Applications of Supramolecular Polymers Generated from Pillar[n]arene-Based Molecules
Abstract
:1. Introduction
2. Applications of PSPs
2.1. Fluorescence Sensor
Type of Pillar[n]arenes | Guest | Supramolecular Interactions | Morphology | Application | Ref. |
---|---|---|---|---|---|
Host1 | Guest1 | Host–guest, π–π, Hydrogen bond | Cross-linked 2D networks | Detection and separation of Fe3+. Detection type: turn-off. λex/λem: 365 nm/440 nm. LOD: 3.0 mM. Linear range: 0–23.3 μM. | [95] |
Host2 | Guest2 | Host–guest, π–π, Hydrogen bond | Cross-linked network | Ultrasensitive detection and separation of Fe3+, Cr3+, Tb3+, Eu3+, etc. Detection type: turn-on/off. Ex = 467 nm. Linear range: 0−1.8 μM. | [96] |
Host3 | Guest1 | Host–guest, Coordination | Cross-linked network | Base-responsive convenient test kit for detecting OH− anions. λex/λem = 365 nm/460 nm. | [97] |
Host4 | − | Coordination | Brush | Detection of Cu2+ in chloroform. Detection type: turn-off. λex/λem: 310 nm/411 nm. Linear range: 0−78 mM. | [98] |
Host5 | − | Coordination | Nanorod | Detection of Fe3+, acetone, and nitrophenols in H2O. Detection type: turn-off. λex/λem: 285 nm/330 nm. LOD: 0.77 μM (o-NP); 0.30 μM (m-NP); 0.31 μM (p-NP); 0.37 μM (TNP). Linear range: 0–500 μM (Fe3+). | [99] |
Host6 Host7 | − | π–π, Coordination | Lamellar stacking | Ultrasensitive response chemosensors, test kits, and fluorescent materials for Fe3+ and F−. Detection type: turn-off (Fe3); turn-on (F−). LOD: 0.102 nM (Fe3); 9.79 nM (F−). | [100] |
Host8 | Guest3 | Host–guest | Regular block aggregation | Reversible detection of Fe3+ in H2O. Detection type: turn-on. λex/λem: 490 nm/550 nm. LOD: 2.13 mM. Linear range: 0.04−0.30 mM. | [101] |
Host9 | Guest4 | Host–guest | Irregular loose agglomerates | Water-soluble and good adaptability sensor for Au3+ detection. Detection type: turn-off. λex/λem = 290 nm/420 nm. LOD: 69 nM. Lnear range: 0−50 μM. | [102] |
Host10 | Guest5 | Host–guest | Linear main chain | Recognition of paraquat with high FL quantum yield. Detection type: turn-off. λex/λem: 290 nm/430 nm. LOD: 16.9 nM. Linear range: 0−100 μM. | [103] |
Host11 | Guest5 | Host–guest | Spherical sparse | Molecular recognition of paraquat and bioimaging. Detection type: turn-off. λex/λem: 375 nm/527 nm. LOD: 0.706 mM. Linear range: 0.2−5 equiv. | [104] |
2.2. Substance Adsorption and Separation
2.3. Catalysis
2.4. Light-Harvesting System
2.5. Artificial Nanochannel
Type of Pillar[n]arenes | Guest | Supramolecular Interactions | Diameter | Application | Ref. |
---|---|---|---|---|---|
Host40 | Guest24 Guest25 | Host–guest | Larger opening: 450 nm Apex opening: 15 nm Contact angle: 55.8 ± 0.6° | Tunable and recycle transport of Cl− (pH 3.78). Average transport rate: 5.578 ± 0.758 nmol/cm2·h (darkness); 0.721 ± 0.085 nmol/cm2·h (visible light). | [223] |
Host41 | Guest26 | Host–guest | Large opening: 560 nm Tip: 20 nm Contact angle: 54.7 ± 0.6° | Tunable transport of K+ under the stimuli of Hg2+. | [36] |
Host8 | Guest27 | Host–guest | Large opening: 450 nm Tip: 16 nm Contact angle: 34.6 ± 1.3° | Transport of K+ under the stimuli of temperature (pH 7). | [224] |
Host42 | Guest28 Guest29 | Host–guest | Nanochannel: 60 ± 10 nm Contact angle: 31.4 ± 2.5° | CO2/N2-active recycle transport of K+ (pH 5.5). Average transport rate: 1.66 × 10−4 nmol/cm2·h; 7.98 × 10−4 nmol/cm2·h. | [225] |
Host43 | − | − | Radius of liposome: 80 nm | Transport of H2O. Average transport rate: 1.3 × 109 water molecules/s. | [226] |
Host44 | − | − | Transport of H2O. Stable flux: 42 L·m−2·h−1 | [227] |
2.6. Drug Delivery System
3. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Aquaporins | AQPs |
Adenosine triphosphate | ATP |
Aggregation-induced emission | AIE |
4,7-bis(thien-2-yl)-2,1,3-benzothiadiazole | DBT |
Cyanovinylene-based | CV |
Cross-coupling dehydrogenative | CCD |
Covalent organic framework | COF |
Doxorubicin | DOX |
Eosin Y | ESY |
Enhanced permeability and retention effect | EPR |
Forster Resonance Energy Transfer | FRET |
Glutathione | GSH |
Intramolecular charge transfer | ICT |
Light-emitting diode | LED |
Light-harvesting systems | LHSs |
Limit of detection | LOD |
Nile Red | NiR |
Paclitaxel | PTX |
Paraquat | PQ |
Photoinduced electron transfer | PET |
Pillar[n]arene-based supramolecular polymers | PSPs |
Polyrotaxane | PR |
Polyion complex | PIC |
Polyethylene glycol | PEG |
Quantum dots | QDs |
Regorafenib | REG |
Supramolecular aggregation-induced emission enhancement | SAIEE |
Supramolecular organic frameworks | SOFs |
Supramolecular polymers | SPs |
Supramolecular polymer nanoparticles | SPNs |
Single-walled carbon nanotubes | SWCNTs |
Seawater reverse osmosis | SWRO |
Two-photon fluorescent | TPF |
Up conversion nanoparticles | UCNPs |
References
- Mujahid, A.; Afzal, A.; Dickert, F.L. Transitioning from supramolecular chemistry to molecularly imprinted polymers in chemical sensing. Sensors 2023, 23, 7457. [Google Scholar] [CrossRef]
- Lu, J.; Deng, Y.; Liu, P.; Han, Q.; Jin, L.Y. Self-assembly of β-cyclodextrin-pillar[5]arene molecules into supramolecular nanoassemblies: Morphology control by stimuli responsiveness and Host-Guest interactions. Nanoscale 2023, 15, 4282–4290. [Google Scholar] [CrossRef] [PubMed]
- Zheng, F.; Du, W.; Yang, M.; Liu, K.; Zhang, S.; Xu, L.; Wen, Y. Constructing ROS-responsive supramolecular gel with innate antibacterial properties. Pharmaceutics 2023, 15, 2161. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Lu, Q.; Wang, H.; Lu, B.; Huang, B. Controllable construction of temperature-sensitive supramolecular hydrogel based on cellulose and cyclodextrin. Polymers 2022, 14, 3801. [Google Scholar] [CrossRef]
- Ohtani, S.; Kato, K.; Fa, S.; Ogoshi, T. Host-Guest chemistry based on solid-state pillar[n]arenes. Coord. Chem. Rev. 2022, 462, 214503. [Google Scholar] [CrossRef]
- Hou, C.; Liu, L.; Meng, S.; Wu, Y.; Xie, M.; Shan, Y.; He, P.; Sun, P.; Liao, X. Hybrid vesicles of pillar[5]arene/silica: Host-Guest complexation and application in pH-triggered release. Chin. Chem. Lett. 2021, 32, 214–217. [Google Scholar] [CrossRef]
- Luo, Y.; Gan, S.; Zhang, W.; Jia, M.; Chen, L.; Redshaw, C.; Tao, Z.; Xiao, X. A new cucurbit[10]uril-based AIE fluorescent supramolecular polymer for cellular imaging. Mater. Chem. Front. 2022, 6, 1021–1025. [Google Scholar] [CrossRef]
- Yin, H.; Bardelang, D.; Wang, R. Macrocycles and related hosts as supramolecular antidotes. Trends Chem. 2021, 3, 1–4. [Google Scholar] [CrossRef]
- Yang, L.; Tan, X.; Wang, Z.; Zhang, X. Supramolecular polymers: Historical development, preparation, characterization, and functions. Chem. Rev. 2015, 115, 7196–7239. [Google Scholar] [CrossRef]
- Yu, G.; Jie, K.; Huang, F. Supramolecular amphiphiles based on host-guest molecular recognition motifs. Chem. Rev. 2015, 115, 7240–7303. [Google Scholar] [CrossRef]
- Gao, L.; Wang, H.; Zheng, B.; Huang, F. Combating antibiotic resistance: Current strategies for the discovery of novel antibacterial materials based on macrocycle supramolecular chemistry. Giant 2021, 7, 100066. [Google Scholar] [CrossRef]
- Wu, J.R.; Yang, Y.W. New opportunities in synthetic macrocyclic arenes. Chem. Commun. 2019, 55, 1533–1543. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Song, Z.; Yu, L.; Ye, S.; He, H. Fluorescent probes based on macrocyclic hosts: Construction, mechanism and analytical applications. TrAC Trend. Anal. Chem. 2020, 133, 116086. [Google Scholar] [CrossRef]
- Ma, X.; Zhao, Y. Biomedical applications of supramolecular systems based on host-guest interactions. Chem. Rev. 2014, 115, 7794–7839. [Google Scholar] [CrossRef]
- Shan, P.H.; Hu, J.H.; Liu, M.; Tao, Z.; Xiao, X.; Redshaw, C. Progress in Host-Guest macrocycle/pesticide research: Recognition, detection, release and application. Coordin. Chem. Rev. 2022, 467, 214580. [Google Scholar] [CrossRef]
- Strutt, N.L.; Zhang, H.; Schneebeli, S.T.; Stoddart, J.F. Functionalizing pillar[n]arenes. Acc. Chem. Res. 2014, 47, 2631–2642. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Jerca, V.V.; Hoogenboom, R. Structural diversification of pillar[n]arene macrocycles. Angew. Chem. Int. Ed. 2020, 59, 6314–6316. [Google Scholar] [CrossRef]
- Kaizerman-Kane, D.; Hadar, M.; Tal, N.; Dobrovetsky, R.; Zafrani, Y.; Cohen, Y. pH-responsive pillar[6]arene-based water-soluble supramolecular hexagonal boxes. Angew. Chem. Int. Ed. 2019, 58, 5302–5306. [Google Scholar] [CrossRef]
- Cao, X.; Gao, A.; Hou, J.T.; Yi, T. Fluorescent supramolecular self-assembly gels and their application as sensors: A review. Coordin. Chem. Rev. 2021, 434, 213792. [Google Scholar] [CrossRef]
- Cao, S.; Zhou, L.; Liu, C.; Zhang, H.; Zhao, Y.; Zhao, Y. Pillararene-based self-assemblies for electrochemical biosensors. Biosens. Bioelectron. 2021, 181, 113164. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Z.J.; Hill, E.H.; Zheng, Y.; Guo, G.; Wang, Y.; Weiss, P.S.; Yu, J.; Yang, Y.W. Organic-inorganic hybrid pillarene-based nanomaterial for label-free sensing and catalysis. Matter 2019, 1, 848–861. [Google Scholar] [CrossRef]
- Qiang, H.; Chen, T.; Wang, Z.; Li, W.; Guo, Y.; Yang, J.; Jia, X.; Yang, H.; Hu, W.; Wen, K. Pillar[5]arene based conjugated macrocycle polymers with unique photocatalytic selectivity. Chin. Chem. Lett. 2020, 31, 3225–3229. [Google Scholar] [CrossRef]
- Han, C.; Zhang, Z.; Yu, G.; Huang, F. Syntheses of a pillar[4]arene[1]quinone and a difunctionalized pillar[5]arene by partial oxidation. Chem. Commun. 2012, 48, 9876–9878. [Google Scholar] [CrossRef]
