Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (467)

Search Parameters:
Keywords = supramolecular polymer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2896 KiB  
Article
Low-Temperature Uniaxial Orientation Effect on the Structure and Piezoelectric Properties of the Vinylidene Fluoride-Tetrafluoroethylene Copolymer Films
by Stanislav V. Kondrashov, Evgeniya L. Buryanskaya, Aleksey S. Osipkov, Vladimir S. Kirkin, Maria V. Butina, Pavel A. Mikhalev, Dmitry S. Ryzhenko and Mstislav O. Makeev
Int. J. Mol. Sci. 2025, 26(13), 6309; https://doi.org/10.3390/ijms26136309 - 30 Jun 2025
Viewed by 267
Abstract
This paper considers the uniaxial orientation effect on the structure and piezoelectric properties of vinylidene fluoride-tetrafluoroethylene copolymer ferroelectric films. The films were exposed to uniaxial orientation stretching in a temperature range from 20 °C to 60 °C; then, they were contact polarized under [...] Read more.
This paper considers the uniaxial orientation effect on the structure and piezoelectric properties of vinylidene fluoride-tetrafluoroethylene copolymer ferroelectric films. The films were exposed to uniaxial orientation stretching in a temperature range from 20 °C to 60 °C; then, they were contact polarized under normal conditions. The temperature dependence of the electric strength was determined. The longitudinal piezoelectric coefficient d33 values were measured by the quasi-static Berlincourt method. The piezoresponse force microscopy (PFM) method was used to investigate the film domain structure before and after polarization, and the local piezoelectric coefficient values were also calculated. Phase composition was studied using differential scanning calorimetry and infrared spectroscopy with the Fourier transform. It was found that uniaxial orientation stretching contributed to an increase in the piezoelectric coefficient d33 from 5 pC/N to 16–20 pC/N. The results obtained indicate the importance of the amorphous phase contribution to the formation of the piezoelectric properties in polymeric materials. Full article
(This article belongs to the Collection State-of-the-Art Macromolecules in Russia)
Show Figures

Figure 1

18 pages, 3205 KiB  
Article
Influences of Reservoir Conditions on the Performance of Cellulose Nanofiber/Laponite-Reinforced Supramolecular Polymer Gel-Based Lost Circulation Materials
by Liyao Dai, Jinsheng Sun, Kaihe Lv, Yingrui Bai, Jianlong Wang, Chaozheng Liu and Mei-Chun Li
Gels 2025, 11(7), 472; https://doi.org/10.3390/gels11070472 - 20 Jun 2025
Viewed by 348
Abstract
Lost circulation during drilling has significantly hindered the safe and efficient development of oil and gas resources. Supramolecular polymer gel–based lost circulation materials have shown significant potential for application due to their unique molecular structures and superior performance. Herein, a high–performance supramolecular polymer [...] Read more.
Lost circulation during drilling has significantly hindered the safe and efficient development of oil and gas resources. Supramolecular polymer gel–based lost circulation materials have shown significant potential for application due to their unique molecular structures and superior performance. Herein, a high–performance supramolecular polymer gel was developed, and the influence of reservoir conditions on the performance of the supramolecular polymer gel was investigated in detail. The results identified an optimal formulation for the preparation of supramolecular polymer gel comprising 15 wt% acrylamide, 3 wt% 2-acrylamide-2-methylpropanesulfonic acid, 2.6 wt% divinylbenzene, 5 wt% polyvinyl alcohol, 0.30 wt% cellulose nanofibers, and 3 wt% laponite. The performance of the gel-forming suspension and the resulting supramolecular polymer gel was influenced by various factors, including temperature, density, pH, and the intrusion of drilling fluid, saltwater, and crude oil. Nevertheless, the supramolecular polymer gels consistently exhibited high strength under diverse environmental conditions, as confirmed by rheological measurements. Moreover, the gels exhibited strong plugging performance across various fracture widths and in permeable formations, with maximum breakthrough pressures exceeding 6 MPa. These findings establish a theoretical foundation and practical approach for the field application of supramolecular polymer gels in complex geological formations, demonstrating their effectiveness in controlling lost circulation under challenging downhole conditions. Full article
(This article belongs to the Special Issue Gels for Oil and Gas Industry Applications (3rd Edition))
Show Figures

