Impact of Polylactic Acid Fibers in Cellulose Nonwoven Mulch Blends on Biodegradability and Performance—An Open Field Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
3.1. Mass per Unit Area, Thickness, and Air Permeability of Nonwoven Mulches
3.2. Tensile Properties of Nonwoven Mulches
3.3. FTIR Analyses of Mulches through the Field-Testing Period
3.4. Soil Temperature and Moisture Beneath Mulches and Weed Suppression Capacity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Carlos Alberto Ávila-Orta, C.A.; Covarrubias-Gordillo, C.A.; Fonseca-Florido, H.A.; Melo-López, L.; Radillo-Ruíz, R.; Gutiérrez-Montiel, E. PLA/modified-starch blends and their application for the fabrication of non-woven fabrics by melt-blowing. Carbohydr. Polym. 2023, 316, 120975. [Google Scholar] [CrossRef] [PubMed]
- Dharmalingam, S. Biodegradation and Photodegradation of Polylactic Acid and Polylactic Acid/Polyhydroxyalkanoate Blends Nonwoven Agricultural Mulches in Ambient Soil Conditions. Ph.D. Dissertation, University of Tennessee, Knoxville, TN, USA, 2014. [Google Scholar]
- Liu, Y.; Zhan, Z.; Ye, H.; Lin, X.; Yan, Y.; Zhang, Y. Accelerated biodegradation of PLA/PHB-blended nonwovens by a microbial community. RSC Adv. 2019, 9, 10386–10394. [Google Scholar] [CrossRef] [PubMed]
- Sreekumar, K.; Bindhu, B.; Veluraja, K. Perspectives o polylactic acid from structure to applications. Polym. Renew. Resour. 2021, 12, 60–74. [Google Scholar] [CrossRef]
- Dharmalingam, S.; Hayes, D.G.; Wadsworth, L.C.; Dunlap, R.N. Analysis of the time course of degradation for fully biobased nonwoven agricultural mulches in compost-enriched soil. Text. Res. J. 2016, 86, 1343–1355. [Google Scholar] [CrossRef]
- Hablot, E.; Dharmalingam, S.; Hayes, D.G.; Wadsworth, L.C.; Blazy, C.; Narayan, R. Effect of Simulated Weathering on Physicochemical Properties and Inherent Biodegradation of PLA/PHA Nonwoven Mulches. J. Polym. Environ. 2014, 22, 417–429. [Google Scholar] [CrossRef]
- Karamanlioglu, M.; Robson, G.D. The influence of biotic and abiotic factors on the rate of degradation of poly(lactic) acid (PLA) coupons buried in compost and soil. Polym. Degrad. Stab. 2013, 98, 2063–2071. [Google Scholar] [CrossRef]
- Puchalski, M.; Siwek, P.; Panayotov, N.; Berova, M.; Kowalska, S.; Krucinska, I. Influence of Various Climatic Conditions on the Structural Changes of Semicrystalline PLA Spun-Bonded Mulching Nonwovens during Outdoor Composting. Polymers 2019, 11, 559. [Google Scholar] [CrossRef]
- González-López, M.E.; Martín del Campo, A.S.; Robledo-Ortíz, J.R.; Arellano, M.; Pérez-Fonseca, A.A. Accelerated weathering of poly(lactic acid) and its biocomposites: A review. Polym. Degrad. Stab. 2020, 179, 109290. [Google Scholar] [CrossRef]
- Fang, C.-C.; Zhang, Y.; Qi, S.-Y.; Li, Y.-Y.; Wang, P. Characterization and analyses of degradable composites made with needle-punched jute nonwoven and polylactic acid (PLA) membrane. Cellulose 2020, 27, 5971–5980. [Google Scholar] [CrossRef]
- Plackett, D.; Løgstrup Andersen, T.; Batsberg Pedersen, W.; Nielsen, L. Biodegradable composites based on l-polylactide and jute fibers. Compos. Sci. Technol. 2003, 63, 1287–1296. [Google Scholar] [CrossRef]
- ISO 9073-1:2023; Nonwovens—Test Methods—Part 1: Determination of Mass per Unit Area. International Organization for Standardization: Geneva, Switzerland, 2023.
- ISO 9073-2:2003; Textiles—Test Methods for Nonwovens—Part 2: Determination of Thickness. International Organization for Standardization: Geneva, Switzerland, 2003.
- ISO 9073-15:2007; Textiles—Test Methods for Nonwovens—Part 15: Determination of Air Permeability. International Organization for Standardization: Geneva, Switzerland, 2007.