- Shao, L.; Hua, B.; Yang, J.; Yu, G. Pillar[7]arene-based Host-Guest complex in water: Dual-responsiveness and application in controllable self-assembly. RSC Adv. 2016, 6, 60029–60033. [Google Scholar] [CrossRef]
- Duan, Q.; Cao, Y.; Li, Y.; Hu, X.; Xiao, T.; Lin, C.; Pan, Y.; Wang, L. pH-Responsive Supramolecular Vesicles Based on Water-Soluble Pillar[6]arene and Ferrocene Derivative for Drug Delivery. J. Am. Chem. Soc. 2013, 135, 10542–10549. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Tang, H.; Zhang, G.; Wang, L.; Cao, D. A cucurbituril–pillararene ring-on-ring complex. Chem. Commun. 2021, 57, 6562–6565. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Park, I.; Ju, H.; Kim, S.; Jung, J.; Habata, Y.; Lee, S. Formation of a Pillar[5]arene-Based Two-Dimensional Poly-Pseudo-Rotaxane: Threading and Crosslinking by the Same Guest Molecules. Angew. Chem. Int. Ed. 2019, 58, 11296–11300. [Google Scholar] [CrossRef]
- Lou, X.; Yang, Y. Pyridine-Conjugated Pillar[5]arene: From Molecular Crystals of Blue Luminescence to Red-Emissive Coordination Nanocrystals. J. Am. Chem. Soc. 2021, 143, 11976–11981. [Google Scholar] [CrossRef]
- Chen, J.; Tian, G.; Liu, K.; Zhang, N.; Wang, N.; Yin, X.; Chen, P. Pillar[5]arene-based Neutral Radicals with Doublet Red Emissions and Stable Chiroptical Properties. Org. Lett. 2022, 24, 1935–1940. [Google Scholar] [CrossRef]
- Li, E.; Jie, K.; Zhou, Y.; Zhao, R.; Zhang, B.; Wang, Q.; Liu, J.; Huang, F. Aliphatic aldehyde detection and adsorption by nonporous adaptive pillar[4]arene[1]quinone crystals with vapochromic behavior. ACS Appl. Mater. Interfaces 2018, 10, 23147–23153. [Google Scholar] [CrossRef]
- Chi, X.; Ji, X.; Shao, L.; Huang, F. A multiresponsive amphiphilic supramolecular diblock copolymer based on pillar[10]arene/paraquat complexation for rate-tunable controlled release. Macromol. Rapid Commun. 2017, 38, 1600626. [Google Scholar] [CrossRef] [PubMed]
- Xia, D.; Wang, P.; Ji, X.; Khashab, N.M.; Sessler, J.L.; Huang, F. Functional supramolecular polymeric networks: The marriage of covalent polymers and macrocycle-based host-guest interactions. Chem. Rev. 2020, 120, 6070–6123. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Ahmed, M.; Long, L.; Khashab, N.M.; Huang, F.; Sessler, J.L. Adhesive supramolecular polymeric materials constructed from macrocycle-based Host-Guest interactions. Chem. Soc. Rev. 2019, 48, 2682–2697. [Google Scholar] [CrossRef] [PubMed]
- Qin, B.; Yin, Z.; Tang, X.; Zhang, S.; Wu, Y.; Xu, J.; Zhang, X. Supramolecular polymer chemistry: From structural control to functional assembly. Prog. Polym. Sci. 2020, 100, 101167. [Google Scholar] [CrossRef]
- Aida, T.; Meijer, E.W. Supramolecular polymers–we’ve come full circle. Isr. J. Chem. 2020, 60, 33–47. [Google Scholar] [CrossRef]
- Zhang, F.; Ma, J.; Sun, Y.; Boussouar, I.; Tian, D.; Li, H.; Jiang, L. Fabrication of a mercaptoacetic acid pillar[5]arene assembled nanochannel: A biomimetic gate for mercury poisoning. Chem. Sci. 2016, 7, 3227–3233. [Google Scholar] [CrossRef]
- Wei, X.F.; Sun, Z.H.; Mihail, B. Pillar[n]arenes for construction of artificial transmembrane channels. Isr. J. Chem. 2018, 58, 1–11. [Google Scholar]
- Li, H.; Quan, K.; Yang, X.; Li, Z.; Zhao, L.; Qiu, H. Recent developments for the investigation of chiral properties and applications of pillar[5]arenes in analytical chemistry. TrAC Trend. Anal. Chem. 2020, 131, 116026. [Google Scholar] [CrossRef]
- Fa, S.X.; Shi, T.H.; Akama, S.; Adachi, K.; Wada, K.; Tanaka, S.; Oyama, N.; Kato, K.; Ohtani, S.; Nagata, Y.; et al. Real-time chirality transfer monitoring from statistically random to discrete homochiral nanotubes. Nat. Commun. 2022, 13, 7378. [Google Scholar] [CrossRef]
- Fa, S.X.; Adachi, K.; Nagata, Y.; Egami, K.; Kato, K.; Ogoshi, T. Pre-regulation of the planar chirality of pillar[5]arenes for preparing discrete chiral nanotubes. Chem. Sci. 2021, 12, 3483. [Google Scholar] [CrossRef] [PubMed]
- Nagata, Y.; Suzuki, M.; Shimada, Y.; Sengoku, H.; Nishida, S.; Kakuta, T.; Yamagishi, T.; Suginome, M.; Ogoshi, T. Holding of planar chirality of pillar[5]arene by kinetic trapping using Host-Guest interactions with achiral guest solvents. Chem. Commun. 2020, 56, 8424–8427. [Google Scholar] [CrossRef]
- Yao, J.; Wu, W.; Liang, W.; Feng, Y.; Zhou, D.; Chruma, J.J.; Fukuhara, G.; Mori, T.; Inoue, Y.; Yang, C. Temperature-driven planar chirality switching of a pillar[5]arene-based molecular universal joint. Angew. Chem. Int. Ed. 2017, 56, 6869–6873. [Google Scholar] [CrossRef]
- Lu, J.; Deng, Y.; Zhong, K.; Huang, Z.; Jin, L.Y. Construction of nanoaggregates from amphiphilic supramolecules containing barbiturate and Hamilton wedge units. Polym. Int. 2022, 71, 478–486. [Google Scholar] [CrossRef]
- Kursunlu, A.N.; Acikbas, Y.; Ozmen, M.; Erdogan, M.; Capan, R. Fabrication of LB thin film of pillar[5]arene-2-amino-3-hydroxypyridine for the sensing of vapors. Mater. Lett. 2020, 267, 127538. [Google Scholar] [CrossRef]
- Yao, Y.; Chi, X.; Zhou, Y.; Huang, F. A bola-type supra-amphiphile constructed from a water-soluble pillar[5]arene and a rod–coil molecule for dual fluorescent sensing. Chem. Sci. 2014, 5, 2778–2782. [Google Scholar] [CrossRef]
- Zhou, Y.; Tang, H.; Li, Z.; Xu, L.; Wang, L.; Cao, D. Bio-inspired AIE pillar[5]arene probe with multiple binding sites to discriminate alkanediamines. Chem. Commun. 2021, 57, 13114–13117. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Mu, T.; Wang, S.; Li, J.; Huang, J.; Huang, H.; Pu, Y.; Zhao, G. Simultaneous determination of Acetaminophen and dopamine based on a water-soluble pillar[6]arene and ultrafine Pd nanoparticle-modified covalent organic framework nanocomposite. Analyst 2021, 146, 262–269. [Google Scholar] [CrossRef]
- Sun, X.; Wang, Z.; Li, Y.J.; Zhang, Y.; Zhang, Y.; Yao, H.; Wei, T.; Lin, Q. Tri-pillar[5]arene-Based Multifunctional Stimuli-Responsive Supramolecular Polymer Network with Conductivity, Aggregation-Induced Emission, Thermochromism, Fluorescence Sensing, and Separation Properties. Macromolecules 2021, 54, 373–383. [Google Scholar] [CrossRef]
- Guo, S.; Huang, Q.; Chen, Y.; Wei, J.; Zheng, J.; Wang, L.; Wang, Y.; Wang, R. Synthesis and Bioactivity of Guanidinium-Functionalized Pillar[5]arene as a Biofilm Disruptor. Angew. Chem. Int. Ed. 2021, 60, 618–623. [Google Scholar] [CrossRef]
- Shao, L.; Yang, J.; Hua, B. A dual-responsive cross-linked supramolecular polymer network gel: Hierarchical supramolecular self-assembly driven by pillararene-based molecular recognition and metal–ligand interactions. Polym. Chem. 2018, 9, 1293–1297. [Google Scholar] [CrossRef]
- Li, B.; Wang, B.; Huang, X.; Dai, L.; Cui, L.; Li, J.; Jia, X.; Li, C. Terphen[n]arenes and Quaterphen[n]arenes (n=3–6): One-Pot Synthesis, Self-Assembly into Supramolecular Gels, and Iodine Capture. Angew. Chem. Int. Ed. 2019, 58, 3885–3889. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Tang, M.; Wang, Z.; Shi, L.; Xiong, Z.; Chen, Z.; Sessler, J.L.; Huang, F. Pillararene incorporated metal–organic frameworks for supramolecular recognition and selective separation. Nat. Commun. 2023, 14, 4927. [Google Scholar] [CrossRef]
- Kaizerman-Kane, D.; Hadar, M.; Joseph, R.; Logviniuk, D.; Zafrani, Y.; Fridman, M.; Cohen, Y. Design Guidelines for Cationic Pillar[n]arenes that Prevent Biofilm Formation by Gram-Positive Pathogens. ACS Infect. Dis. 2021, 7, 579–585. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wu, G.; Yang, Y. Pillararene-Inspired Macrocycles: From Extended Pillar[n]arenes to Geminiarenes. Acc. Chem. Res. 2022, 55, 3191–3204. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Ma, J.; Xia, D. A H2S and I− dual-responsive supramolecular polymer constructed via pillar[5]arene-based Host-Guest interactions and metal coordination. Org. Chem. Front. 2018, 5, 1297–1302. [Google Scholar] [CrossRef]
- Yang, X.; Xiao, H.; He, J.; Yang, L.; Tao, Z.; Xiao, X.; Li, Q.; Yang, H. A novel pillar[5]arene-based supramolecular fluorescent biomaterial for targeted accumulation and imaging of kidney. Sens. Actuat. B Chem. 2023, 392, 134065. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, X.; Yang, Y. Pillararene-based supramolecular polymers for adsorption and separation. Adv. Mater. 2023, 2301721. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Z.; Xin, F.; Zhao, Y. Metal-ligated pillararene materials: From chemosensors to multidimensional self-assembled architectures. Coord. Chem. Rev. 2020, 420, 213425. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, W.; Chen, J.; Zhou, J. Mono-functionalized pillar[n]arenes: Syntheses, Host-Guest properties and applications. Chin. Chem. Lett. 2024, 35, 108740. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, Z.; Ding, Y.; Hu, L.; Wang, J.; Chen, T.; Yao, Y. Recent development of pillar[n]arene-based amphiphiles. Chin. Chem. Lett. 2021, 32, 1267–1279. [Google Scholar] [CrossRef]
- Ogoshi, T.; Yamagishi, T.; Nakamoto, Y. Pillar-shaped macrocyclic hosts pillar[n]arenes: New key players for supramolecular chemistry. Chem. Rev. 2016, 116, 7937–8002. [Google Scholar] [CrossRef]
- Xiao, T.; Zhong, W.; Xu, L.; Sun, X.-Q.; Hu, X.-Y.; Wang, L. Supramolecular vesicles based on pillar[n]arenes: Design, construction, and applications. Org. Biomol. Chem. 2019, 17, 1336–1350. [Google Scholar] [CrossRef]
