You are currently on the new version of our website. Access the old version .
PolymersPolymers
  • Article
  • Open Access

6 June 2024

Oxidized Starch-Reinforced Aqueous Polymer Isocyanate Cured with High-Frequency Heating

,
,
,
,
,
and
1
Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200072, China
2
Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai 200072, China
3
Shanghai Frontier Science Center of Mechanoinformatics, Shanghai 200072, China
*
Authors to whom correspondence should be addressed.
This article belongs to the Section Polymer Applications

Abstract

In this research, an oxidized starch/styrene–butadiene rubber system with high capability of absorbing electromagnetic energy was adopted as the main component, the effect of oxidized starch content on the bonding and mechanical properties of aqueous polymer isocyanate (API) after high-frequency curing was evaluated, and the effect mechanisms were explored by combining thermodynamic tests and material characterization methods. Our findings revealed that the addition of oxidized starch enhanced the mechanical properties of API after high-frequency curing and the increase in the amount of oxidized starch enhanced the improvement effect of high-frequency curing on API bonding and mechanical properties. At 5 wt% oxidized starch, high-frequency curing improved API bonding properties by 18.0% and 17.3% under ambient conditions and after boiling water aging, respectively. An increase in oxidized starch content to 25 wt% increased enhancement to 25.1% and 26.4% for the above conditions, respectively. The enhancement effects of tensile strength and Young’s modulus of the API adhesive body were increased from 9.4% and 18.2% to 18.7% and 22.6%, respectively. The potential enhancement mechanism could be that oxidized starch could increase the dielectric loss of API, converting more electromagnetic energy into thermal energy creating more cross-linked structures.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.