- ISO 9073-3:2023; Nonwovens—Test Methods—Part 3: Determination of Tensile Strength and Elongation at Break Using the Strip Method. International Organization for Standardization: Geneva, Switzerland, 2023.
- Marasovic, P.; Kopitar, D.; Brunsek, R.; Schwarz, I. Performance and Degradation of Nonwoven Mulches Made of Natural Fibers and PLA Polymer—Open Field Study. Polymers 2023, 15, 4447. [Google Scholar] [CrossRef]
- Comnea-Stancu, I.R.; Wieland, K.; Ramer, G.; Schwaighofer, A.; Lendl, B. On the Identification of Rayon/Viscose as a Major Fraction of Microplastics in the Marine Environment: Discrimination between Natural and Manmade Cellulosic Fibers Using Fourier Transform Infrared Spectroscopy. Appl. Spectrosc. 2016, 71, 939–950. [Google Scholar] [CrossRef] [PubMed]
- Geminiani, L.; Campione, F.P.; Corti, C.; Luraschi, M.; Motella, S.; Recchia, S.; Rampazzi, L. Differentiating between Natural and Modified Cellulosic Fibers Using ATR-FTIR Spectroscopy. Heritage 2022, 5, 4114–4139. [Google Scholar] [CrossRef]
- Sülar, V.; Devrim, G. Biodegradation Behaviour of Different Textile Fibers: Visual, Morphological, Structural Properties and Soil Analyses. Fibers Text. East. Eur. 2019, 27, 100–111. [Google Scholar]
- Mohapatra, H.S.; Malik, R.K. Effect of Microorganism on Flax and Linen. J. Text. Sci. Eng. 2015, 6, 1000229. [Google Scholar]
- Stelea, L.; Filip, I.; Lisa, G.; Ichim, M.; Drobota, M.; Sava, C.; Mures, A. Characterisation of Hemp Fibers Reinforced Composites Using Thermoplastic Polymers as Matrices. Polymers 2022, 14, 481. [Google Scholar] [CrossRef]
- Sawpan, M.A.; Pickering, K.L.; Fernyhough, A. Effect of various chemical treatments on the fiber structure and tensile properties of industrial hemp fibers. Compos. Part A Appl. Sci. Manuf. 2011, 42, 888–895. [Google Scholar] [CrossRef]
- Shahinur, S.; Hasan, M.; Ahsan, Q.; Sultana, N.; Ahmed, Z.; Haider, J. Effect of Rot-, Fire-, and Water- Retardant Treatments onJute Fiber and Their Associated Thermoplastic Composites: A Study by FTIR. Polymers 2021, 13, 2571. [Google Scholar] [CrossRef]
- Miros-Kudra, P.; Gzyra-Jagieła, K.; Kudra, M. Physicochemical Assessment of the Biodegradability of Agricultural Nonwovens Made of PLA. Fibers Text. East. Eur. 2021, 29, 26–34. [Google Scholar]
- Urbaniak-Domagala, W.; Krucinska, I.; Wrzosek, H.; Komisarczyk, A.; Chrzanowska, O. Plasma modification of polylactide nonwovens for dressing and sanitary applications. Text. Res. J. 2016, 86, 72–85. [Google Scholar] [CrossRef]
- Choksia, N.; Desa, H. Synthesis of Biodegradable Polylactic Acid Polymer By Using Lactic Acid Monomer. Int. J. Appl. Chem. 2017, 13, 377–384. [Google Scholar]