- Behera, H.; Yang, L.; Hou, J.L. Pillar[n]arenes: Chemistry and their material applications. Chin. J. Chem. 2020, 38, 215–217. [Google Scholar] [CrossRef]
- Zhou, L.; Cao, S.; Liu, C.; Zhang, H.C.; Zhao, Y.L. Pillar[n]arene-based polymeric systems for biomedical applications. Coord. Chem. Rev. 2023, 491, 215260. [Google Scholar] [CrossRef]
- Bi, J.; Zeng, X.; Tian, D.; Li, H. Temperature-Responsive Switch Constructed from an Anthracene-Functionalized Pillar[5]arene-Based Host-Guest System. Org. Lett. 2016, 18, 1092–1095. [Google Scholar] [CrossRef]
- Zheng, H.; Fu, L.; Wang, R.; Jiao, J.; Song, Y.; Shi, C.; Chen, Y.; Jiang, J.; Lin, C.; Ma, J.; et al. Cation controlled rotation in anionic pillar[5]arenes and its application for fluorescence switch. Nat. Commun. 2023, 14, 590. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yin, X.; Wang, B.; Zhang, K.; Meng, G.; Zhang, S.; Shi, Y.; Wang, N.; Wang, S.; Chen, P. Planar Chiral Organoboranes with Thermoresponsive Emission and Circularly Polarized Luminescence: Integration of Pillar[5]arenes with Boron Chemistry. Angew. Chem. Int. Ed. 2020, 59, 11267–11272. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Liu, Z.; Su, A.; Zhang, Y.; Wang, H.; Yang, L.; Yang, W.; Pang, P. An electrochemical biosensor for detection of T4 polynucleotide kinase activity based on host-guest recognition between phosphate pillar[5]arene and methylene blue. Talanta 2024, 266, 124956. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Guo, K.; Zhao, J.; Duan, Q.; Wang, F.; Lu, K. Highly sensitive and selective electrochemical detection of clothianidin using reduced graphene oxide-anionic pillar[6]arene composite film. Microchem J. 2022, 179, 107465. [Google Scholar] [CrossRef]
- Qian, X.; Yang, H.; Liu, S.; Yang, L.; Li, J.; Gao, W.; Du, G.; Qu, Q.; Ran, X. Supramolecular DNA sensor based on the integration of host-guest immobilization strategy and WP5-Ag/PEHA supramolecular aggregates. Anal. Chim. Acta 2022, 1220, 340077. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Rui, L.; Liu, L.; Zhang, W. Redox-responsive supramolecular amphiphiles based on a pillar[5]arene for enhanced photodynamic therapy. Polym. Chem. 2016, 7, 3268–3276. [Google Scholar] [CrossRef]
- Hu, Z.; Yan, B. Facile fabrication of luminescent Tb@HOF-based films as a highly sensitive platform for detecting nicotine and its metabolite cotinine via fluorescence sensing and a smartphone. J. Mater. Chem. A 2023, 11, 4739–4750. [Google Scholar] [CrossRef]
- Zhao, G.; Yang, L.; Wu, S.; Zhao, H.; Tang, E.; Li, C. The synthesis of amphiphilic pillar[5]arene functionalized reduced graphene oxide and its application as novel fluorescence sensing platform for the determination of acetaminophen. Biosens. Bioelectron. 2017, 91, 863–869. [Google Scholar] [CrossRef]
- Zhu, W.; Wei, T.; Fan, Y.; Qu, W.; Zhu, W.; Ma, X.; Yao, H.; Zhang, Y.; Lin, Q. A pillar[5]arene-based and OH− dependent dual-channel supramolecular chemosensor for recyclable CO2 gas detection: High sensitive and selective off-on-off response. Dyes Pigment. 2020, 174, 108073. [Google Scholar] [CrossRef]
- Jiang, X.; Huang, X.; Song, S.; Ma, X.; Zhang, Y.; Yao, H.; Wei, T.; Lin, Q. Tri-pillar[5]arene-based multi-stimuli-responsive supramolecular polymers for fluorescence detection and separation of Hg2+. Polym. Chem. 2018, 9, 4625–4630. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, L.; Ma, L.; Han, Y.; Yan, C.; Yao, Y. Nano-Theranostics Constructed from Terpyridine-Modified Pillar [5]arene-Based Supramolecular Amphiphile and Its Application in Both Cell Imaging and Cancer Therapy. Molecules 2022, 27, 6428. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Gou, X.; Deng, Y.; Pei, Y.; Huang, Z.; Jin, L. Nanoassemblies formed from amphiphilic pillar[5]arene–rod–coil macromolecules in water for the detection of aliphatic diamines. Dye. Pigment. 2022, 199, 110052. [Google Scholar] [CrossRef]
- Ahumada, G.; Borkowska, M. Fluorescent Polymers Conspectus. Polymers 2022, 14, 1118. [Google Scholar] [CrossRef]
- Lu, J.; Liu, P.; Deng, Y.; Zhu, N.; Jin, L. Supramolecular nanoassemblies of rim-differentiated pillar[5]arene-rod-coil macromolecules via host-guest interactions for the sensing of cis-trans isomers of 1,4-diol-2-butene. J. Mol. Struct. 2023, 1291, 136054. [Google Scholar] [CrossRef]
- Santonocito, R.; Tuccitto, N.; Pappalardo, A.; Trusso Sfrazzetto, G. Smartphone-Based Dopamine Detection by Fluorescent Supramolecular Sensor. Molecules 2022, 27, 7503. [Google Scholar] [CrossRef]
- Wang, X.; Wu, J.; Liang, F.; Yang, Y. In Situ Gold Nanoparticle Synthesis Mediated by a Water-Soluble Leaning Pillar[6]arene for Self-Assembly, Detection, and Catalysis. Org. Lett. 2019, 21, 5215–5218. [Google Scholar] [CrossRef]
- Kursunlu, A.N.; Acikbas, Y.; Ozmen, M.; Erdogan, M.; Capan, R. Haloalkanes and aromatic hydrocarbons sensing using Langmuir–Blodgett thin film of pillar[5]arene-biphenylcarboxylic acid. Colloid Surf. A-Physicochem. Eng. Asp. 2019, 565, 108–117. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, T.; Li, X.; Tu, X.; Zhang, H.; Han, J. Construction of pillar[5]arene-based photochromic supramolecular polymeric system with tunable thermal bleaching rate. Polymer 2021, 231, 124112. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; Zhang, C.; Chen, L.; Wang, C.; Tan, H.; Yu, Y.; Li, X.; Yang, H. Cross-Linked Supramolecular Polymer Gels Constructed from Discrete Multi-pillar[5]arene Metallacycles and Their Multiple Stimuli-Responsive Behavior. J. Am. Chem. Soc. 2014, 136, 8577–8589. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.; Tian, J.; Yue, T.; Cao, H.; Chu, J.; Cai, H.; Zhang, W. Pillar[5]arene-Based Acid-Triggered Supramolecular Porphyrin Photosensitizer for Combating Bacterial Infections and Biofilm Dispersion. Adv. Healthc. Mater. 2022, 11, 2102015. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, C.; Ma, Y.; Zhu, L.; Lu, B.; Wang, Y.; Wang, J.; Chen, T.; Dong, C.; Yao, Y. pH/ROS dual-responsive supramolecular polypeptide prodrug nanomedicine based on host-guest recognition for cancer therapy. Acta Biomater. 2022, 143, 381–391. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Meng, G.; Zhu, Q.; Zhang, S.; Chen, P. Pillar[5]arenes: A new class of AIEgen macrocycles used for luminescence sensing of Fe3+ ions. J. Mater. Chem. C 2019, 7, 11747–11751. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Fang, H.; He, J.; Yong, B.; Yao, H.; Wei, T.; Lin, Q. Multi-stimuli-responsive supramolecular gel constructed by pillar[5]arene-based pseudorotaxanes for efficient detection and separation of multi-analytes in aqueous solution. Soft Matter 2018, 14, 8529–8536. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, K.; Ma, D. Water-Soluble Pillar[n]arene Mediated Supramolecular Self-Assembly: Multi-Dimensional Morphology Controlled by Host Size. Chem.–Asian J. 2019, 14, 307–312. [Google Scholar] [CrossRef]
- Wang, J.; Cen, M.; Wang, J.; Wang, D.; Ding, Y.; Zhu, G.; Lu, B.; Yuan, X.; Wang, Y.; Yao, Y. Water-soluble pillar[4]arene[1]quinone: Synthesis, host-guest property and application in the fluorescence turn-on sensing of ethylenediamine in aqueous solution, organic solvent and air. Chin. Chem. Lett. 2022, 33, 1475–1478. [Google Scholar] [CrossRef]
- Chen, J.; Chen, P. Pillar[5]arene-Based Resilient Supramolecular Gel with Dual-Stimuli Responses and Self-Healing Properties. ACS Appl. Polym. Mater. 2019, 1, 2224–2229. [Google Scholar] [CrossRef]
- Zhou, W.L.; Dai, X.Y.; Lin, W.J.; Chen, Y.; Liu, Y. A pillar[5]arene noncovalent assembly boosts a full-color lanthanide supramolecular light switch. Chem. Sci. 2023, 14, 6457–6466. [Google Scholar] [CrossRef]
- Shi, B.; Zhang, Y.; Zhang, Z.; Yao, H.; Qu, W.; Zhang, Y.; Wei, T.; Lin, Q. Formation of a lead chalcogenide quantum dot-based supramolecular polymer network via pillar[5]arene-based Host-Guest complexation. Mater. Chem. Front. 2021, 5, 5833–5840. [Google Scholar] [CrossRef]
- Muhammed, M.A.H.; Cruz, L.K.; Emwas, A.H.; El-Zohry, A.M.; Moosa, B.; Mohammed, O.F.; Khashab, N.M. Pillar[5]arene-Stabilized Silver Nanoclusters: Extraordinary Stability and Luminescence Enhancement Induced by Host-Guest Interactions. Angew. Chem. Int. Ed. 2019, 58, 15665–15670. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lou, X.; Wang, C.; Wang, Y.; Jia, Y.; Lin, Q.; Yang, Y. Synthesis of stimuli-responsive pillararene-based supramolecular polymer materials for the detection and separation of metal ions. Chin. Chem. Lett. 2023, 34, 107877. [Google Scholar] [CrossRef]
- Liu, J.; Fan, Y.; Song, S.; Gong, G.; Wang, J.; Guan, X.; Yao, H.; Zhang, Y.; Wei, T.; Lin, Q. Aggregation-Induced Emission Supramolecular Organic Framework (AIE SOF) Gels Constructed from Supramolecular Polymer Networks Based on Tripodal Pillar[5]arene for Fluorescence Detection and Efficient Removal of Various Analytes. ACS Sustain. Chem. Eng. 2019, 7, 11999–12007. [Google Scholar] [CrossRef]
- Shi, B.; Jie, K.; Zhou, Y.; Xia, D.; Yao, Y. Formation of fluorescent supramolecular polymeric assemblies via orthogonal pillar[5]arene-based molecular recognition and metal ion coordination. Chem. Commun. 2015, 51, 4503–4506. [Google Scholar] [CrossRef]
- Liu, S.; Wu, Q.; Zhang, T.; Zhang, H.; Han, J. Supramolecular brush polymers prepared from 1,3,4-oxadiazole and cyanobutoxy functionalised pillar[5]arene for detecting Cu2+. Org. Biomol. Chem. 2021, 19, 1287–1291. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Yang, Y. A fluorescent pillarene coordination polymer. Polym. Chem. 2019, 10, 2980–2985. [Google Scholar] [CrossRef]
