossRef]
- Tobushi, H.; Hashimoto, T.; Ito, N.; Hayashi, S.; Yamada, E. Shape fixity and shape recovery in a film of shape memory polymer of polyurethane series. J. Intell. Mater. Syst. Struct. 1998, 9, 127–136. [Google Scholar] [CrossRef]
- Santiago, D.; Ferrando, F.; De la Flor, S. Influence of holding time and shape recovery in a Polyurethane Shape-Memory Polymer. J. Mater. Eng. Perform. 2014, 23, 2567–2573. [Google Scholar] [CrossRef]
- Gunes, I.S.; Cao, F.; Jana, S.C. Effect of thermal expansion on shape memory behavior of polyurethane and its nanocomposites. J. Polym. Sci. B 2008, 46, 1437–1449. [Google Scholar] [CrossRef]
- Huang, W.M.; Yang, B.; Fu, Y.Q. Polyurethane Shape Memory Polymers, 1st ed.; CRC Press: Bosa Raton, FL, USA; Taylor & Francis: Abingdon, UK, 2012. [Google Scholar]
- Yang, Q.; Li, Q. Investigation into stress recovery behavior of shape memory polyurethane fiber. J. Polym. Sci. Part B Polym. Phys. 2014, 52, 1429–1440. [Google Scholar] [CrossRef]
- Qi, H.J.; Boyce, M.C. Stress–strain behavior of thermoplastic polyurethanes. Mech. Mater. 2005, 37, 817–839. [Google Scholar] [CrossRef]
- Baer, G.M.; Small, W.; Wilson, T.S.; Benett, W.J.; Matthews, D.L.; Hartman, J.; Maitland, D.J. Fabrication and in vitro deployment of a laser-activated shape memory polymer vascular stent. BioMed. Eng. OnLine 2007, 6, 43. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.-M.; Cha, J.-R.; Kim, J.-G. Preparation of body-temperature-triggered shape-memory polyurethane with biocompatibility using isosorbide and castor oil. Polym. Test. 2020, 91, 106852. [Google Scholar] [CrossRef]
- Bil, M.; Kijenska-Gawronska, E.; Glodkowska-Mrowka, E.; Manda-Handzlik, A.; Mrowka, P. Design and in vitro evaluation of electrospun shape memory polyurethanes for self-fitting tissue engineering grafts and drug delivery systems. Mater. Sci. Eng. C 2020, 110, 110675. [Google Scholar] [CrossRef]
- Bil, M.; Jurczyk-Kowalska, M.; Kopeć, K.; Heljak, M. Study of correlation between structure and shape-memory effect/drug-release profile of polyurethane/hydroxyapatite composites for antibacterial implants. Polymers 2023, 15, 938. [Google Scholar] [CrossRef]
- Jung, Y.C.; Cho, J.W. Application of shape memory polyurethane in orthodontic. J. Mater. Sci.-Mater. Med. 2010, 21, 2881–2886. [Google Scholar] [CrossRef]
- Scalet, G. Two-Way and Multiple-Way Shape Memory Polymers for Soft Robotics: An Overview. Actuators 2020, 9, 10. [Google Scholar] [CrossRef]
- Ahmed, N.; Niaz, B.; Ahmed, S.; Javid, M.T.; Ali, M.; Tariq, M. Mechanically robust and highly elastic thermally induced shape memory polyurethane based composites for smart and sustainable robotic applications. Polym. Adv. Technol. 2023, 34, 1075–1419. [Google Scholar] [CrossRef]
- Liu, Y.; Du, H.; Liu, L.; Leng, J. Shape memory polymers and their composites in aerospace applications: A review. Smart Mater. Struct. 2014, 23, 023001. [Google Scholar] [CrossRef]
- Melly, S.K.; Liu, L.; Liu, Y.; Leng, J. Active composites based on shape memory polymers: Overview, fabrication methods, applications, and future prospects. J. Mater. Sci. 2020, 55, 10975–11051. [Google Scholar] [CrossRef]
- Hu, J.; Meng, H.; Li, G.; Ibekwe, S.I. A review of stimuli-responsive polymers for smart textile applications. Smart Mater. Struct. 2012, 21, 053001. [Google Scholar] [CrossRef]