- Younus, M.M.; Naguib, H.M.; Fekry, M.; Elsawy, M.A. Pushing the limits of PLA by exploring the power of MWCNTs in enhancing thermal, mechanical properties, and weathering resistance. Sci. Rep. 2023, 13, 16588. [Google Scholar] [CrossRef]
- Bredács, M.; Barretta, C.; Castillon, L.F.; Frank, A.; Oreski, G.; Pinter, G.; Gergely, S. Prediction of polyethylene density from FTIR and Raman spectroscopy using multivariate data analysis. Polym. Test. 2021, 104, 107406. [Google Scholar] [CrossRef]
- José da Silva, D.; Wiebeck, H. ATR-FTIR Spectroscopy Combined with Chemometric Methods for the Classification of Polyethylene Residues Containing Different Contaminants. J. Polym. Environ. 2022, 30, 3031–3044. [Google Scholar] [CrossRef]
Label | Raw Material Composition |
---|---|
CV 100 | 100% viscose fibers |
CV/PLA 80:20 | 80% viscose fibers, 20% PLA fibers |
Jute 100 | 100% jute fibers |
Jute/PLA 80:20 | 80% jute fibers, 20% PLA fibers |
Hemp 100 | 100% hemp fibers |
Hemp/PLA 80:20 | 80% hemp fibers, 20% PLA fibers |
PLA 100 | 100% PLA fibers |
Agro foil | conventional PE (polyethylene) agro foil |
Samples | Mass per Unit Area, % | Thickness, % | Air Permeability, % |
---|---|---|---|
CV 100 | −23 | −47 | +28 |
CV/PLA 80:20 | −18 | −19 | +23 |
Jute 100 | D | D | D |
Jute/PLA 80:20 | −31 | −2 | +19 |
Hemp 100 | D | D | D |
Hemp/PLA 80:20 | −33 | −4 | +25 |
PLA 100 | 0 | +8 | +2 |
Agro foil | +5 | +25 | impermeable |
Breaking Force in MD, N | Breaking Force Change, % | ||||||
---|---|---|---|---|---|---|---|
Months | 0 | 2 | 4 | 6 | 8 | 10 | 0–10 |
CV 100 | 18.66 | 86.70 | 85.50 | 57.96 | 46.54 | 16.80 | −10 |
SE | 0.70 | 5.28 | 3.49 | 9.34 | 3.58 | 7.04 | |
CV/PLA 80:20 | 46.56 | 235.56 | 136.8 | 146.14 | 125.54 | 130.34 | +180 |
SE | 1.17 | 3.94 | 2.82 | 6.63 | 12.03 | 13.12 | |
Hemp 100 | 79.10 | 114.40 | 90.32 | 52.24 | 30.65 | D | D |
SE | 5.55 | 17.66 | 9.10 | 9.93 | 1.61 | D | |
Hemp/PLA 80:20 | 197.24 | 114.38 | 90.32 | 268.48 | 204.48 | 196.00 | −1 |
SE | 7.10 | 17.67 | 9.10 | 18.24 | 19.53 | 24.66 | |
Jute 100 | 29.90 | 61.20 | 45.50 | 39.78 | D | D | D |
SE | 0.54 | 4.34 | 4.43 | 5.46 | D | D | |
Jute/PLA 80:20 | 145.32 | 242.60 | 202.80 | 191.38 | 101.04 | 117.52 | −19 |
SE | 6.97 | 15.26 | 9.98 | 14.50 | 9.32 | 6.21 | |
PLA 100 | 83.16 | 330.20 | 301.00 | 281.58 | 295.04 | 304.94 | +267 |
SE | 3.82 | 6.41 | 8.84 | 5.55 | 14.44 | 8.31 | |
Agro foil | 80.22 | 85.92 | 88.70 | 84.38 | 80.76 | 76.12 | −5 |
SE | 1.22 | 1.26 | 0.64 | 0.56 | 2.13 | 1.60 |
Breaking Force in CD, N | Breaking Force Change, % | ||||||
---|---|---|---|---|---|---|---|
Months | 0 | 2 | 4 | 6 | 8 | 10 | 0–10 |
CV 100 | 26.24 | 130.20 | 126.90 | 57.98 | 56.08 | 19.10 | −27 |
SE | 1.60 | 4.92 | 8.45 | 11.73 | 8.59 | 4.49 | |