- Zhang, Y.; He, J.; Zhu, W.; Li, Y.; Fang, H.; Yao, H.; Wei, T.; Lin, Q. Novel pillar[5]arene-based supramolecular organic framework gel for ultrasensitive response Fe3+ and F− in water. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 100, 62–69. [Google Scholar] [CrossRef]
- Yao, Q.; Lü, B.; Ji, C.; Cai, Y.; Yin, M. Supramolecular Host-Guest System as Ratiometric Fe3+ Ion Sensor Based on Water-Soluble Pillar[5]arene. ACS Appl. Mater. Interfaces 2017, 9, 36320–36326. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Tao, X.; Bao, Q.; Yang, J.; Su, L.; Zhang, J.; Chen, Y.; Yang, L. A highly selective supramolecular fluorescent probe for detection of Au3+ based on supramolecular complex of pillar[5]arene with 3, 3′-dihydroxybenzidine. J. Mol. Liq. 2023, 370, 121018. [Google Scholar] [CrossRef]
- Xiao, Y.; Li, H.; Tu, M.; Sun, L.; Wang, F. Novel AIEE pillar[5]arene-fluorene fluorescent copolymer for selective recognition of paraquat by forming polypseudorotaxane. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 302, 123112. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Zhang, W.; Zhao, J.; Yang, M.; Ren, Q.; Redshaw, C.; Tao, Z.; Xiao, X. A novel pillar[5]arene-cucurbit[10]uril based host-guest complex: Synthesis, characterization and detection of paraquat. Chin. Chem. Lett. 2023, 34, 107780. [Google Scholar] [CrossRef]
- Shi, B.; ShangGuan, L.; Wang, H.; Zhu, H.; Xing, H.; Liu, P.; Liu, Y.; Liu, J.; Huang, F. Pillar[5]arene-Based Molecular Recognition Induced Crystal-to-Crystal Transformation and Its Application in Adsorption of Adiponitrile in Water. ACS Mater. Lett. 2019, 1, 111–115. [Google Scholar] [CrossRef]
- Song, C.; Li, Z.; Zhang, Y.; Zhang, G.; Yang, Y. Hydrazide–pillar[5]arene-mediated silver nanoparticles for highly efficient reductive degradation of organic dyes. Supramol. Mater. 2023, 2, 100035. [Google Scholar] [CrossRef]
- Jie, K.; Zhou, Y.; Sun, Q.; Li, B.; Zhao, R.; Jiang, D.; Guo, W.; Chen, H.; Yang, Z.; Huang, F.; et al. Mechanochemical synthesis of pillar[5]quinone derived multi-microporous organic polymers for radioactive organic iodide capture and storage. Nat. Commun. 2020, 11, 1086. [Google Scholar] [CrossRef]
- Cao, J.; Zhu, H.; Shangguan, L.; Liu, Y.; Liu, P.; Li, Q.; Wu, Y.; Huang, F. A pillar[5]arene-based 3D polymer network for efficient iodine capture in aqueous solution. Polym. Chem. 2021, 12, 3517–3521. [Google Scholar] [CrossRef]
- Ogoshi, T.; Takashima, S.; Yamagishi, T. Molecular Recognition with Microporous Multilayer Films Prepared by Layer-by-Layer Assembly of Pillar[5]arenes. J. Am. Chem. Soc. 2015, 137, 10962–10964. [Google Scholar] [CrossRef]
- Yao, H.; Wang, Y.; Quan, M.; Farooq, M.U.; Yang, L.; Jiang, W. Adsorptive Separation of Benzene, Cyclohexene, and Cyclohexane by Amorphous Nonporous Amide Naphthotube Solids. Angew. Chem. Int. Ed. 2020, 59, 19945–19950. [Google Scholar] [CrossRef]
- Alzate-Sánchez, D.M.; Ling, Y.; Li, C.; Frank, B.P.; Bleher, R.; Fairbrother, D.H.; Helbling, D.E.; Dichtel, W.R. β-Cyclodextrin Polymers on Microcrystalline Cellulose as a Granular Media for Organic Micropollutant Removal from Water. ACS Appl. Mater. Interfaces 2019, 11, 8089–8096. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Nuhnen, A.; Millan, S.; Breitzke, H.; Gvilava, V.; Buntkowsky, G.; Janiak, C. Encapsulation of a Porous Organic Cage into the Pores of a Metal–Organic Framework for Enhanced CO2 Separation. Angew. Chem. Int. Ed. 2020, 59, 6068–6073. [Google Scholar] [CrossRef]
- Li, Q.; Jie, K.; Huang, F. Highly Selective Separation of Minimum-Boiling Azeotrope Toluene/Pyridine by Nonporous Adaptive Crystals of Cucurbit[6]uril. Angew. Chem. Int. Ed. 2020, 59, 5355–5358. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Xing, C.; Ke, D.; Chen, L.; Qiu, Z.; Zeng, S.; Li, B.; Zhang, S. Amino-Functionalized β-Cyclodextrin to Construct Green Metal–Organic Framework Materials for CO2 Capture. ACS Appl. Mater. Interfaces 2020, 12, 3032–3041. [Google Scholar] [CrossRef]
- Yang, L.; Ke, H.; Yao, H.; Jiang, W. Effective and Rapid Removal of Polar Organic Micropollutants from Water by Amide Naphthotube-Crosslinked Polymers. Angew. Chem. Int. Ed. 2021, 60, 21404–21411. [Google Scholar] [CrossRef] [PubMed]
- Davletbaeva, I.M.; Alentiev, A.Y.; Faizulina, Z.Z.; Zaripov, I.I.; Nikiforov, R.Y.; Parfenov, V.V.; Arkhipov, A.V. Organosilica-Modified Multiblock Copolymers for Membrane Gas Separation. Polymers 2021, 13, 3579. [Google Scholar] [CrossRef] [PubMed]
- Yuan, B.; Xu, J.; Sun, C.; Nicolas, H.N.; Schönhoff, M.; Yang, Q.; Zhang, X. Pillar[6]arene Containing Multilayer Films: Reversible Uptake and Release of Guest Molecules with Methyl Viologen Moieties. ACS Appl. Mater. Interfaces 2016, 8, 3679–3685. [Google Scholar] [CrossRef]
- Yan, X.; Huang, Y.; Cen, M.; Wang, J.; Shi, J.; Lu, B.; Wang, Y.; Yao, Y. Pillar[6]arene-based supramolecular polymeric materials constructed via electrostatic interactions for rapid and efficient organic dye removal from water. Nanoscale Adv. 2021, 3, 1906–1909. [Google Scholar] [CrossRef]
- Yao, Y.; Xue, M.; Chen, J.; Zhang, M.; Huang, F. An Amphiphilic Pillar[5]arene: Synthesis, Controllable Self-Assembly in Water, and Application in Calcein Release and TNT Adsorption. J. Am. Chem. Soc. 2012, 134, 15712–15715. [Google Scholar] [CrossRef]
- Ogoshi, T.; Sueto, R.; Yoshikoshi, K.; Yamagishi, T. One-dimensional channels constructed from per-hydroxylated pillar[6]arene molecules for gas and vapour adsorption. Chem. Commun. 2014, 50, 15209–15211. [Google Scholar] [CrossRef]
- Zhu, W.; Li, E.; Zhou, J.; Zhou, Y.; Sheng, X.; Huang, F. Highly selective removal of heterocyclic impurities from toluene by nonporous adaptive crystals of perethylated pillar[6]arene. Mater. Chem. Front. 2020, 4, 2325–2329. [Google Scholar] [CrossRef]
- Li, X.; Li, Z.; Yang, Y. Tetraphenylethylene-Interweaving Conjugated Macrocycle Polymer Materials as Two-Photon Fluorescence Sensors for Metal Ions and Organic Molecules. Adv. Mater. 2018, 30, 1800177. [Google Scholar] [CrossRef]
- Shi, B.; Guan, H.; Shangguan, L.; Wang, H.; Xia, D.; Kong, X.; Huang, F. A pillar[5]arene-based 3D network polymer for rapid removal of organic micropollutants from water. J. Mater. Chem. A 2017, 5, 24217–24222. [Google Scholar] [CrossRef]
- Ju, H.; Zhou, X.; Shi, B.; Kong, X.; Xing, H.; Huang, F. A pillar[5]arene-based hydrogel adsorbent in aqueous environments for organic micropollutants. Polym. Chem. 2019, 10, 5821–5828. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, T.; Wang, G.; Hu, W.; Liu, Y.A.; Yang, H.; Wen, K. A Pillar[5]arene Conjugated Polymer for Removal of Low-Molecular-Weight Organic Acids, Amines, and Alcohols from Water. ACS Appl. Polym. Mater. 2020, 2, 5566–5573. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Y.; Sun, X.; Li, Y.; Zhang, Y.; Wei, T.; Yao, H.; Lin, Q. Linear tri-pillar[5]arene-based acceptor for efficiently separate paraquat from water through collaboration effect. Mater. Sci. Eng. C-Mater. Biol. Appl. 2021, 118, 111358. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.; Yao, X.; Zhang, Y.; Wei, T.; Yao, H.; Lin, Q. Novel tripodal-pillar[5]arene-based chemical sensor for efficient detection and removal paraquat by synergistic effect. Sens. Actuators B Chem. 2021, 327, 128885. [Google Scholar] [CrossRef]
- Li, Y.; Wen, J.; Li, J.; Wu, Z.; Li, W.; Yang, K. Controllable preparation of supramolecular coordination polymers based on carboxylated pillar[n]arenes and zinc ions: An efficient tool for paraquat removal from water. Appl. Surf. Sci. 2023, 613, 156071. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, W.; Huang, X.; Qu, W.; He, J.; Fang, H.; Yao, H.; Wei, T.; Lin, Q. Supramolecular Aggregation-Induced Emission Gels Based on Pillar[5]arene for Ultrasensitive Detection and Separation of Multianalytes. ACS Sustain. Chem. Eng. 2018, 6, 16597–16606. [Google Scholar] [CrossRef]
- Dai, D.; Yang, J.; Zou, Y.; Wu, J.; Tan, L.; Wang, Y.; Li, B.; Lu, T.; Wang, B.; Yang, Y. Macrocyclic Arenes-Based Conjugated Macrocycle Polymers for Highly Selective CO2 Capture and Iodine Adsorption. Angew. Chem. Int. Ed. 2021, 60, 8967–8975. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Li, B.; Yang, Y. Separation of Bromoalkanes Isomers by Nonporous Adaptive Crystals of Leaning Pillar[6]arene. Angew. Chem. Int. Ed. 2020, 59, 2251–2255. [Google Scholar] [CrossRef] [PubMed]
- Dai, D.; Li, Z.; Yang, J.; Wang, C.; Wu, J.; Wang, Y.; Zhang, D.; Yang, Y. Supramolecular Assembly-Induced Emission Enhancement for Efficient Mercury(II) Detection and Removal. J. Am. Chem. Soc. 2019, 141, 4756–4763. [Google Scholar] [CrossRef] [PubMed]
- Kiruthika, J.; Arunachalam, M. Pillar[5]arene-based cross-linked polymer for the rapid adsorption of iodine from water and vapor phases. Polymer 2022, 259, 125322. [Google Scholar] [CrossRef]
- Talapaneni, S.N.; Kim, D.; Barin, G.; Buyukcakir, O.; Je, S.; Coskun, A. Pillar[5]arene Based Conjugated Microporous Polymers for Propane/Methane Separation through Host-Guest Complexation. Chem. Mater. 2016, 28, 4460–4466. [Google Scholar] [CrossRef]
- Escobar, L.; Ballester, P. Molecular Recognition in Water Using Macrocyclic Synthetic Receptors. Chem. Rev. 2021, 121, 2445–2514. [Google Scholar] [CrossRef] [PubMed]
- Pan, G.; Hu, C.; Hong, S.; Li, H.P.; Yu, D.; Cui, C.; Li, Q.; Liang, N.; Jiang, Y.; Zheng, L.; et al. Biomimetic caged platinum catalyst for hydrosilylation reaction with high site selectivity. Nat. Commun. 2021, 12, 64. [Google Scholar] [CrossRef]