- Thakur, S.; Jahid, M.A.; Hu, J.L. Mechanically strong shape memory polyurethane for water vapour permeable membranes. Polym. Int. 2018, 67, 1386–1392. [Google Scholar] [CrossRef]
- Jahid, M.A.; Hu, J.; Wong, K.; Wu, Y.; Zhu, Y.; Sheng Luo, H.H.; Zhongmin, D. Fabric coated with shape memory polyurethane and its properties. Polymers 2018, 10, 681. [Google Scholar] [CrossRef] [PubMed]
- Memis, N.K.; Kaplan, S. Enhancing wool fabric easy care properties by shape memory polyurethane finishing. AATCC J. Res. 2020, 7, 26–33. [Google Scholar] [CrossRef]
- Garg, H.; Mohanty, J.; Gupta, P.; Das, A.; Tripathi, B.P.; Kumar, B. Effect of heat-set temperature on the crease recovery behavior of cotton fabric dip-coated with shape memory polyurethane. Mater. Chem. Phys. 2023, 294, 126952. [Google Scholar] [CrossRef]
- Kumar, B.; Noor, N.; Thakur, S.; Pan, N.; Narayana, H.; Yan, S.C.; Wang, F.; Shah, P. Shape memory polyurethane-based smart polymer substrates for physiologically responsive, dynamic pressure (re)distribution. ACS Omega 2019, 4, 15348–15358. [Google Scholar] [CrossRef]
- Ilhan, I.; Kaya, M.; Turan, D.; Gunes, G.; Guner, F.S.; Kılıç, A. Thermoresponsive polyurethane films for packaging applications: Effects of film formulation on their properties. Food Packag. Shelf Life 2021, 29, 100695. [Google Scholar] [CrossRef]
- Li, G.; Wang, A. Cold, warm, and hot programming of shape memory polymers. J. Polym. Sci. Part B Polym. Phys. 2016, 54, 1319–1339. [Google Scholar] [CrossRef]
- Shahi, K.; Boomurugan, R.; Velmurugan, R. Cold programming of epoxy-based shape memory polymer. Structures 2021, 29, 2082–2093. [Google Scholar] [CrossRef]
- Zotzmann, J.; Behl, M.; Feng, Y.; Lendlein, A. Copolymer networks based on poly(ω-pentadecalactone) and poly(ε-caprolactone) segments as a versatile triple-shape polymer system. Adv. Funct. Mater. 2010, 20, 3583–3594. [Google Scholar] [CrossRef]
- Li, G.; Xu, W. Thermomechanical behavior of thermoset shape memory polymer programmed by cold-compression: Testing and constitutive modeling. J. Mech. Phys. Solids 2011, 59, 1231–1250. [Google Scholar] [CrossRef]
- Shahi, K.; Ramachandran, V. Theoretical and experimental investigation of shape memory polymers programmed below glass transition temperature. Polymers 2022, 14, 2753. [Google Scholar] [CrossRef] [PubMed]
- Yue, L.; Sun, K.; Yu, L.; Li, M.; Montgomery, S.M.; Song, Y.; Nomura, T.; Tanaka, M.; Qi, H.J. Cold-programmed shape-morphing structures based on grayscale digital light processing 4D printing. Nat. Commun. 2023, 14, 5519. [Google Scholar] [CrossRef]
- Lewis, L.; Meng, Y.; Anthamatten, M. Well-defined shape-memory networks with high elastic energy capacity. Macromolecules 2015, 48, 4918–4926. [Google Scholar] [CrossRef]
- Abishera, R.; Velmurugan, R.; Gopal, K.V.N. Reversible plasticity shape memory effect in carbon nanotubes reinforced epoxy nanocomposites. Compos. Sci. Technol. 2016, 137, 148–158. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Hailstone, R.; Lewis, C.L. Thermoplastic blend exhibiting shape memory-assisted self-healing functionality. ACS Appl. Mater. Interfaces 2020, 12, 46733–46742. [Google Scholar] [CrossRef]