CV/PLA 80:20 | 79.52 | 264.78 | 184.00 | 151.90 | 132.24 | 137.38 | +73 |
SE | 4.29 | 8.22 | 4.95 | 9.21 | 6.68 | 7.44 | |
Hemp 100 | 96.20 | 152.40 | 111.20 | 98.00 | 77.40 | D | D |
SE | 8.45 | 20.53 | 10.17 | 11.65 | 8.92 | D | |
Hemp/PLA 80:20 | 389.22 | 152.44 | 111.20 | 319.54 | 210.42 | 216.72 | −44 |
SE | 26.22 | 20.52 | 10.17 | 7.25 | 11.08 | 8.87 | |
Jute 100 | 42.50 | 66.40 | 55.60 | 49.28 | D | D | D |
SE | 2.55 | 4.65 | 8.41 | 6.47 | D | D | |
Jute/PLA 80:20 | 160.54 | 286.60 | 235.00 | 193.08 | 150.08 | 165.50 | +3 |
SE | 7.40 | 13.37 | 12.65 | 12.98 | 6.03 | 8.98 | |
PLA 100 | 96.88 | 446.80 | 382.20 | 444.76 | 406.34 | 410.08 | +323 |
SE | 1.79 | 1.43 | 5.48 | 2.29 | 4.87 | 7.00 | |
Agro foil | 133.34 | 126.92 | 112.30 | 104.74 | 89.48 | 99.16 | −26 |
SE | 1.79 | 1.43 | 5.48 | 2.29 | 4.87 | 7.00 |
Samples Tested | p-Value |
---|---|
The breaking force of all nonwoven mulches in MD (CV, jute, hemp, PLA, CV/PLA, jute/PLA, hemp/PLA) | 4.09 × 10−10 |
The breaking force of nonwoven mulch blends in MD (CV/PLA, jute/PLA, hemp/PLA) | 0.90 |
The breaking force of 100% nonwoven mulches in MD (CV, jute, hemp, PLA) | 1.22 × 10−9 |
The breaking force of nonwoven mulch blends and agro foil in MD (CV/PLA, jute/PLA, hemp/PLA, agro foil) | 0.01 |
The breaking force of 100% nonwoven mulches and agro foil in MD (CV, jute, hemp, PLA, agro foil) | 1.56 × 10−11 |
The breaking force of all nonwoven mulches in CD (CV, jute, hemp, PLA, CV/PLA, jute/PLA, hemp/PLA) | 3.94 × 10−11 |
The breaking force of nonwoven mulch blends in CD (CV/PLA, jute/PLA, hemp/PLA) | 0.81 |
The breaking force of 100% nonwoven mulches in CD (CV, jute, hemp, PLA) | 2.29 × 10−9 |
The breaking force of nonwoven mulch blends and agro foil in CD (CV/PLA, jute/PLA, hemp/PLA, agro foil) | 0.04 |
The breaking force of nonwoven mulches and agro foil in CD (CV, jute, hemp, PLA, agro foil) | 4.03 × 10−11 |
Elongation at Break in MD, % | Change in Elongation at Break, % | ||||||
---|---|---|---|---|---|---|---|
Months | 0 | 2 | 4 | 6 | 8 | 10 | 0–10 |
CV 100 | 22.27 | 29.16 | 19.92 | 4.68 | 6.91 | 4.89 | −78.04 |
SE | 0.93 | 2.30 | 0.88 | 0.15 | 1.11 | 0.84 | |
CV/PLA 80:20 | 37.89 | 50.73 | 35.85 | 47.99 | 16.36 | 31.15 | −17.79 |
SE | 0.91 | 1.42 | 2.33 | 2.76 | 1.91 | 3.31 | |
Hemp 100 | 40.85 | 28.76 | 22.03 | 10.60 | 6.10 | D | D |
SE | 1.55 | 1.39 | 1.70 | 2.20 | 0.05 | D | |
Hemp/PLA 80:20 | 90.38 | 28.76 | 22.03 | 64.30 | 38.64 | 59.96 | −33.66 |
SE | 2.67 | 1.39 | 1.70 | 2.72 | 3.54 | 6.42 | |
Jute 100 | 21.99 | 20.40 | 16.74 | 15.34 | D | D | D |
SE | 0.88 | 0.95 | 1.41 | 1.50 | D | D | |
Jute/PLA 80:20 | 71.91 | 51.11 | 33.51 | 31.61 | 24.99 | 27.08 | −62.35 |
SE | 3.33 | 3.03 | 1.51 | 2.41 | 4.16 | 0.88 | |