- Fang, Y.; Powell, J.A.; Li, E.; Wang, Q.; Perry, Z.; Kirchon, A.; Yang, X.; Xiao, Z.; Zhu, C.; Zhang, L.; et al. Catalytic reactions within the cavity of coordination cages. Chem. Soc. Rev. 2019, 48, 4707–4730. [Google Scholar] [CrossRef]
- Lan, S.; Yang, X.; Shi, K.; Fan, R.; Ma, D. Pillarquinone-Based Porous Polymer for a Highly-Efficient Heterogeneous Organometallic Catalysis. ChemCatChem 2019, 11, 2864–2869. [Google Scholar] [CrossRef]
- Zheng, X.; Liu, K.; Chen, L.; He, H.; Chen, L.; Sun, C. Co(O)x Particles in Polymeric N-Doped Carbon Nanotube Applied for Photocatalytic H2 or Electrocatalytic O2 Evolution. Polymers 2019, 11, 1836. [Google Scholar] [CrossRef]
- Wang, X.; Lu, M.; Loh, T. Transition-Metal-Catalyzed C–C Bond Macrocyclization via Intramolecular C–H Bond Activation. Catalysts 2023, 13, 438. [Google Scholar] [CrossRef]
- Pappalardo, A.; Ballistreri, F.P.; Toscano, R.M.; Chiacchio, M.A.; Legnani, L.; Grazioso, G.; Veltri, L.; Trusso Sfrazzetto, G. Alkene Epoxidations Mediated by Mn-Salen Macrocyclic Catalysts. Catalysts 2021, 11, 465. [Google Scholar] [CrossRef]
- Cullen, W.; Misuraca, M.C.; Hunter, C.A.; Williams, N.H.; Ward, M.D. Highly efficient catalysis of the Kemp elimination in the cavity of a cubic coordination cage. Nat. Chem. 2016, 8, 231–236. [Google Scholar] [CrossRef]
- Qian, W.; Zuo, M.; Niu, P.; Hu, X.; Wang, L. The construction of aggregation-induced charge transfer emission systems in aqueous solution directed by supramolecular strategy. Chin. Chem. Lett. 2022, 33, 1975–1978. [Google Scholar] [CrossRef]
- Wang, K.; Tian, X.; Jordan, J.H.; Velmurugan, K.; Wang, L.; Hu, X. The emerging applications of pillararene architectures in supramolecular catalysis. Chin. Chem. Lett. 2022, 33, 89–96. [Google Scholar] [CrossRef]
- Kosiorek, S.; Rad, N.; Sashuk, V. Supramolecular Catalysis by Carboxylated Pillar[n]arenes. ChemCatChem 2020, 12, 2776–2782. [Google Scholar] [CrossRef]
- Chen, T.; Peng, Y.; Qiu, M.; Yi, C.; Xu, Z. Heterogenization of homogeneous catalysts in polymer nanoparticles: From easier recovery and reuse to more efficient catalysis. Coord. Chem. Rev. 2023, 489, 215195. [Google Scholar] [CrossRef]
- Yang, H.; Choi, H.; Lee, I. Recent progress on end-group chemistry of conjugated polymers based on Suzuki-Miyaura catalyst-transfer polymerization. Giant 2023, 14, 100152. [Google Scholar] [CrossRef]
- Bian, L.; Liang, Y.; Liu, Z. Tetraphenylethylene-Incorporated Macrocycles and Nanocages: Construction and Applications. ACS Appl. Nano Mater. 2022, 5, 13940–13958. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, W.; Lin, L.; Jin, G. Recent advances in the construction and applications of heterometallic macrocycles and cages. Coord. Chem. Rev. 2017, 344, 323–344. [Google Scholar] [CrossRef]
- Liu, Y.S.; Lyu, S.S.; Wen, F.L.; Nie, W.X.; Wang, S.Q. Polymer-encapsulated metal complex catalysts: An emerging and efficient platform for electrochemical CO2 reduction. J. Mater. Sci. Technol. 2024, 172, 33–50. [Google Scholar] [CrossRef]
- Atacan, K.; Güy, N.; Alaylı, A.; Nadaroğlu, H. Novel green synthesis of Ag2S from Diospyros kaki and its application for efficient photocatalytic hydrogen evolution. Mol. Catal. 2023, 544, 113140. [Google Scholar] [CrossRef]
- Bueno, N.; Pérez, A.; Molina, R.; Moreno, S. Pillared bentonite from Al-Fe-Cu polymeric precursor in solid state for the catalytic oxidation of amoxicillin. Catal. Today 2023, 418, 114135. [Google Scholar] [CrossRef]
- Wang, K.; Jordan, J.H.; Velmurugan, K.; Tian, X.; Zuo, M.; Hu, X.; Wang, L. Role of Functionalized Pillararene Architectures in Supramolecular Catalysis. Angew. Chem. Int. Ed. 2021, 133, 9289–9298. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, R.; Song, Z.; Zhang, K.; Tian, X.; Pangannaya, S.; Zuo, M.; Hu, X. Dimeric Pillar[5]arene as a Novel Fluorescent Host for Controllable Fabrication of Supramolecular Assemblies and Their Photocatalytic Applications. Adv. Sci. 2023, 10, 2206897. [Google Scholar] [CrossRef] [PubMed]
- Zhong, K.; Lu, S.; Guo, W.; Su, J.; Sun, S.; Hai, J.; Chen, F.; Wang, A.; Wang, B. Embedding CsPbBr3 quantum dots into a pillar[5]arene-based supramolecular self-assembly for an efficient photocatalytic cross-coupling hydrogen evolution reaction. J. Mater. Chem. A 2021, 9, 10180–10185. [Google Scholar] [CrossRef]
- Liu, Y.; Lou, B.; Shangguan, L.; Cai, J.; Zhu, H.; Shi, B. Pillar[5]arene-Based Organometallic Cross-Linked Polymer: Synthesis, Structure Characterization, and Catalytic Activity in the Suzuki–Miyaura Coupling Reaction. Macromolecules 2018, 51, 1351–1356. [Google Scholar] [CrossRef]
- Guo, H.; Ye, J.; Zhang, Z.; Wang, Y.; Yuan, X.; Ou, C.; Ding, Y.; Yan, C.; Wang, J.; Yao, Y. Pillar[5]arene-Based [2]Rotaxane: Synthesis, Characterization, and Application in a Coupling Reaction. Inorg. Chem. 2020, 59, 11915–11919. [Google Scholar] [CrossRef]
- Li, Z.; Li, X.; Yang, Y. Conjugated Macrocycle Polymer Nanoparticles with Alternating Pillarenes and Porphyrins as Struts and Cyclic Nodes. Small 2019, 15, 1805509. [Google Scholar] [CrossRef]
- Cai, Y.; Yan, X.; Wang, S.; Zhu, Z.; Cen, M.; Ou, C.; Zhao, Q.; Yan, Q.; Wang, J.; Yao, Y. Pillar[5]arene-Based 3D Hybrid Supramolecular Polymer for Green Catalysis in Water. Inorg. Chem. 2021, 60, 2883–2887. [Google Scholar] [CrossRef]
- Zhang, R.; Yan, X.; Guo, H.; Hu, L.; Yan, C.; Wang, Y.; Yao, Y. Supramolecular polymer networks based on pillar[5]arene: Synthesis, characterization and application in the Fenton reaction. Chem. Commun. 2020, 56, 948–951. [Google Scholar] [CrossRef]
- Zhao, G.; Ran, X.; Zhou, X.; Tan, X.; Lei, H.; Xie, X.; Yang, L.; Du, G. Green Synthesis of Hydroxylatopillar[5]arene-Modified Gold Nanoparticles and Their Self-Assembly, Sensing, and Catalysis Applications. ACS Sustain. Chem. Eng. 2018, 6, 3938–3947. [Google Scholar] [CrossRef]
- Borjigin, T.; Zhao, G.; Zhang, Y.; Liang, M.; Liu, B.; Liu, H.; Yang, X.; Guo, H. Control loading Au nanoparticles on the surface of hydroxyl pillar[5]arene functionalized single-walled carbon nanotubes and its application in catalysis and sensing. Sustain. Energy Fuels 2019, 3, 2312–2320. [Google Scholar] [CrossRef]
- Zhao, G.; Gao, Z.; Li, H.; Liu, S.; Chen, L.; Zhang, R.; Guo, H. Controlled assembly of Ag nanoparticles on the surface of phosphate pillar [6]arene functionalized single-walled carbon nanotube for enhanced catalysis and sensing performance. Electrochim. Acta 2019, 318, 711–719. [Google Scholar] [CrossRef]
- Tan, X.; Zhang, Z.; Cao, T.; Zeng, W.; Huang, T.; Zhao, G. Control Assembly of Pillar[6]arene-Modified Ag Nanoparticles on Covalent Organic Framework Surface for Enhanced Sensing Performance toward Paraquat. ACS Sustain. Chem. Eng. 2019, 7, 20051–20059. [Google Scholar] [CrossRef]
- Zeng, M.; Chen, K.; Tan, J.; Zhang, J.; Wei, Y. A Supramolecular Catalyst Self-Assembled From Polyoxometalates and Cationic Pillar[5]arenes for the Room Temperature Oxidation of Aldehydes. Front. Chem. 2018, 6, 457. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Zhang, X.; Ge, Z.; Gao, Z.; Liao, R.; Wang, F. A bioinspired sequential energy transfer system constructed via supramolecular copolymerization. Nat. Commun. 2022, 13, 3546. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Han, N.; Wang, Y.; Wang, R.; Yu, S.; Wang, Y.; Xing, L. An efficient strategy based on polyelectrolyte of constructing a sequential energy transfer artificial light-harvesting system for photocatalysis. Dye. Pigment. 2023, 211, 111076. [Google Scholar] [CrossRef]
- Li, M.; Shi, Q.; Song, N.; Chen, Z.; Wang, L.; James, T.D. Self-Assembled Artificial Light-Harvesting System Constructed Using Electrostatic Interactions in Aqueous Solution for the Sensing of Heavy Metal Cations. Adv. Opt. Mater. 2023, 11, 2203079. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, K.; Shi, Y.; Li, Z.; Zhao, D.; Pi, Y.; Cui, Y.; Zhou, X.; Zhang, Y.; Zhong, J. Electromagnetic energy harvesters based on natural leaves for constructing self-powered systems. Mater. Today Energy 2022, 29, 101131. [Google Scholar] [CrossRef]
- Jia, P.; Hu, L.; Dou, W.; Xu, X.; Sun, H.; Peng, Z.; Zhang, D.; Yang, H.; Xu, L. An efficient hierarchical self-assembly approach to construct structurally diverse two-step sequential energy-transfer artificial light-harvesting systems. J. Mater. Chem. C. 2023, 11, 6607–6615. [Google Scholar] [CrossRef]
- Li, X.; Yu, S.; Shen, Z.; Wang, R.; Zhang, W.; Núñez-Delgado, A.; Han, N.; Xing, L. Supramolecular assemblies working as both artificial light-harvesting system and nanoreactor for efficient organic dehalogenation in aqueous environment. J. Colloid Interface Sci. 2022, 617, 118–128. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Shen, Y.; Jeyakkumar, P.; Zhang, Y.; Chu, L.; Zhang, R.; Hu, X. Supramolecular artificial light-harvesting systems for photocatalysis. Curr. Opin. Green Sustain. Chem. 2023, 41, 100823. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, W.; Ren, Q.; Tao, Z.; Xiao, X. Highly Efficient Artificial Light-Harvesting Systems Constructed in an Aqueous Solution Based on Twisted Cucurbit[14]Uril. ACS Appl. Mater. Interfaces 2022, 14, 29806–29812. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ma, C.; Li, X.; Dong, R.; Liu, H.; Wang, R.; Yu, S.; Xing, L. A novel strategy of constructing an artificial light-harvesting system based on a supramolecular organic framework for photocatalysis. J. Mater. Chem. A 2023, 11, 2627–2633. [Google Scholar] [CrossRef]