Figure 1

17 pages, 3390 KiB  
Article
Controlled Formation of Au Nanonetworks via Discrete BTA-Oligo(Acrylic Acid)3 Supramolecular Templates
by Sadaf Aiman, Soonyoung Choi, Hyosun Lee, Sang-Ho Lee and Eunyong Seo
Polymers 2025, 17(12), 1662; https://doi.org/10.3390/polym17121662 - 15 Jun 2025
Viewed by 382
Abstract
Precise control over molecular dispersity and supramolecular assembly is essential for designing nanostructures with targeted properties and functionalities. In this study, we explore the impact of molecular dispersity in BTA-oligo(AA)3 oligomers on the formation and structural organization of Au nanomaterials in an [...] Read more.
Precise control over molecular dispersity and supramolecular assembly is essential for designing nanostructures with targeted properties and functionalities. In this study, we explore the impact of molecular dispersity in BTA-oligo(AA)3 oligomers on the formation and structural organization of Au nanomaterials in an aqueous system. Discrete and polydisperse BTA-oligo(AA)3 samples are systematically synthesized and characterized to evaluate their role as templates for nanostructure formation. UV-vis spectroscopy and TEM analyses reveal distinct differences in the resulting nanostructures. Specifically, discrete oligomers facilitate the formation of well-defined, interconnected Au nanonetworks with high structural uniformity, even at elevated concentrations. In contrast, polydisperse oligomers facilitated the formation of isolated Au nanoparticles with limited control over morphology and connectivity. These differences are attributed to the greater molecular uniformity and enhanced self-assembly capabilities of the discrete oligomers, which serve as effective templates for directing Au precursor organization and reduction into ordered nanostructures. This study provides mechanistic insight into how molecular dispersity affects the templating and assembly of gold nanomaterials. The findings offer a promising strategy for developing tailored nanostructures with interconnected morphologies and controlled optical and structural properties, paving the way for advanced applications. Full article
(This article belongs to the Special Issue Advanced Polymer Structures: Chemistry for Engineering Applications)
Show Figures

Graphical abstract

10 pages, 2064 KiB  
Communication
Photocurrent, Photodegradation, and Proton Conductivity of the Stable Dipyridyl and Thiophene-Functionalized CuII2 Supramolecular Compound
by Jin-He Wang, Guang-Min Liang, Jiu-Yu Ji, Xiao-Jie Gong, Liang-Liang Huang, Li-Ping Zhao, Wen-Xuan Xie and Kun Zhou
Inorganics 2025, 13(6), 195; https://doi.org/10.3390/inorganics13060195 - 12 Jun 2025
Viewed by 457
Abstract
Due to its excellent visible light absorption characteristics, the photocurrent, photodegradation, and proton conductivity of the stable dipyridyl and thiophene-functionalized supramolecular compound [Cu2(TAA)4(4,4′-bpy)]n (CuII2 for short, HTAA = 2-thiopheneacetic acid, 4,4′-bpy = 4,4′-bipyridine) have been [...] Read more.
Due to its excellent visible light absorption characteristics, the photocurrent, photodegradation, and proton conductivity of the stable dipyridyl and thiophene-functionalized supramolecular compound [Cu2(TAA)4(4,4′-bpy)]n (CuII2 for short, HTAA = 2-thiopheneacetic acid, 4,4′-bpy = 4,4′-bipyridine) have been studied in detail. The current density of photocurrent of CuII2 is 1.87 μA·cm−2, and CuII2 degrades methylene blue (MB) with a degradation efficiency of 68.0% under xenon lamp. In addition, CuII2 shows remarkable proton conductivity of 1.79 × 10−3 S·cm−1 (at 75 °C and 98% relative humidity), superior to most copper(II)-based coordination polymers (CPs), and is expected to become a potential proton conductor in the future. Full article
(This article belongs to the Special Issue Supramolecular Chemistry: Prediction, Synthesis and Catalysis)
Show Figures