PLA 100 | 82.78 | 88.55 | 79.61 | 70.71 | 75.81 | 75.23 | −9.12 |
SE | 4.18 | 1.87 | 1.53 | 1.37 | 1.91 | 3.82 | |
Agro Foil | 197.80 | 7.35 | 6.00 | 8.37 | 5.91 | 5.91 | −97.01 |
SE | 11.62 | 0.28 | 0.10 | 0.74 | 0.49 | 0.51 |
Elongation at Break in CD, % | Change in Elongation at Break, % | ||||||
---|---|---|---|---|---|---|---|
Months | 0 | 2 | 4 | 6 | 8 | 10 | 0–10 |
CV 100 | 15.13 | 12.20 | 8.29 | 6.94 | 4.65 | 4.00 | −73.56 |
SE | 1.39 | 0.63 | 0.42 | 0.54 | 0.95 | 0.07 | |
CV/PLA 80:20 | 34.02 | 33.64 | 25.77 | 23.15 | 29.89 | 22.24 | −34.64 |
SE | 1.19 | 2.49 | 1.32 | 0.93 | 2.29 | 2.81 | |
Hemp 100 | 20.84 | 18.57 | 13.15 | 14.89 | 6.23 | D | D |
SE | 1.77 | 1.68 | 1.17 | 1.08 | 0.65 | D | |
Hemp/PLA 80:20 | 49.15 | 18.57 | 13.15 | 38.55 | 72.91 | 31.85 | −35.21 |
SE | 2.36 | 1.68 | 1.17 | 2.18 | 4.04 | 2.35 | |
Jute 100 | 12.44 | 13.37 | 11.09 | 11.09 | D | D | D |
SE | 0.68 | 0.41 | 1.02 | 1.12 | D | D | |
Jute/PLA 80:20 | 50.14 | 33.40 | 47.65 | 48.82 | 55.72 | 53.54 | +6.78 |
SE | 1.46 | 1.43 | 3.30 | 1.93 | 1.70 | 1.72 | |
PLA 100 | 55.92 | 69.22 | 65.95 | 66.01 | 66.08 | 61.74 | +10.42 |
SE | 0.84 | 0.61 | 0.74 | 0.54 | 2.67 | 1.94 | |
Agro Foil | 95.33 | 81.70 | 59.32 | 49.74 | 36.15 | 43.53 | −54.34 |
SE | 7.06 | 3.93 | 6.58 | 2.19 | 6.73 | 8.00 |
Samples Tested | p-Value |
---|---|
The elongation at break of all nonwoven mulches in MD (CV, jute, hemp, PLA, CV/PLA, jute/PLA, hemp/PLA) | 1.94 × 10−3 |
The elongation at break of nonwoven mulches blends in MD (CV/PLA, jute/PLA, hemp/PLA) | 0.79 |
The elongation at break of 100% nonwoven mulches in MD (CV, jute, hemp, PLA) | 2.30 × 10−10 |
The elongation at break of nonwoven mulch blends and agro foil in MD (CV/PLA, jute/PLA, hemp/PLA, agro foil) | 0.99 |
The elongation at break of 100% nonwoven mulches and agro foil in MD (CV, jute, hemp, PLA, agro foil) | 3.73 × 10−3 |
The elongation at break of all nonwoven mulches in CD (CV, jute, hemp, PLA, CV/PLA, jute/PLA, hemp/PLA) | 4.21 × 10−16 |
The elongation at break of nonwoven mulches blends in CD (CV/PLA, jute/PLA, hemp/PLA) | 6.37 × 10−3 |
The elongation at break of 100% nonwoven mulches in CD (CV, jute, hemp, PLA) | 1.10 × 10−17 |
The elongation at break of nonwoven mulches blends and agro foil in CD (CV/PLA, jute/PLA, hemp/PLA, agro foil) | 4.0 × 10−4 |
The elongation at break of nonwoven mulches and agro foil in CD (CV, jute, hemp, PLA, agro foil) | 4.22 × 10−14 |
Period of Exposure | 0 | 0–6 Months | 6–8 Months | 8–10 Months | In Total, % | ||||
---|---|---|---|---|---|---|---|---|---|
Sample | MD/CD | MD | CD | MD | CD | MD | CD | MD | CD |
CV 100 | 150.0 | 145.0 | 155.0 | 155.3 | 135.0 | 140.5 | 149.0 | −6.3 | −0.7 |