- Szczepinski, W. Experimental Methods in Mechanics of Solids; PWN-Polish Scientific Publishers: Warsaw, Poland; Elsevier Science Publishers: Warsaw, Poland, 1990. [Google Scholar]
- Pieczyska, E.A.; Staszczak, M.; Maj, M.; Kowalczyk-Gajewska, K.; Golasiński, K.; Cristea, M.; Tobushi, H.; Hayashi, S. Investigation of thermomechanical couplings, strain localization and shape memory properties in a shape memory polymer subjected to loading at various strain rates. Smart Mater. Struct. 2016, 25, 085002. [Google Scholar] [CrossRef]
- Pieczyska, E.A.; Staszczak, M.; Kowalczyk-Gajewska, K.; Maj, M.; Golasiński, K.; Golba, S.; Tobushi, H.; Hayashi, S. Experimental and numerical investigation of yielding phenomena in a shape memory polymer subjected to cyclic tension at various strain rates. Polym. Test. 2017, 60, 333–342. [Google Scholar] [CrossRef]
- Pieczyska, E.A.; Maj, M.; Kowalczyk-Gajewska, K.; Staszczak, M.; Gradys, A.; Majewski, M.; Cristea, M.; Tobushi, H.; Hayashi, S. Thermomechanical properties of polyurethane shape memory polymer–experiment and modelling. Smart Mater. Struct. 2015, 24, 045043. [Google Scholar] [CrossRef]
Storage Modulus E′ at 20 °C, MPa | Tg, °C | htan δ | Storage Modulus E′ at 80 °C, MPa | |
---|---|---|---|---|
E’onset | tan δ | |||
2160 | 50.17 | 65.21 | 1.17 | 4.42 |
Mechanical Property | At 25 °C | At 45 °C | At 65 °C |
---|---|---|---|
Young’s modulus, MPa | 811.47 ± 3.36 | 513.67 ± 1.42 | 1.75 ± 0.05 |
Yield strength, MPa | 53.01 ± 0.75 | 21.20 ± 0.23 | − |
Elongation at break, % | 169.99 ± 2.78 | 187.30 ± 3.56 | − |
Specimen | Loading Temperature of Cold-Programming, °C | Shape Fixity Rf, % | Shape Holding Rfh, % | Shape Recovery Rr, % |
---|---|---|---|---|
1 | 25 | 89.25 | 83.26 | 93.06 |
2 | 25 | 89.47 | 82.64 | 92.96 |
3 | 25 | 89.88 | 84.04 | 92.98 |
Average | 25 | 89.53 ± 0.32 | 83.31 ± 0.69 | 93.00 ± 0.05 |
1 | 45 | 96.81 | 95.33 | 89.87 |
2 | 45 | 96.57 | 95.05 | 90.28 |
3 | 45 | 96.21 | 94.63 | 90.38 |
Average | 45 | 96.53 ± 0.30 | 95.00 ± 0.35 | 90.17 ± 0.27 |
1 | 65 | 97.97 | 97.37 | 90.42 |
2 | 65 | 98.34 | 97.48 | 90.31 |
3 | 65 | 98.14 | 96.01 | 90.19 |
Average | 65 | 98.16 ± 0.18 | 96.95 ± 0.82 | 90.31 ± 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Staszczak, M.; Urbański, L.; Cristea, M.; Ionita, D.; Pieczyska, E.A. Investigation of Shape Memory Polyurethane Properties in Cold Programming Process Towards Its Applications. Polymers 2024, 16, 219. https://doi.org/10.3390/polym16020219
Staszczak M, Urbański L, Cristea M, Ionita D, Pieczyska EA. Investigation of Shape Memory Polyurethane Properties in Cold Programming Process Towards Its Applications. Polymers. 2024; 16(2):219. https://doi.org/10.3390/polym16020219
Chicago/Turabian StyleStaszczak, Maria, Leszek Urbański, Mariana Cristea, Daniela Ionita, and Elżbieta Alicja Pieczyska. 2024. "Investigation of Shape Memory Polyurethane Properties in Cold Programming Process Towards Its Applications" Polymers 16, no. 2: 219. https://doi.org/10.3390/polym16020219
APA StyleStaszczak, M., Urbański, L., Cristea, M., Ionita, D., & Pieczyska, E. A. (2024). Investigation of Shape Memory Polyurethane Properties in Cold Programming Process Towards Its Applications. Polymers, 16(2), 219. https://doi.org/10.3390/polym16020219