Figure 1

16 pages, 3891 KiB  
Article
Structure and Properties of Self-Reinforced Polytetrafluoroethylene-Based Materials
by Shunqi Mei, Oksana Ayurova, Undrakh Mishigdorzhiyn, Vasily Kornopoltsev, Evgeny Kovtunets, Kirill Demin, Bair Garmaev and Andrei Khagleev
Polymers 2025, 17(12), 1609; https://doi.org/10.3390/polym17121609 - 9 Jun 2025
Viewed by 549
Abstract
A promising direction in polymer material processing is the development of self-reinforced polymer composites (SRPMs), representing a relatively new group of composite materials. The self-reinforcement method allows for materials of one polymer to be combined with different molecular, supramolecular, and structural features. The [...] Read more.
A promising direction in polymer material processing is the development of self-reinforced polymer composites (SRPMs), representing a relatively new group of composite materials. The self-reinforcement method allows for materials of one polymer to be combined with different molecular, supramolecular, and structural features. The high adhesive and mechanical properties of SRPMs are due to the formation of a homogeneous system with no inter-phase boundary. Moreover, self-reinforcement considers the possibility of using polymer waste to create high-strength composites, which reduces the environmental load. In the current work, the phase composition, structure, and properties of SRPMs based on polytetrafluoroethylene (PTFE) were studied. SRPMs were prepared by mixing industrial and regenerated PTFE powders and then subjected to pressing and sintering. Two types of regenerated PTFE were used for the SRPM preparation: a commercial PTFE of the TOMFLONTM trademark and mechanically grinded PTFE waste. The degree of crystallinity of the obtained materials (41–68%) was calculated by XRD analysis; the crystallite size was determined to be 30–69 nm. Thermal analysis of the composites was carried out by the DSC method in the temperature range of 25–370 °C. The characteristics of thermal processes in self-reinforced composites correlate with the data from structural studies of XRD and FTIR analyses. The results of dynamic mechanical analysis showed that the introduction of regenerated PTFE powder into an industrial one increased the elasticity modulus from 0.6 GPa up to 2.0–3.1 GPa. It was shown that the phase state of the SRPMs depended on the method of processing polymer waste (the type of regenerated PTFE) that determined the heat resistance and mechanical properties of the obtained composite material. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

14 pages, 5870 KiB  
Article
Recyclable and Degradable Poly(vinyl alcohol)/Betaine-Based Deep Eutectic Polymer Dry Gel Plastics with a High Mechanical Strength
by Hanyu Zhao, Ying Jia, Ling Cai, Xiaochun Wang, Minghui He and Guangxue Chen
Gels 2025, 11(6), 421; https://doi.org/10.3390/gels11060421 - 31 May 2025
Viewed by 451
Abstract
Most existing polymer plastics are nonreusable and also exhibit poor biocompatibility and a poor mechanical strength–tensile strain balance. Herein, using deep eutectic polymers, we prepare reusable hydrophilic supramolecular dry gel plastics with balanced stress–strain characteristics through the hydrogen bonding of poly(vinyl alcohol) (PVA) [...] Read more.
Most existing polymer plastics are nonreusable and also exhibit poor biocompatibility and a poor mechanical strength–tensile strain balance. Herein, using deep eutectic polymers, we prepare reusable hydrophilic supramolecular dry gel plastics with balanced stress–strain characteristics through the hydrogen bonding of poly(vinyl alcohol) (PVA) with betaine (Bta). As PVA exhibits crystalline stiffness and abundant hydrogen-bonding sites, it is employed as a network backbone in the proposed deep eutectic supramolecular polymers. In the prepared PVA/Bta dry gel plastics, PVA and Bta are dynamically and physically crosslinked through high-density hydrogen bonding, resulting in a yield strength of ~109 MPa and toughness of up to ~210.92 MJ m−3. In addition, these plastics can be recycled at least five times in an aqueous environment while maintaining a mechanical strength of 100 MPa. Furthermore, the proposed polymers exhibit high transparency (92%) in the visible spectrum. We expect these polymers to be used in synthesizing biodegradable dry gel plastics, as well as to lead to the development of recyclable deep eutectic PVA/Bta polymers with remarkable strength. Full article
(This article belongs to the Special Issue Current Research on Eutectogels)
Show Figures