CV/PLA 80:20 | 150.0 | 141.0 | 149.0 | 132.4 | 150.1 | 140.5 | 149.0 | −6.3 | −0.7 |
Hemp 100 | 150.0 | 157.0 | 146.0 | D | D | D | D | D | D |
Hemp/PLA 80:20 | 150.0 | 144.5 | 147.0 | 144.9 | 153.3 | 152.2 | 143.0 | 1.5 | −4.7 |
Jute 100 | 150.0 | 151.0 | 148.5 | D | D | D | D | D | D |
Jute/PLA 80:20 | 150.0 | 143.0 | 151.0 | 153.2 | 142.5 | 139.0 | 149.0 | −7.3 | −0.7 |
PLA 100 | 150.0 | 147.5 | 152.5 | 149.3 | 150.5 | 151.5 | 152.3 | 1.0 | 1.5 |
Agro foil | 150.0 | 145.0 | 155.0 | 155.3 | 135.0 | 140.5 | 149.0 | −6.3 | −0.7 |
Time of Exposure to Field Conditions, Months | Change in Density, % | ||||||
---|---|---|---|---|---|---|---|
Months | 0 | 2 | 4 | 6 | 8 | 10 | |
CV 100 | 61.7 | 88.4 | 85.0 | 87.3 | 87.2 | 73.6 | +19.3 |
CV/PLA 80:20 | 84.9 | 93.1 | 90.1 | 87.9 | 91.7 | 85.2 | +0.4 |
Hemp 100 | 86.3 | 60.4 | 60.9 | 63.0 | D | D | −27.0 |
Hemp/PLA 80:20 | 91.9 | 73.1 | 68.4 | 62.0 | 67.0 | 71.8 | −21.9 |
Jute 100 | 108.8 | 75.8 | 66.8 | 96.8 | 69.5 | D | −36.1 |
Jute/PLA 80:20 | 98.2 | 79.4 | 81.2 | 81.0 | 77.4 | 76.7 | −21.9 |
PLA 100 | 65.1 | 58.5 | 52.5 | 61.6 | 58.4 | 60.3 | −7.4 |
Agro foil | 335.7 | 436.1 | 426.2 | 170.9 | 197.3 | 266.2 | −20.7 |
Year | 2022 | 2023 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Month | May | June | July | Aug | Sept | Oct | Nov | Dec | Jan | Feb |
Air Temperature, °C | 17.7 | 22.4 | 22.9 | 22.4 | 15.9 | 13.0 | 7.2 | 3.9 | 3.7 | 3.3 |
CV 100, °C | 16.0 | 23.5 | 20.2 | 19.9 | 16.8 | 14.0 | 11.8 | 4.7 | 4.2 | 3.2 |
CV/PLA 80:20, °C | 16.4 | 23.1 | 20.1 | 19.8 | 16.8 | 14.0 | 11.8 | 4.7 | 4.2 | 3.5 |
Hemp 100, °C | 17.9 | 22.6 | 21.5 | 20.7 | 17.3 | 14.3 | 16.3 | 5.1 | 4.5 | 3.7 |
Hemp/PLA 80:20, °C | 17.6 | 22.4 | 21.5 | 20.6 | 17.2 | 14.3 | 12.4 | 5.1 | 4.4 | 3.9 |
Jute 100, °C | 17.7 | 23.3 | 21.7 | 20.6 | 17.2 | 14.1 | 12.0 | 4.9 | 4.4 | 3.7 |
Jute/PLA 80:20, °C | 17.8 | 23.3 | 21.6 | 20.6 | 17.4 | 14.4 | 12.5 | 5.1 | 4.3 | 3.7 |
PLA 100, °C | 18.3 | 21.2 | 20.5 | 20.3 | 17.4 | 14.4 | 12.7 | 5.4 | 4.6 | 3.8 |
Agro foil, °C | 18.8 | 21.8 | 22.0 | 20.9 | 17.6 | 14.6 | 12.6 | 5.1 | 4.7 | 4.0 |
Samples | 30 | 60 | 90 | 120 | 180 | 240 | 300 |
---|---|---|---|---|---|---|---|
CV 100% | 16.04 c | 21.59 a | 20.57 c | 19.92 de | 16.11 a | 8.60 a | 3.71 a |
Jute 100% | 17.70 ab | 22.06 a | 22.13 a | 20.58 abc | 16.41 a | 8.78 a | 4.04 a |
Hemp 100% | 17.87 ab | 21.95 a | 22.01 ab | 20.68 ab | 16.55 a | 10.51 a | 4.06 a |
PLA 100% | 18.28 a | 20.56 ab | 21.00 bc | 20.33 bcd | 16.60 a | 9.32 a | 4.18 a |
CV/PLA 80:20 | 16.39 bc | 19.55 b | 20.52 c | 19.65 e | 16.18 a | 8.58 a | 3.88 a |
Jute/PLA 80:20 | 17.80 ab | 20.89 ab | 22.12 a | 20.61 abc | 16.68 a | 9.04 a | 4.01 a |
Hemp/PLA 80:20 | 17.64 ab | 20.54 ab | 21.92 ab | 20.58 abc | 16.54 a | 9.02 a | 4.14 a |
