Facile Coaxial Electrospinning Synthesis of Polyacrylonitrile/Cellulose Acetate Nanofiber Membrane for Oil–Water Separations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of PAN/CA Nanofibers
2.3. Characterization of PAN/CA Nanofibers
2.3.1. Functional Groups
2.3.2. Surface Morphology and Structure
2.3.3. Crystallinity
2.3.4. Contact Angle
2.4. Performance of PAN/CA Nanofibers
Oil–Water Mixture Separation
3. Results and Discussion
3.1. Characterization of PAN/CA Nanofibers
3.1.1. Functional Groups
3.1.2. Structure and Surface Morphology
3.1.3. Structure of Membranes
3.1.4. Contact Angle
3.2. Performance of PAN/CA Nanofibers
Oil–Water Mixture Separation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.; He, X.; Ling, Y.; Bai, Z.; Liu, C.; Liu, X.; Jia, K. In-Situ Growth of Silver Nanoparticles on Sulfonated Polyarylene Ether Nitrile Nanofibers as Super-Wetting Antibacterial Oil/Water Separation Membranes. J. Memb. Sci. 2023, 675, 121539. [Google Scholar] [CrossRef]
- Karki, H.P.; Kafle, L.; Ojha, D.P.; Song, J.H.; Kim, H.J. Cellulose/Polyacrylonitrile Electrospun Composite Fiber for Effective Separation of the Surfactant-Free Oil-in-Water Mixture under a Versatile Condition. Sep. Purif. Technol. 2019, 210, 913–919. [Google Scholar] [CrossRef]
- Scharnberg, A.R.A.; Oliveira, H.A.; Weschenfelder, S.E.; Rubio, J.; Azevedo, A.C. Flocculation of Emulsified Oil-in-Water with Dodecylbenzene Sulfonate and Polyacrylamide and Floc Separation by Dissolved Air Flotation. Colloids Surf. A Physicochem. Eng. Asp. 2023, 669, 131496. [Google Scholar] [CrossRef]
- Bou, K.; Poev, S.; Chan, R.; Ham, P.; Bun, S. Destabilization of Emulsion Oil Separation by Using Chemical Coagulation Process: Preliminary Investigation for Effective Analysis. IOP Conf. Ser. Earth Environ. Sci. 2023, 1199, 12041. [Google Scholar] [CrossRef]
- Buist, I.; Potter, S.; Nedwed, T.; Mullin, J. Herding Surfactants to Contract and Thicken Oil Spills in Pack Ice for in Situ Burning. Cold Reg. Sci. Technol. 2011, 67, 3–23. [Google Scholar] [CrossRef]
- Wan Ikhsan, S.N.; Yusof, N.; Aziz, F.; Ismail, A.F.; Jaafar, J.; Wan Salleh, W.N.; Misdan, N. Superwetting Materials for Hydrophilic-Oleophobic Membrane in Oily Wastewater Treatment. J. Environ. Manag. 2021, 290, 112565. [Google Scholar] [CrossRef] [PubMed]
- Naseeb, N.; Mohammed, A.A.; Laoui, T.; Khan, Z. A Novel PAN-GO-SiO2 Hybrid Membrane for Separating Oil and Water from Emulsified Mixture. Materials 2019, 12, 212. [Google Scholar] [CrossRef] [PubMed]
- Abuhasheesh, Y.H.; Hegab, H.M.; Wadi, V.S.; Al Marzooqi, F.; Banat, F.; Aljundi, I.H.; Hasan, S.W. Phase Inverted Hydrophobic Polyethersulfone/Iron Oxide-Oleylamine Ultrafiltration Membranes for Efficient Water-in-Oil Emulsion Separation. Chemosphere 2023, 337, 139431. [Google Scholar] [CrossRef]
- Teng, L.; Yue, C.; Zhang, G. Epoxied SiO2 Nanoparticles and Polyethyleneimine (PEI) Coated Polyvinylidene Fluoride (PVDF) Membrane for Improved Oil Water Separation, Anti-Fouling, Dye and Heavy Metal Ions Removal Capabilities. J. Colloid Interface Sci. 2023, 630, 416–429. [Google Scholar] [CrossRef]