- Hu, Y.; Jia, P.; Zhang, C.; Xu, X.; Niu, Y.; Zhao, X.; Xu, Q.; Xu, L.; Yang, H. A supramolecular dual-donor artificial light-harvesting system with efficient visible light-harvesting capacity. Org. Chem. Front. 2021, 8, 5250–5257. [Google Scholar] [CrossRef]
- Ahmed, S.; Kumar, A.; Mukherjee, P.S. Tetraphenylethene-Based Emissive Pt(II) Coordination Polymer toward Artificial Light-Harvesting Systems with Sequential Energy Transfer. Chem. Mater. 2022, 34, 9656–9665. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, Z.; Hou, Y.; Wang, H.; Li, X.; He, G.; Zhang, M. Aqueous Platinum(II)-Cage-Based Light-Harvesting System for Photocatalytic Cross-Coupling Hydrogen Evolution Reaction. Angew. Chem. Int. Ed. 2019, 58, 8862–8866. [Google Scholar] [CrossRef]
- Zhang, W.; Luo, Y.; Jia, M.; Ni, X.; Tao, Z.; Xiao, C.; Xiao, X. An efficient supramolecular artificial light-harvesting system based on twisted cucurbit[15]uril and cucurbit[10]uril for live cell imaging. Sens. Actuators B Chem. 2022, 366, 132006. [Google Scholar] [CrossRef]
- Hohgardt, M.; Gädeke, F.E.; Wegener, L.; Walla, P.J. A Refined Prediction Parameter for Molecular Alignability in Stretched Polymers and a New Light-Harvesting Material for AlGaAs Photovoltaics. Polymers 2022, 14, 532. [Google Scholar] [CrossRef]
- Efa, M.T.; Huang, J.; Imae, T. Cascade Förster Resonance Energy Transfer Studies for Enhancement of Light Harvesting on Dye-Sensitized Solar Cells. Nanomaterials 2022, 12, 4085. [Google Scholar] [CrossRef]
- Lou, X.; Song, N.; Yang, Y. Enhanced Solution and Solid-State Emission and Tunable White-Light Emission Harvested by Supramolecular Approaches. Chem. Eur. J. 2019, 25, 11975–11982. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, H.; Dai, X.; Liu, Z.; Liu, Y. A highly efficient light-harvesting system with sequential energy transfer based on a multicharged supramolecular assembly. Chem. Commun. 2020, 56, 5949–5952. [Google Scholar] [CrossRef]
- Xiao, T.; Zhang, L.; Chen, D.; Zhang, Q.; Wang, Q.; Li, Z.; Sun, X. A pillar[5]arene-based artificial light-harvesting system with red emission for high-resolution imaging of latent fingerprints. Org. Chem. Front. 2023, 10, 3245–3251. [Google Scholar] [CrossRef]
- Xiao, T.; Chen, D.; Qian, H.; Shen, Y.; Zhang, L.; Li, Z.; Sun, X. Pillar[5]arene-based light-harvesting assemblies with sequential energy-transfer for tunable emission and photocatalysis. Dyes. Pigment. 2023, 210, 110958. [Google Scholar] [CrossRef]
- Xiao, T.; Qian, H.; Shen, Y.; Wei, C.; Ren, D.; Zhang, L.; Li, Z.; Wang, L.; Sun, X. A tunable artificial light-harvesting system based on host-guest interaction exhibiting ultrahigh antenna effect and narrowed emission band. Mater. Today Chem. 2022, 24, 100833. [Google Scholar] [CrossRef]
- Xiao, T.; Wu, H.; Sun, G.; Diao, K.; Wei, X.; Li, Z.; Sun, X.; Wang, L. An efficient artificial light-harvesting system with tunable emission in water constructed from a H-bonded AIE supramolecular polymer and Nile Red. Chem. Commun. 2020, 56, 12021–12024. [Google Scholar] [CrossRef]
- Meng, L.; Li, D.; Xiong, S.; Hu, X.; Wang, L.; Li, G. FRET-capable supramolecular polymers based on a BODIPY-bridged pillar[5]arene dimer with BODIPY guests for mimicking the light-harvesting system of natural photosynthesis. Chem. Commun. 2015, 51, 4643–4646. [Google Scholar] [CrossRef]
- Xiao, T.; Zhong, W.; Zhou, L.; Xu, L.; Sun, X.; Elmes, R.B.P.; Hu, X.; Wang, L. Artificial light-harvesting systems fabricated by supramolecular Host-Guest interactions. Chin. Chem. Lett. 2019, 30, 31–36. [Google Scholar] [CrossRef]
- Zhou, X.; Satyabola, D.; Liu, H.; Jiang, S.; Qi, X.; Yu, L.; Lin, S.; Liu, Y.; Woodbury, N.W.; Yan, H. Two-Dimensional Excitonic Networks Directed by DNA Templates as an Efficient Model Light-Harvesting and Energy Transfer System. Angew. Chem. Int. Ed. 2022, 61, e202211200. [Google Scholar] [CrossRef]
- Zhang, D.; Yu, W.; Li, S.; Xia, Y.; Li, X.; Li, Y.; Yi, T. Artificial Light-Harvesting Metallacycle System with Sequential Energy Transfer for Photochemical Catalysis. J. Am. Chem. Soc. 2021, 143, 1313–1317. [Google Scholar] [CrossRef]
- Sun, C.; Peng, H.; Niu, L.; Chen, Y.; Wu, L.; Tung, C.; Yang, Q. Artificial light-harvesting supramolecular polymeric nanoparticles formed by pillar[5]arene-based Host-Guest interaction. Chem. Commun. 2018, 54, 1117–1120. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, J.; Wang, R.; Liu, H.; Yu, S.; Xing, L. Supramolecular polymers based on host-guest interactions for the construction of artificial light-harvesting systems. Spectroc. Acta Pt. A Molec. Biomolec. Spectr. 2022, 279, 121402. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, W.; Ren, Q.; Chen, G.; Ran, J.; Xiao, X. A multiple-function fluorescent pillar[5]arene: Fe3+/Ag+ detection and light-harvesting system. Chin. Chem. Lett. 2022, 33, 5120–5123. [Google Scholar] [CrossRef]
- Hao, M.; Sun, G.; Zuo, M.; Xu, Z.; Chen, Y.; Hu, X.; Wang, L. A Supramolecular Artificial Light-Harvesting System with Two-Step Sequential Energy Transfer for Photochemical Catalysis. Angew. Chem. Int. Ed. 2020, 59, 10095–10100. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.; Qian, W.; Jiao, J.; Han, T.; Shi, Y.; Hu, X.; Wang, L. A highly efficient artificial light-harvesting system with two-step sequential energy transfer based on supramolecular self-assembly. J. Mater. Chem. A 2020, 8, 9590–9596. [Google Scholar] [CrossRef]
- Sun, G.; Zuo, M.; Qian, W.; Jiao, J.; Hu, X.; Wang, L. Highly efficient artificial light-harvesting systems constructed in aqueous solution for supramolecular photocatalysis. Green Synth. Catal. 2021, 2, 32–37. [Google Scholar] [CrossRef]
- Xiao, T.; Qian, H.; Li, X.; Wu, Z.; Li, Z.; Sun, X. Highly efficient sequential light-harvesting system constructed by macrocycle-based nanoparticles for tunable photoluminescence. Dye. Pigment. 2023, 215, 111289. [Google Scholar] [CrossRef]
- Wang, Y.; Han, N.; Li, X.; Wang, R.; Xing, L. Novel Strategy of Constructing Artificial Light-Harvesting System with Two-Step Sequential Energy Transfer for Efficient Photocatalysis in Water. ACS Appl. Mater. Interfaces 2022, 14, 45734–45741. [Google Scholar] [CrossRef]
- Sun, G.; Li, M.; Cai, L.; Wang, D.; Cui, Y.; Hu, Y.; Sun, T.; Zhu, J.; Tang, Y. Water-soluble phosphate-pillar[5]arene (WPP5)-based artificial light-harvesting system for photocatalytic cross-coupling dehydrogenation. J. Colloid Interface Sci. 2023, 641, 803–811. [Google Scholar] [CrossRef]
- Wang, X.; Lou, X.; Lu, T.; Wang, C.; Tang, J.; Liu, F.; Wang, Y.; Yang, Y. Supramolecular Engineering of Efficient Artificial Light-Harvesting Systems from Cyanovinylene Chromophores and Pillar[5]arene-Based Polymer Hosts. ACS Appl. Mater. Interfaces 2021, 13, 4593–4604. [Google Scholar] [CrossRef]
- Yang, Z.; Ma, X.; Tang, C. Recent development of novel membranes for desalination. Desalination 2018, 434, 37–59. [Google Scholar] [CrossRef]
- Yang, K.; Ma, K.; Yang, M.; Lv, Y.; Pei, Y.; Pei, Z. Supramolecular nanoprodrug based on a chloride channel blocker and glycosylated pillar[5]arenes for targeted chemoresistance cancer therapy. Chem. Commun. 2023, 59, 3779–3782. [Google Scholar] [CrossRef] [PubMed]
- Porter, C.J.; Werber, J.R.; Zhong, M.; Wilson, C.J.; Elimelech, M. Pathways and Challenges for Biomimetic Desalination Membranes with Sub-Nanometer Channels. ACS Nano 2020, 14, 10894–10916. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Zhu, G.; Deng, B. Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification. Desalination 2016, 379, 93–101. [Google Scholar] [CrossRef]
- Li, W.; Yang, Z.; Liu, W.; Huang, Z.; Zhang, H.; Li, M.; Ma, X.; Tang, C.Y.; Xu, Z. Polyamide reverse osmosis membranes containing 1D nanochannels for enhanced water purification. J. Membr. Sci. 2021, 618, 118681. [Google Scholar] [CrossRef]
- Di Vincenzo, M.; Tiraferri, A.; Musteata, V.E.; Chisca, S.; Sougrat, R.; Huang, L.; Nunes, S.P.; Barboiu, M. Biomimetic artificial water channel membranes for enhanced desalination. Nat. Nanotechnol. 2021, 16, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Song, W.; Barden, D.R.; Ren, T.; Lang, C.; Feroz, H.; Henderson, C.B.; Saboe, P.O.; Tsai, D.; Yan, H.; et al. Achieving high permeability and enhanced selectivity for Angstrom-scale separations using artificial water channel membranes. Nat. Commun. 2018, 9, 2294. [Google Scholar] [CrossRef]
- Matile, S.; Fyles, T. Transport Across Membranes. Acc. Chem. Res. 2013, 46, 2741–2742. [Google Scholar] [CrossRef]
- Shen, J.; Roy, A.; Joshi, H.; Samineni, L.; Ye, R.; Tu, Y.; Song, W.; Skiles, M.; Kumar, M.; Aksimentiev, A.; et al. Fluorofoldamer-Based Salt- and Proton-Rejecting Artificial Water Channels for Ultrafast Water Transport. Nano Lett. 2022, 22, 4831–4838. [Google Scholar] [CrossRef]
- Mao, Y.; Xu, J.; Chen, H.; Liu, G.; Liu, Z.; Cheng, L.; Guo, Y.; Liu, G.; Jin, W. Hydrophobic metal-organic framework@graphene oxide membrane with enhanced water transport for desalination. J. Membr. Sci. 2023, 669, 121324. [Google Scholar] [CrossRef]
- Wang, Y.; Shang, Y.; Li, X.; Tian, T.; Gao, L.; Jiang, L. Fabrication of CO2 Facilitated Transport Channels in Block Copolymer through Supramolecular Assembly. Polymers 2014, 6, 1403–1413. [Google Scholar] [CrossRef]