PE Agro foil | 18.76 a | 21.64 a | 22.46 a | 21.03 a | 16.85 a | 9.14 a | 4.36 a |
Samples | 30 | 60 | 90 | 120 | 180 | 240 | 300 |
---|---|---|---|---|---|---|---|
CV 100% | 16.04 b | 21.59 a | 20.38 b | 19.92 c | 16.11 a | 8.60 a | 3.71 a |
Jute 100% | 17.00 a | 22.06 a | 22.01 a | 20.58 ab | 16.41 a | 8.78 a | 4.04 a |
Hemp 100% | 17.87 a | 21.95 a | 21.89 a | 20.68 ab | 16.55 a | 10.51 a | 4.06 a |
PLA 100% | 18.28 a | 20.56 a | 20.82 b | 20.33 bc | 16.60 a | 9.32 a | 4.18 a |
PE Agro foil | 18.76 a | 21.64 a | 22.33 a | 21.03 a | 16.85 a | 9.14 a | 4.36 a |
Samples | 30 | 60 | 90 | 120 | 180 | 240 | 300 |
---|---|---|---|---|---|---|---|
CV/PLA 80:20 | 16.39 b | 19.55 b | 20.36 b | 19.65 c | 16.18 a | 8.58 a | 3.88 a |
Jute/PLA 80:20 | 17.80 ab | 20.89 a | 22.01 a | 20.61 a | 16.68 a | 9.04 a | 4.01 a |
Hemp/PLA 80:20 | 17.64 ab | 20.54 ab | 21.75 a | 20.58 ab | 16.54 a | 9.02 a | 4.14 a |
PE Agro foil | 18.76 a | 21.64 a | 22.33 a | 21.03 bc | 16.85 a | 9.14 a | 4.36 a |
Year | 2022 | 2023 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Month | May | June | July | Aug | Sept | Oct | Nov | Dec | Jan | Feb |
RH, % | 93.0 | 90.0 | 90.0 | 91.0 | 94.0 | 94.0 | 96.0 | 97.0 | 97.0 | 96.0 |
Precipitation, % | 53.9 | 52.0 | 69.0 | 22.2 | 280.0 | 27.9 | 119.5 | 132.3 | 171.0 | 27.6 |
CV 100, °C | 24.1 | 23.5 | 17.6 | 16.8 | 19.3 | 23.7 | 24.3 | 22.7 | 20.9 | 19.9 |
CV/PLA 80:20, °C | 22.7 | 23.1 | 17.4 | 16.2 | 19.7 | 24.3 | 24.6 | 23.7 | 22.1 | 20.4 |
Hemp 100, °C | 23.4 | 22.6 | 18.2 | 15.9 | 19.4 | 24.0 | 23.9 | 22.5 | 21.2 | 18.6 |
Hemp/PLA 80:20, °C | 24.5 | 22.4 | 16.9 | 15.3 | 19.8 | 24.1 | 23.7 | 23.5 | 22.2 | 19.6 |
Jute 100, °C | 23.8 | 23.3 | 17.7 | 15.3 | 19.0 | 23.2 | 23.6 | 21.9 | 20.7 | 17.3 |
Jute/PLA 80:20, °C | 23.6 | 23.3 | 17.2 | 15.0 | 18.7 | 23.0 | 23.3 | 22.9 | 21.3 | 18.7 |
PLA 100, °C | 23.1 | 21.2 | 15.5 | 16.7 | 18.1 | 22.6 | 20.9 | 21.4 | 22.4 | 21.2 |
Agro foil, °C | 24.7 | 21.8 | 12.7 | 12.1 | 16.2 | 20.3 | 19.9 | 21.0 | 21.2 | 19.6 |
Control field | 25.1 | 20.4 | 13.8 | 14.5 | 17.2 | 20.6 | 22.1 | 23.2 | 24.6 | 21.8 |
Samples | 30 | 60 | 90 | 120 | 180 | 240 | 300 |
---|---|---|---|---|---|---|---|
CV 100% | 24.14 abcd | 24.60 a | 17.90 a | 17.44 a | 20.19 a | 23.61 ab | 20.45 bc |
Jute 100% | 23.83 abcd | 24.09 a | 18.20 a | 15.78 a | 19.76 ab | 22.82 b | 19.01 c |
Hemp 100% | 23.44 bcd | 23.56 ab | 18.26 a | 16.24 a | 20.61 a | 23.23 ab | 19.90 bc |
PLA 100% | 23.11 cd | 22.24 b | 15.83 b | 17.75 a | 19.31 ab | 21.28 c | 21.79 ab |
CV/PLA 80:20 | 22.72 d | 23.86 a | 18.03 a | 16.67 a | 20.57 a | 24.32 a | 21.26 abc |
Jute/PLA 80:20 | 23.59 bcd | 24.28 a | 17.63 ab | 15.37 a | 19.59 ab | 23.61 ab | 19.98 bc |