- Bentis, A.; Boukhriss, A.; Zahouily, M.; Manoun, B.; Gmouh, S. Functionalization of Cotton Fabrics by Sol-Gel Method Using Ionic Liquids with High-Hydrophobic, Excellent Water Repellent, Oil/Water Separation, and Self-Cleaning Properties. Cellulose 2023, 30, 6719–6740. [Google Scholar] [CrossRef]
- Abushawish, A.; Bouaziz, I.; Almanassra, I.W.; AL-Rajabi, M.M.; Jaber, L.; Khalil, A.K.A.; Takriff, M.S.; Laoui, T.; Shanableh, A.; Atieh, M.A.; et al. Desalination Pretreatment Technologies: Current Status and Future Developments. Water 2023, 15, 1572. [Google Scholar] [CrossRef]
- Zhan, B.; Aliabadi, M.; Wang, G.; Chen, Z.-B.; Zhou, W.-T.; Stegmaier, T.; Konrad, W.; Gresser, G.; Kaya, C.; Liu, Y.; et al. Underwater Oleophobic Electrospun Membrane with Spindle-Knotted Structured Fibers for Oil-in-Water Emulsion Separation. Langmuir 2023, 39, 2301–2311. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Zhou, B.; Wang, J. Super-Wetting and Self-Cleaning Polyvinyl Alcohol/Sodium Alginate Nanofiber Membrane Decorated with MIL-88A(Fe) for Efficient Oil/Water Emulsion Separation and Dye Degradation. Int. J. Biol. Macromol. 2023, 253, 127205. [Google Scholar] [CrossRef]
- Abd Halim, N.S.; Mohd Hizam, S.; Wan Suhaimi, W.M.; Ahmad Farid, A.S.; Abd Rahman, P.N.; Wirzal, M.D.; Sambudi, N.S.; Md Nordin, N.A. Nylon 6,6 Waste Nanofiber Membrane for Produced Water Filtration: Experimental, Performance Modelling, Optimization and Techno-Economic Analysis. Membranes 2023, 13, 224. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Li, T.; Yan, L.; Jiao, Y.; Zhang, Y.; Wang, K.; Cheng, Z.; Ma, J.; Shao, L. Biodegradable Electrospinning Superhydrophilic Nanofiber Membranes for Ultrafast Oil-Water Separation. Sci. Adv. 2023, 9, eadh8195. [Google Scholar] [CrossRef] [PubMed]
- Al-Rajabi, M.M.; Haan, T.Y. Green Extraction Method of Cellulose Fibers from Oil Palm Empty Fruit Bunches. J. Kejuruter. 2022, 34, 851–860. [Google Scholar] [CrossRef]
- AL-Rajabi, M.M.; Teow, Y.H. Effect of Sodium Hydroxide/Urea/Deionised Water Solution Ratio on the Solubility of Oil Palm Empty Fruit Bunches Extracted Biocellulose. ASM Sci. J. 2021, 16, 1–6. [Google Scholar] [CrossRef]
- AL-Rajabi, M.M.; Teow, Y.H. Synthesis of Thermoresponsive Composite Hydrogel from Pluronic F127 Reinforced by Oil Palm Empty Fruit Bunches-Extracted Cellulose for Silver Sulfadiazine Drug Delivery. Sustain. Chem. Pharm. 2023, 31, 100939. [Google Scholar] [CrossRef]
- Al-Rajabi, M.M.; Haan, T.Y. Influence of Vertical Diffusion Cell Set-Up on In Vitro Silver Sulfadiazine Drug Release from Thermo-Responsive Cellulose Hydrogel. Mater. Sci. Forum 2021, 1030, 19–26. [Google Scholar] [CrossRef]
- Ju, Y.-W.; Oh, G.-Y. Behavior of Toluene Adsorption on Activated Carbon Nanofibers Prepared by Electrospinning of a Polyacrylonitrile-Cellulose Acetate Blending Solution. Korean J. Chem. Eng. 2017, 34, 2731–2737. [Google Scholar] [CrossRef]