- Chang, H.; Wu, K.; Chen, W.; Weng, J.; Chen, C.; Raj, A.; Hamaguchi, H.; Chuang, W.; Wang, X.; Wang, C. Water-Induced Self-Assembly of Amphiphilic Discotic Molecules for Adaptive Artificial Water Channels. ACS Nano 2021, 15, 14885–14890. [Google Scholar] [CrossRef]
- Shen, Y.; Si, W.; Erbakan, M.; Decker, K.; De Zorzi, R.; Saboe, P.O.; Kang, Y.; Majd, S.; Butler, P.J.; Walz, T.; et al. Highly permeable artificial water channels that can self-assemble into two-dimensional arrays. Proc. Natl. Acad. Sci. USA 2015, 112, 9810–9815. [Google Scholar] [CrossRef] [PubMed]
- Mondal, D.; Dandekar, B.R.; Ahmad, M.; Mondal, A.; Mondal, J.; Talukdar, P. Selective and rapid water transportation across a self-assembled peptide-diol channel via the formation of a dual water array. Chem. Sci. 2022, 13, 9614–9623. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Joshi, H.; Chowdhury, R.; Najem, J.S.; Shen, Y.; Lang, C.; Henderson, C.B.; Tu, Y.; Farell, M.; Pitz, M.E.; et al. Artificial water channels enable fast and selective water permeation through water-wire networks. Nat. Nanotechnol. 2020, 15, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Kursunlu, A.N.; Bastug, E.; Oguz, A.; Oguz, M.; Yilmaz, M. A highly branched macrocycle-based dual-channel sensor: Bodipy and pillar[5]arene combination for detection of Sn (II) & Hg (II) and bioimaging in living cells. Anal. Chim. Acta 2022, 1196, 339542. [Google Scholar] [PubMed]
- Feng, W.; Sun, Z.; Zhang, Y.; Legrand, Y.-M.; Petit, E.; Su, C.; Barboiu, M. Bis-15-crown-5-ether-pillar[5]arene K+-Responsive Channels. Org. Lett. 2017, 19, 1438–1441. [Google Scholar] [CrossRef]
- Hu, X.; Chen, Z.; Tang, G.; Hou, J.; Li, Z. Single-Molecular Artificial Transmembrane Water Channels. J. Am. Chem. Soc. 2012, 134, 8384–8387. [Google Scholar] [CrossRef]
- Zhang, F.; Ma, J.; Sun, Y.; Mei, Y.; Chen, X.; Wang, W.; Li, H. Construction of a Switchable Nanochannel for Protein Transport via a Pillar[5]arene-Based Host-Guest System. Anal. Chem. 2018, 90, 8270–8275. [Google Scholar] [CrossRef]
- Lim, Y.; Goh, K.; Lai, G.; Ng, C.Y.; Torres, J.; Wang, R. Fast water transport through biomimetic reverse osmosis membranes embedded with peptide-attached (pR)-pillar[5]arenes water channels. J. Membr. Sci. 2021, 628, 119276. [Google Scholar] [CrossRef]
- Barden, D.R.; Vashisth, H. Water Dynamics in a Peptide-appended Pillar[5]arene Artificial Channel in Lipid and Biomimetic Membranes. Front. Chem. 2021, 9, 753635. [Google Scholar] [CrossRef]
- Si, W.; Xin, P.; Li, Z.; Hou, J. Tubular Unimolecular Transmembrane Channels: Construction Strategy and Transport Activities. Acc. Chem. Res. 2015, 48, 1612–1619. [Google Scholar] [CrossRef]
- Quan, J.; Zhu, F.; Dhinakaran, M.K.; Yang, Y.; Johnson, R.P.; Li, H. A Visible-Light-Regulated Chloride Transport Channel Inspired by Rhodopsin. Angew. Chem. Int. Ed. 2021, 133, 2928–2933. [Google Scholar] [CrossRef]
- Wang, R.; Sun, Y.; Zhang, F.; Song, M.; Tian, D.; Li, H. Temperature-Sensitive Artificial Channels through Pillar[5]arene-based Host-Guest Interactions. Angew. Chem. Int. Ed. 2017, 129, 5378–5382. [Google Scholar] [CrossRef]
- Cheng, S.; Liu, X.; Han, Z.; Rong, Y.; Qin, S.; Sun, Y.; Li, H. Tailoring CO2-Activated Ion Nanochannels Using Macrocyclic Pillararenes. ACS Appl. Mater. Interfaces 2021, 13, 27255–27261. [Google Scholar] [CrossRef]
- Li, Q.; Li, X.; Ning, L.; Tan, C.; Mu, Y.; Wang, R. Hyperfast Water Transport through Biomimetic Nanochannels from Peptide-Attached (pR)-pillar[5]arene. Small 2019, 15, 1804678. [Google Scholar] [CrossRef]
- Lim, Y.; Lai, G.; Zhao, Y.; Ma, Y.; Torres, J.; Wang, R. A scalable method to fabricate high-performance biomimetic membranes for seawater desalination: Incorporating pillar[5]arene water nanochannels into the polyamide selective layer. J. Membr. Sci. 2022, 661, 120957. [Google Scholar] [CrossRef]
- Wu, J.; Mu, A.U.; Li, B.; Wang, C.; Fang, L.; Yang, Y. Desymmetrized Leaning Pillar[6]arene. Angew. Chem. Int. Ed. 2018, 57, 9853–9858. [Google Scholar] [CrossRef] [PubMed]
- Ogoshi, T.; Ueshima, N.; Sakakibara, F.; Yamagishi, T.; Haino, T. Conversion from Pillar[5]arene to Pillar[6–15]arenes by Ring Expansion and Encapsulation of C60 by Pillar[n]arenes with Nanosize Cavities. Org. Lett. 2014, 16, 2896–2899. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Lu, X.; Liao, X.; Zou, H.; Tao, J.; Ni, C.; Pan, J.; Li, C.; Zheng, Y. Water-soluble pillar[5]arene modified amphiphilic graphene quantum dots with excellent penetration for intracellular imaging. Appl. Surf. Sci. 2021, 566, 150739. [Google Scholar] [CrossRef]
- Feng, W.; Jin, M.; Yang, K.; Pei, Y.; Pei, Z. Supramolecular delivery systems based on pillararenes. Chem. Commun. 2018, 54, 13626–13640. [Google Scholar] [CrossRef]
- Jeon, C.; Choi, J.; Shin, J.; Min, H.; Nam, J.; Jeon, S.; Kim, J.; Kim, Y.; Sim, J.; Ahn, H.; et al. Micro-pillar tunnel stamp for enhanced transdermal delivery of topical drug formulations. Acta Biomater. 2023, 160, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Chen, S.; Gou, X.; Yang, J.; An, J.; Jin, X.; Yang, Y.; Chen, L.; Gao, H. Biodegradable Supramolecular Materials Based on Cationic Polyaspartamides and Pillar[5]arene for Targeting Gram-Positive Bacteria and Mitigating Antimicrobial Resistance. Adv. Funct. Mater. 2019, 29, 1904683. [Google Scholar] [CrossRef]
- Pu, Y.; Fan, X.; Zhang, Z.; Guo, Z.; Pan, Q.; Gao, W.; Luo, K.; He, B. Harnessing polymer-derived drug delivery systems for combating inflammatory bowel disease. J. Control. Release 2023, 354, 1–18. [Google Scholar] [CrossRef]
- Ma, M.; Gao, N.; Sun, Y.; Ren, J.; Qu, X. A Near-Infrared Responsive Drug Sequential Release System for Better Eradicating Amyloid Aggregates. Small 2017, 13, 1701817. [Google Scholar] [CrossRef]
- Yu, G.; Zhou, X.; Zhang, Z.; Han, C.; Mao, Z.; Gao, C.; Huang, F. Pillar[6]arene/Paraquat Molecular Recognition in Water: High Binding Strength, pH-Responsiveness, and Application in Controllable Self-Assembly, Controlled Release, and Treatment of Paraquat Poisoning. J. Am. Chem. Soc. 2012, 134, 19489–19497. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Tan, L.; Li, X.; Song, N.; Li, Z.; Hu, J.; Cheng, Y.; Wang, Y.; Yang, Y. Smart mesoporous silica nanoparticles gated by pillararene-modified gold nanoparticles for on-demand cargo release. Chem. Commun. 2016, 52, 13775–13778. [Google Scholar] [CrossRef]
- Li, X.; Han, J.; Qin, J.; Sun, M.; Wu, J.; Lei, L.; Li, J.; Fang, L.; Yang, Y. Mesoporous silica nanobeans dual-functionalized with AIEgens and leaning pillar[6]arene-based supramolecular switches for imaging and stimuli-responsive drug release. Chem. Commun. 2019, 55, 14099–14102. [Google Scholar] [CrossRef]
- Lu, Y.; Hou, C.; Ren, J.; Yang, K.; Chang, Y.; Pei, Y.; Dong, H.; Pei, Z. A multifunctional supramolecular vesicle based on complex of cystamine dihydrochloride capped pillar[5]arene and galactose derivative for targeted drug delivery. Int. J. Nanomed. 2019, 14, 3525–3532. [Google Scholar] [CrossRef]
- Guo, S.; Liang, T.; Song, Y.; Cheng, M.; Hu, X.; Zhu, J.; Wang, L. Supramolecular polymersomes constructed from water-soluble pillar[5]arene and cationic poly(glutamamide)s and their applications in targeted anticancer drug delivery. Polym. Chem. 2017, 8, 5718–5725. [Google Scholar] [CrossRef]
- Li, M.; Shi, P.; Xu, C.; Ren, J.; Qu, X. Cerium oxide caged metal chelator: Anti-aggregation and anti-oxidation integrated H2O2- responsive controlled drug release for potential Alzheimer’s disease treatment. Chem. Sci. 2013, 4, 2536–2542. [Google Scholar] [CrossRef]
- Lukova, P.; Katsarov, P.; Pilicheva, B. Application of Starch, Cellulose, and Their Derivatives in the Development of Microparticle Drug-Delivery Systems. Polymers 2023, 15, 3615. [Google Scholar] [CrossRef] [PubMed]
- Budiman, A.; Handini, A.L.; Muslimah, M.N.; Nurani, N.V.; Laelasari, E.; Kurniawansyah, I.S.; Aulifa, D.L. Amorphous Solid Dispersion as Drug Delivery Vehicles in Cancer. Polymers 2023, 15, 3380. [Google Scholar] [CrossRef] [PubMed]
- Nikolova, S.; Milusheva, M.; Gledacheva, V.; Feizi-Dehnayebi, M.; Kaynarova, L.; Georgieva, D.; Delchev, V.; Stefanova, I.; Tumbarski, Y.; Mihaylova, R.; et al. Drug-Delivery Silver Nanoparticles: A New Perspective for Phenindione as an Anticoagulant. Biomedicines 2023, 11, 2201. [Google Scholar] [CrossRef] [PubMed]
- Sagoe, P.N.K.; Velázquez, E.J.M.; Espiritusanto, Y.M.; Gilbert, A.; Orado, T.; Wang, Q.; Jain, E. Fabrication of PEG-PLGA Microparticles with Tunable Sizes for Controlled Drug Release Application. Molecules 2023, 28, 6679. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Deng, R.; Li, Z.; Du, X.; Jia, Q.; Wang, X.; Wang, C.; Meguellati, K.; Yang, Y. Pillar[5]arene pseudo[1]rotaxane-based redox-responsive supramolecular vesicles for controlled drug release. Mater. Chem. Front. 2019, 3, 1427–1432. [Google Scholar] [CrossRef]
- Cheng, Q.; Teng, K.; Ding, Y.; Yue, L.; Yang, Q.; Wang, R. Dual stimuli-responsive bispillar[5]arene-based nanoparticles for precisely selective drug delivery in cancer cells. Chem. Commun. 2019, 55, 2340–2343. [Google Scholar] [CrossRef] [PubMed]
- Zuo, M.; Qian, W.; Xu, Z.Q.; Shao, W.; Hu, X.; Zhang, D.; Jiang, J.; Sun, X.; Wang, L. Multiresponsive Supramolecular Theranostic Nanoplatform Based on Pillar[5]arene and Diphenylboronic Acid Derivatives for Integrated Glucose Sensing and Insulin Delivery. Small 2018, 14, 1801942. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Chang, Y.; Wen, J.; Lu, Y.; Pei, Y.; Cao, S.; Wang, F.; Pei, Z. Supramolecular Vesicles Based on Complex of Trp-Modified Pillar[5]arene and Galactose Derivative for Synergistic and Targeted Drug Delivery. Chem. Mater. 2016, 28, 1990–1993. [Google Scholar] [CrossRef]