Hemp/PLA 80:20 | 24.48 abc | 23.39 ab | 17.20 ab | 15.50 a | 20.71 a | 23.68 ab | 20.91 abc |
PE Agro foil | 24.71 ab | 23.34 ab | 13.32 c | 12.82 a | 16.95 b | 20.54 c | 20.43 bc |
Control field | 25.17 a | 22.18 b | 13.73 c | 15.57 a | 17.66 ab | 22.54 b | 23.19 a |
Samples | 30 | 60 | 90 | 120 | 180 | 240 | 300 |
---|---|---|---|---|---|---|---|
CV 100% | 24.13 ab | 24.59 a | 17.89 a | 17.44 a | 20.19 a | 23.58 a | 20.45 a |
Jute 100% | 23.82 ab | 24.08 a | 18.20 a | 15.77 a | 19.76 ab | 22.82 a | 19.09 a |
Hemp 100% | 23.43 ab | 23.54 a | 18.25 a | 16.23 a | 20.61 a | 23.19 a | 19.90 a |
PLA 100% | 23.10 c | 22.23 b | 15.81 b | 17.76 a | 19.31 ab | 21.28 b | 21.79 a |
PE Agro foil | 24.70 a | 23.33 ab | 13.30 c | 12.80 a | 16.95 b | 20.53 b | 20.43 a |
Samples | 30 | 60 | 90 | 120 | 180 | 240 | 300 |
---|---|---|---|---|---|---|---|
CV/PLA 80:20 | 22.72 b | 23.85 a | 18.02 a | 16.65 a | 20.57 a | 24.31 a | 21.24 a |
Jute/PLA 80:20 | 23.59 ab | 24.28 a | 17.61 a | 15.35 a | 19.59 ab | 23.23 b | 19.96 a |
Hemp/PLA 80:20 | 24.46 a | 23.37 a | 17.19 a | 15.47 a | 20.71 a | 23.69 ab | 20.91 a |
PE Agro foil | 24.70 a | 23.33 a | 13.30 a | 12.80 a | 16.95 b | 20.53 c | 20.43 a |
Year | 2022 | 2023 | ||||
---|---|---|---|---|---|---|
Month | June | July | Aug | Oct | Dec | Feb |
CV 100, °C | - | - | - | 2.0 | 10.3 | - |
CV/PLA 80:20, °C | - | - | - | 0.1 | 2.6 | 1.4 |
Hemp 100, °C | 1.6 | 12.4 | 14.3 | 2.0 | 34.3 | D |
Hemp/PLA 80:20, °C | 0.1 | - | - | 0.2 | 2.8 | 1.49 |
Jute 100, °C | 0.5 | 1.7 | 2.2 | 1.6 | D | D |
Jute/PLA 80:20, °C | - | - | - | 0.9 | 3.1 | 2.9 |
PLA 100, °C | - | - | - | 1.0 | - | - |
Agro foil, °C | - | - | - | 0.2 | 1.2 | - |
Control field | 100 | 100 | 100 | 100 | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kopitar, D.; Marasovic, P.; Vrsaljko, D. Impact of Polylactic Acid Fibers in Cellulose Nonwoven Mulch Blends on Biodegradability and Performance—An Open Field Study. Polymers 2024, 16, 222. https://doi.org/10.3390/polym16020222
Kopitar D, Marasovic P, Vrsaljko D. Impact of Polylactic Acid Fibers in Cellulose Nonwoven Mulch Blends on Biodegradability and Performance—An Open Field Study. Polymers. 2024; 16(2):222. https://doi.org/10.3390/polym16020222
Chicago/Turabian StyleKopitar, Dragana, Paula Marasovic, and Domagoj Vrsaljko. 2024. "Impact of Polylactic Acid Fibers in Cellulose Nonwoven Mulch Blends on Biodegradability and Performance—An Open Field Study" Polymers 16, no. 2: 222. https://doi.org/10.3390/polym16020222
APA StyleKopitar, D., Marasovic, P., & Vrsaljko, D. (2024). Impact of Polylactic Acid Fibers in Cellulose Nonwoven Mulch Blends on Biodegradability and Performance—An Open Field Study. Polymers, 16(2), 222. https://doi.org/10.3390/polym16020222