- Khalf, A.; Singarapu, K.; Madihally, S.V. Cellulose Acetate Core–Shell Structured Electrospun Fiber: Fabrication and Characterization. Cellulose 2015, 22, 1389–1400. [Google Scholar] [CrossRef]
- Wang, D.; Yue, Y.; Wang, Q.; Cheng, W.; Han, G. Preparation of Cellulose Acetate-Polyacrylonitrile Composite Nanofibers by Multi-Fluid Mixing Electrospinning Method: Morphology, Wettability, and Mechanical Properties. Appl. Surf. Sci. 2020, 510, 145462. [Google Scholar] [CrossRef]
- Odularu, A.T. Basic Principles of Electrospinning, Mechanisms, Nanofibre Production, and Anticancer Drug Delivery. J. Chem. 2022, 2022, 9283325. [Google Scholar] [CrossRef]
- Song, J.; Birbach, N.L.; Hinestroza, J.P. Deposition of Silver Nanoparticles on Cellulosic Fibers via Stabilization of Carboxymethyl Groups. Cellulose 2012, 19, 411–424. [Google Scholar] [CrossRef]
- Thi To Nu, D.; Phi Hung, N.; Van Hoang, C.; Van der Bruggen, B. Preparation of an Asymmetric Membrane from Sugarcane Bagasse Using DMSO as Green Solvent. Appl. Sci. 2019, 9, 3347. [Google Scholar]
- Gaminian, H.; Montazer, M. Carbon Black Enhanced Conductivity, Carbon Yield and Dye Adsorption of Sustainable Cellulose Derived Carbon Nanofibers. Cellulose 2018, 25, 5227–5240. [Google Scholar] [CrossRef]
- Lee, H.S.; Baek, G.Y.; Hwang, I.-T.; Jung, C.-H.; Choi, J.-H. Preparation of Porous Carbon Films from Polyacrylonitrile by Proton Irradiation and Carbonization. Radiat. Phys. Chem. 2017, 141, 369–374. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, C.; Guo, S.; Xu, L.; Xiao, S.; Shen, Z. Microwave Treatment of Pre-Oxidized Fibers for Improving Their Structure and Mechanical Properties. Ceram. Int. 2019, 45, 1379–1384. [Google Scholar] [CrossRef]
- Loginova, E.; Mikheev, I.; Volkov, D.; Proskurnin, M. Quantification of Copolymer Composition (Methyl Acrylate and Itaconic Acid) in Polyacrylonitrile Carbon-Fiber Precursors by FTIR-Spectroscopy. Anal. Methods 2015, 8, 371–380. [Google Scholar] [CrossRef]
- Guo, Z.; Shao, C.; Mu, J.; Zhang, M.; Zhang, Z.; Zhang, P.; Chen, B.; Liu, Y. Controllable Fabrication of Cadmium Phthalocyanine Nanostructures Immobilized on Electrospun Polyacrylonitrile Nanofibers with High Photocatalytic Properties under Visible Light. Catal. Commun. 2011, 12, 880–885. [Google Scholar] [CrossRef]
- Vallejos, M.E.; Peresin, M.S.; Rojas, O.J. All-Cellulose Composite Fibers Obtained by Electrospinning Dispersions of Cellulose Acetate and Cellulose Nanocrystals. J. Polym. Environ. 2012, 20, 1075–1083. [Google Scholar] [CrossRef]
- Kusumaatmaja, A.; Nur, W.; Chotimah; Triyana, K. Hydrophilic/Hydrophobic Property Changes on Polyacrylonitrile/Cellulose Acetate Nanofiber Membrane. Mater. Sci. Forum 2020, 990, 215–219. [Google Scholar] [CrossRef]
- Abdullah, M.F.; Andriyana, A.; Muhamad, F.; Ang, B.C. Effect of Core-to-Shell Flowrate Ratio on Morphology, Crystallinity, Mechanical Properties and Wettability of Poly(Lactic Acid) Fibers Prepared via Modified Coaxial Electrospinning. Polymer 2021, 237, 124378. [Google Scholar] [CrossRef]