- He, J.; Chen, J.; Lin, S.; Niu, D.; Hao, J.; Jia, X.; Li, N.; Gu, J.; Li, Y.; Shi, J. Synthesis of a Pillar[5]arene-Based Polyrotaxane for Enhancing the Drug Loading Capacity of PCL-Based Supramolecular Amphiphile as an Excellent Drug Delivery Platform. Biomacromolecules 2018, 19, 2923–2930. [Google Scholar] [CrossRef]
- Nazarova, A.; Yakimova, L.; Mostovaya, O.; Kulikova, T.; Mikhailova, O.; Evtugyn, G.; Ganeeva, I.; Bulatov, E.; Stoikov, I. Encapsulation of the quercetin with interpolyelectrolyte complex based on pillar[5]arenes. J. Mol. Liq. 2022, 368, 120807. [Google Scholar] [CrossRef]
- Wang, Q.; Fan, J.; Bian, X.; Yao, H.; Yuan, X.; Han, Y.; Yan, C. A microenvironment sensitive pillar[5]arene-based fluorescent probe for cell imaging and drug delivery. Chin. Chem. Lett. 2022, 33, 1979–1982. [Google Scholar] [CrossRef]
- Cao, Y.; Hu, X.; Li, Y.; Zou, X.; Xiong, S.; Lin, C.; Shen, Y.; Wang, L. Multistimuli-Responsive Supramolecular Vesicles Based on Water-Soluble Pillar[6]arene and SAINT Complexation for Controllable Drug Release. J. Am. Chem. Soc. 2014, 136, 10762–10769. [Google Scholar] [CrossRef]
- Yu, G.; Zhou, J.; Shen, J.; Tang, G.; Huang, F. Cationic pillar[6]arene/ATP Host-Guest recognition: Selectivity, inhibition of ATP hydrolysis, and application in multidrug resistance treatment. Chem. Sci. 2016, 7, 4073–4078. [Google Scholar] [CrossRef] [PubMed]
Focused Pillar[n]arenes | Applications | Ref. |
---|---|---|
Pillar[5]arene Pillar[6]arene | Sensor | [20] |
Pillar[5]arene | Sensor | [38] |
Pillar[6]arene | Sensor; substance adsorption and separation | [57] |
Pillar[5]arene pillar[6]arene | Sensor; substance adsorption and separation; drug delivery system | [58] |
Pillar[5]arene Pillar[6]arene | Sensor; catalysis; light-harvesting system; drug delivery system | [59] |
Pillar[5]arene Pillar[6]arene | Sensor; catalysis; light-harvesting system; biomedical | [60] |
Pillar[5]arene | Artificial nanochannel | [37] |
Pillar[5]arene | Artificial nanochannel | [61] |
Pillar[5]arene Pillar[6]arene | Biomedical | [62] |
Pillar[5]arene Pillar[6]arene | Substance adsorption and separation; light-harvesting system; artificial nanochannel; drug delivery system | [63] |
Pillar[5]arene Pillar[6]arene | Biomedical | [64] |
Pillar[5]arene Pillar[6]arene | Fluorescence sensor; substance adsorption and separation; catalysis; light-harvesting system; artificial nanochannel; drug delivery system | This work |
Type of Pillar[n]arenes | Guest | Supramolecular Interactions | Morphology | Application | Ref. |
---|---|---|---|---|---|
Host12 | − | Host–guest | Spherical/rodlike | Removal of environmentally polluted and security concerned chemicals and targets. | [120] |
Host13 | Guest6, 7, 8, 9 | Host–guest | Crystal | Selective and stable removal of heterocyclic impurities from toluene (purity: 99%). | [121] |
Host14 | − | Host–guest | 1D channel (6.7 Å) | Removal of gases and vapors of saturated hydrocarbons. | [122] |
Host15 | − | Hydrogen bond | 3D network | Superior removal of organic micropollutants from water (removal efficiency: 17.0−99.8%). | [123] |
Host16 Host17 | − | Host–guest | 3D network | Recycle adsorption, removal in organic micropollutants (removal efficiency: 30.1−91.5%). | [124] |
Host18 | − | Host–guest | Irregular nanometer- to micrometer-sized nonporous particulates | Recycle removal of low-molecular-weight organic acids, amines, alcohols from water (removal efficiency: 47.5−98.5%). | [125] |
Host19 | Guest5 | Host–guest | Line | Rapid removal of paraquat (removal efficiency: 90%). | [126] |
Host20 | Guest5 | Host–guest | Porous | Efficient removal of paraquat (removal efficiency: 98.40%). | [127] |
Host21 | Guest5 | Host–guest | Uniformly distributed crystal | Removal of paraquat from water (adsorption efficiency: 98%). | [128] |
Host17 Host22 | − | Host–guest, π–π | 2D | Ultrasensitive adsorption of multianalytes, including Fe3+, Hg2+, Ag+, F−, and Br− (adsorption rates: 90.12−99.95%). | [129] |
Host23 | − | Host–guest, π–π | Spherical | Recycle removal of mercury(II) (removal efficiency: 90.00%). | [130] |
Host23 | Guest10 | Host–guest, π–π | 1D channel | Recycle separation of bromoalkanes isomers. | [131] |
Host24 | Guest11 | Host–guest, π–π | Daisy chain | Recycle CO2 capture and iodine adsorption (removal efficiency: 94%). | [132] |
Host25 | − | − | Nanometer-sized porous structure with voids | Adsorption of iodine from water and vapor phases (removal efficiency: 95%). | [133] |
Host26 | − | Host–guest | − | Separation of propane/methane. | [134] |
Type of Pillar[n]arenes | Other Components | Supramolecular Interactions | Morphology | Catalyzed Reaction | Ref. |
---|---|---|---|---|---|
Host27 | Guest12 | π–π, Hydrogen bond | Stacked lamellar | Dehalogenation reaction. | [154] |
Host28 | Guest13 | Host–guest, π–π | Multilayer nanosheets | Photocatalytic cross-coupling hydrogen evolution reaction. | [155] |
Host29 | PdNPs | Host–guest, Coordination | Cross-linked polymer with irregular spherical shape (105 nm) | Suzuki–Miyaura coupling reaction. | [156] |
Host30 | Guest14 | Host–guest, Coordination | Disperse well with high density (9 nm) | Suzuki–Miyaura coupling reaction. Nitrophenol reduction. | [157] |
Host31 | PdNPs | Coordination, C–H···π | Hinges by small particles (50 nm) | Suzuki–Miyaura coupling reaction. | [158] |
Host32 | Guest15 | Host–guest, Coordination | 3D networks | Reductions of toxic nitroaromatics Suzuki–Miyaura coupling reaction. | [159] |
Host33 | Guest1 | Host–guest, Hydrogen bond | Fiber (100 mmol) Three-dimensional network (200 mmol) | Fenton-like reaction in water. | [160] |
Host34 | AuNPs | Host–guest | Vesicles, nanotubes, 1D/2D | 4-nitrophenol reaction in water. | [161] |
Host34 | Guest16 | Host–guest | AuNPs (10 nm) uniformly dispersed on the surface of SWCNT | Ethanol oxidation reaction in water. | [162] |
Host35 | Guest5 | Host–guest | Spherical AgNPs dispersed on the surface of SWCNT and located at sites of Host35 | Degrading organic dye molecule in water. | [163] |
Host36 | Guest5 | Host–guest | COF: 2D structure with spherical AgNPs (6–7 nm) | Reaction of paraquat in water. | [164] |
Host37 | Polyoxometalates | Host–guest | Spherical | Recycle catalytic oxidation of aldehydes into carboxylic acids. | [165] |
Type of Pillar[n]arenes | Guest | FL Probe | Supramolecular Interactions | Morphology | Property | Ref. |
---|---|---|---|---|---|---|
Host8 | Guest17 | ESY, NiR | Host–guest | Spherical | Electrode potential: 19.84 mV. λex/λem: 365 nm/610 nm. FRET efficiency: 56.28%. Antenna effect: 3.5. FL quantum yield: 5.01%. | [194] |
Host8 | Guest18 | DBT, NiR | Host–guest | Multilayered spherical, core-shell | Electrode potential: 46.94 mV. λex/λem: 365 nm/620 nm. FRET efficiency: 60.9, 89.4%. Antenna effect: 20.01. FL quantum yield: 23.5%. | [195] |
Host8 | Guest19 | ESY, NiR | Host–guest | Core-shell, globular | Electrode potential: −23.41 mV. λex/λem: ESY: 365 nm/550 nm; NiR: 365 nm/630 nm. FRET efficiency: 80.5, 60.2%. Antenna effect: 32.5, 30.1. FL quantum yield: 12.43, 15.24%. | [196] |
Host8 | Guest20 | ESY, Sulforhodamine 101 | Host–guest | Spherical | Electrode potential: 25.2 mV. λex/λem: 330 nm/606 nm. FRET efficiency: 94%. Antenna effect: 24. FL quantum yield: 36.37%. | [197] |
Host8 | Guest21 | ESY, NiR | Host–guest | Spherical | Electrode potential: −20.3 mV. λex/λem: 365 nm/650 nm. FRET efficiency: 67%, 66%. Antenna effect: 11.5, 7.2. FL quantum yield: 8.7%. | [198] |
Host8 | Guest22 | ESY | Host–guest | Spherical | Electrode potential: 28.7 mV. λex/λem: 365 nm/552 nm. FRET efficiency: 67.5%. Antenna effect: 30.3. FL quantum yield: 35.7%. | [199] |
Host38 | Guest23 | NiR | Host–guest | Spherical | λex/λem: 460 nm/520 nm. FRET efficiency: 76.41%. FL quantum yield: 5.68%. | [200] |
Type of Pillar[n]arenes | Other Components | Morphology | Encapsulation | Stimuli | Ref. |
---|---|---|---|---|---|
Host45 | − | Hollow vesicles | Doxorubicin (DOX) | Glutathion (GSH) | [246] |
Host46 | − | Spherical (180 nm) | Paclitaxel (PTX) | GSH, spermine | [247] |
Host47 | Guest30 | Vesicles | Insulin | Glucose | [248] |
Host48 | Guest31 | Vesicles | DOX | pH | [249] |
Host49 | Guest32 | Vesicles | DOX | pH | [250] |
Host50, 51, 52 | Guest33 | Spherical (10 nm) | Quercetin | pH | [251] |
Host53 | − | Spherical (149.6 nm) | Regorafenib (REG) | pH | [252] |
Host54 | Guest34 | Vesicles | DOX | Thermal, pH, Ca2+ | [253] |
Host55, 56 | Guest35 | Polyion complex micelles | DOX | − | [254] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Jin, Y.; Zhu, N.; Jin, L.Y. Applications of Supramolecular Polymers Generated from Pillar[n]arene-Based Molecules. Polymers 2023, 15, 4543. https://doi.org/10.3390/polym15234543
Li X, Jin Y, Zhu N, Jin LY. Applications of Supramolecular Polymers Generated from Pillar[n]arene-Based Molecules. Polymers. 2023; 15(23):4543. https://doi.org/10.3390/polym15234543
Chicago/Turabian StyleLi, Xu, Yan Jin, Nansong Zhu, and Long Yi Jin. 2023. "Applications of Supramolecular Polymers Generated from Pillar[n]arene-Based Molecules" Polymers 15, no. 23: 4543. https://doi.org/10.3390/polym15234543
APA StyleLi, X., Jin, Y., Zhu, N., & Jin, L. Y. (2023). Applications of Supramolecular Polymers Generated from Pillar[n]arene-Based Molecules. Polymers, 15(23), 4543. https://doi.org/10.3390/polym15234543