- Moradipour, P.; Limoee, M.; Janfaza, S.; Behbood, L. Core-Shell Nanofibers Based on Polycaprolactone/Polyvinyl Alcohol and Polycaprolactone/Collagen for Biomedical Applications. J. Pharm. Innov. 2022, 17, 911–920. [Google Scholar] [CrossRef]
- Huang, F.; Wei, Q.; Cai, Y. Surface Functionalization of Polymer Nanofibers. In Functional Nanofibers and Their Applications; Elsevier: Amsterdam, The Netherlands, 2012; pp. 92–118. [Google Scholar]
- Devasia, R.; Nair, C.P.R.; Sadhana, R.; Babu, N.S.; Ninan, K.N. Fourier Transform Infrared and Wide-Angle X-ray Diffraction Studies of the Thermal Cyclization Reactions of High-Molar-Mass Poly(Acrylonitrile-Co-Itaconic Acid). J. Appl. Polym. Sci. 2006, 100, 3055–3062. [Google Scholar] [CrossRef]
- Qiao, M.; Kong, H.; Ding, X.; Zhang, L.; Yu, M. Effect of Graphene Oxide Coatings on the Structure of Polyacrylonitrile Fibers during Pre-Oxidation Process. RSC Adv. 2019, 9, 28146–28152. [Google Scholar] [CrossRef]
- Makarov, I.S.; Golova, L.K.; Vinogradov, M.I.; Levin, I.S.; Sorokin, S.E. Structure of Polyacrylonitrile Fibers Produced from N-Methylmorpholine-N-Oxide Solutions. Fibre Chem. 2019, 50, 508–513. [Google Scholar] [CrossRef]
- Yang, J.; Kubota, F.; Baba, Y.; Kamiya, N.; Goto, M. Application of Cellulose Acetate to the Selective Adsorption and Recovery of Au(III). Carbohydr. Polym. 2014, 111, 768–774. [Google Scholar] [CrossRef]
- Santos-Sauceda, I.; Castillo-Ortega, M.M.; del Castillo-Castro, T.; Armenta-Villegas, L.; Ramírez-Bon, R. Electrospun Cellulose Acetate Fibers for the Photodecolorization of Methylene Blue Solutions under Natural Sunlight. Polym. Bull. 2021, 78, 4419–4438. [Google Scholar] [CrossRef]
- Al-Husaini, I.S.; Yusoff, A.R.M.; Lau, W.J.; Ismail, A.F.; Al-Abri, M.Z.; Wirzal, M.D.H. Iron Oxide Nanoparticles Incorporated Polyethersulfone Electrospun Nanofibrous Membranes for Effective Oil Removal. Chem. Eng. Res. Des. 2019, 148, 142–154. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, C.; Zhao, G.; Li, C.; Liu, L.; Yu, J.; Jiao, F. Electrospun Composite Membrane with Superhydrophobic-Superoleophilic for Efficient Water-in-Oil Emulsion Separation and Oil Adsorption. Colloids Surf. A Physicochem. Eng. Asp. 2020, 602, 125158. [Google Scholar] [CrossRef]
- Guo, W.; Guo, R.; Pei, H.; Wang, B.; Liu, N.; Mo, Z. Electrospinning PAN/PEI/MWCNT-COOH Nanocomposite Fiber Membrane with Excellent Oil-in-Water Separation and Heavy Metal Ion Adsorption Capacity. Colloids Surf. A Physicochem. Eng. Asp. 2022, 641, 128557. [Google Scholar] [CrossRef]
- Duman, O.; Uğurlu, H.; Diker, C.Ö.; Tunç, S. Fabrication of Highly Hydrophobic or Superhydrophobic Electrospun PVA and Agar/PVA Membrane Materials for Efficient and Selective Oil/Water Separation. J. Environ. Chem. Eng. 2022, 10, 107405. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Nabavi, S.R.; Omrani, A. Fabrication of Hydrophilic Special Sandwich Structure of PAN/GO/SiO2 Electrospun Membrane Decorated with SiO2 Nanoparticles for Oil/Water Separation. J. Water Process Eng. 2022, 48, 102926. [Google Scholar] [CrossRef]
- Francis, L.; Mohammed, S.; Hashaikeh, R.; Hilal, N. Fabrication and Characterization of Superhydrophilic Graphene-Based Electrospun Membranes for Efficient Oil-Water Separation. J. Water Process Eng. 2023, 54, 104066. [Google Scholar] [CrossRef]
- Wang, D.; Mhatre, S.; Chen, J.; Shi, X.; Yang, H.; Cheng, W.; Yue, Y.; Han, G.; Rojas, O.J. Composites Based on Electrospun Fibers Modified with Cellulose Nanocrystals and SiO2 for Selective Oil/Water Separation. Carbohydr. Polym. 2023, 299, 120119. [Google Scholar] [CrossRef] [PubMed]
Sample | Pump 1 (PAN) Flow Rate (Core) (mL/h) | Pump 2 (CA) Flow Rate (Shell) (mL/h) |
---|---|---|
PAN | 0.2 | -- |
1:3 | 0.2 | 0.6 |
1:1 | 0.2 | 0.2 |
3:1 | 0.6 | 0.2 |
CA | -- | 0.2 |
Electrospun Membrane | Oil | Rejection Efficiency | Flux (LMH) | Ref. |
---|---|---|---|---|
Polyether sulfone/Fe3O4 | Crude oil | 94.0% | 3200 | [41] |
PAN/Cellulose | n-hexane | 97.3% | ~1890 | [2] |
Diesel | 87.9% | ~1500 | ||
Toluene | ~95.0% | ~1990 | ||
PAN/s-kaolin | Bromobenzene | 97.5% | 1875 | [42] |
Trichloromethane | 98.0% | 1800 | ||
Dichloromethane | 98.0% | 1950 | ||
Tetrachloromethane | 96.5% | 1780 | ||
PAN/MWCNT-COOH/polyethyleneimine | n-hexane | 84.0% | 6013 | [43] |
n heptane | 84.0% | 4175 | ||
Poly(vinyl alcohol)/Agar | Toluene | 98.3% | 320 | [44] |
Chloroform | 99.2% | 450 | ||
Diesel | 97.2% | 89.0 | ||
PAN/GO/SiO2 | Toluene | 98.0% | 460 | [45] |
CA/GO | Toluene | >99% | 3650 | [46] |
n-decane | >99% | 3600 | ||
Hexane | >99% | 3580 | ||
PAN/Cellulose nanocrystals/polyethyleneimine/SiO2 | Hexane | >99.4% | 775 | [47] |
Diesel | >99.4% | 724 | ||
Toluene | 93.0% | 609 | ||
Petroleum ether | >99.4% | 537 | ||
PAN/CA | Diesel | >99.9% | 502.9 | This study |
Gasoline | >99.9% | 573.6 | ||
Benzene | >99.9% | 732.9 | ||
Toluene | >99.9% | 748.9 | ||
Xylene | >99.9% | 857.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AL-Rajabi, M.M.; Almanassra, I.W.; Khalil, A.K.A.; Atieh, M.A.; Laoui, T.; Khalil, K.A. Facile Coaxial Electrospinning Synthesis of Polyacrylonitrile/Cellulose Acetate Nanofiber Membrane for Oil–Water Separations. Polymers 2023, 15, 4594. https://doi.org/10.3390/polym15234594
AL-Rajabi MM, Almanassra IW, Khalil AKA, Atieh MA, Laoui T, Khalil KA. Facile Coaxial Electrospinning Synthesis of Polyacrylonitrile/Cellulose Acetate Nanofiber Membrane for Oil–Water Separations. Polymers. 2023; 15(23):4594. https://doi.org/10.3390/polym15234594
Chicago/Turabian StyleAL-Rajabi, Maha Mohammad, Ismail W. Almanassra, Abdelrahman K. A. Khalil, Muataz Ali Atieh, Tahar Laoui, and Khalil Abdelrazek Khalil. 2023. "Facile Coaxial Electrospinning Synthesis of Polyacrylonitrile/Cellulose Acetate Nanofiber Membrane for Oil–Water Separations" Polymers 15, no. 23: 4594. https://doi.org/10.3390/polym15234594
APA StyleAL-Rajabi, M. M., Almanassra, I. W., Khalil, A. K. A., Atieh, M. A., Laoui, T., & Khalil, K. A. (2023). Facile Coaxial Electrospinning Synthesis of Polyacrylonitrile/Cellulose Acetate Nanofiber Membrane for Oil–Water Separations. Polymers, 15(23), 4594. https://doi.org/10.3390/polym15234594