Figure 1

16 pages, 2549 KiB  
Article
Structure–Property Relationships in Zwitterionic Pyridinium–Triazole Ligands: Insights from Crystal Engineering and Hirshfeld Surface Analysis
by Gerzon E. Delgado, Jonathan Cisterna, Jaime Llanos, Ruth Pulido, Nelson Naveas, Pilar Narea, Pilar Amo-Ochoa, Félix Zamora, Yasna León and Iván Brito
Int. J. Mol. Sci. 2025, 26(11), 5123; https://doi.org/10.3390/ijms26115123 - 27 May 2025
Viewed by 577
Abstract
This article discloses the synthesis of four new positional isomeric zwitterionic ligands exhibiting semi-flexible and flexible characteristics—n-pyridinium-1,2,3-triazole-4-carboxy-5-Acetate (n-PTCA), and n-methylpyridinium-1,2,3-triazole-4-carboxy-5-Acetate (n-MPTCA; where n = 3, 4)—which were derived from an aqueous solution of the corresponding sodium salts in [...] Read more.
This article discloses the synthesis of four new positional isomeric zwitterionic ligands exhibiting semi-flexible and flexible characteristics—n-pyridinium-1,2,3-triazole-4-carboxy-5-Acetate (n-PTCA), and n-methylpyridinium-1,2,3-triazole-4-carboxy-5-Acetate (n-MPTCA; where n = 3, 4)—which were derived from an aqueous solution of the corresponding sodium salts in an acidic medium (HCl). These compounds are successfully synthesized and characterized with FT-IR and multinuclear NMR spectroscopy; likewise, proper single crystals are obtained for each compound. All compounds adopt zwitterionic forms in the solid state, which are stabilized via intermolecular proton transfer processes involving HCl and solvent molecules. A single-crystal X-ray analysis revealed how positional isomerism and molecular flexibility influence the supramolecular topology. Specifically, 3-PTCA and 4-PTCA exhibit isomorphic hydrogen bond networks, while 3-MPTCA and 4-MPTCA display distinct packing motifs, attributed to the presence of a methylene spacer between the pyridinium and triazole rings. The Hirshfeld surface analysis quantitatively confirmed the dominance of O···H/H···O and N···H/H···N interactions in the solid-state architecture. These strong hydrogen-bonding networks are indicative of the potential proton-conductive behavior in the crystalline state, positioning these compounds as promising candidates for applications in proton-conducting materials. The structural insights gained underscore the pivotal role of molecular topology in tailoring crystal packing, with implications for the rational design of zwitterionic ligands in functional materials, including MOFs and coordination polymers. The calculated HOMO-LUMO energy gaps reveal a significant electronic variability among the ligands, influenced primarily by the positional isomerism and structural flexibility introduced by the methylene spacer. Full article
Show Figures

Figure 1

24 pages, 8896 KiB  
Article
Morphological and Spectroscopic Characterization of Multifunctional Self-Healing Systems
by Liberata Guadagno, Elisa Calabrese, Raffaele Longo, Francesca Aliberti, Luigi Vertuccio, Michelina Catauro and Marialuigia Raimondo
Polymers 2025, 17(10), 1294; https://doi.org/10.3390/polym17101294 - 8 May 2025
Viewed by 581
Abstract
Multifunctional self-healing supramolecular structural toughened resins, formulated to counteract the insulating properties of epoxy polymers and integrating auto-repair mechanisms, are morphologically and spectroscopically characterized using Tunneling Atomic Force Microscopy (TUNA) and Fourier transform infrared spectroscopy (FT-IR), respectively. Specifically, the multifunctional resin comprises self-healing [...] Read more.
Multifunctional self-healing supramolecular structural toughened resins, formulated to counteract the insulating properties of epoxy polymers and integrating auto-repair mechanisms, are morphologically and spectroscopically characterized using Tunneling Atomic Force Microscopy (TUNA) and Fourier transform infrared spectroscopy (FT-IR), respectively. Specifically, the multifunctional resin comprises self-healing molecular fillers and electrically conductive carbon nanotubes (CNTs) embedded in the matrix. The selected self-healing molecules can form non-covalent bonds with the hydroxyl (OH) and carbonyl (C=O) groups of the toughened epoxy matrix through their H-bonding donor and acceptor sites. An FT-IR analysis has been conducted to evaluate the interactions that the barbiturate acid derivatives, serving as self-healing fillers, can form with the constituent parts of the toughened epoxy blend. Tunneling Atomic Force Microscopy (TUNA) highlights the morphological characteristics of CNTs, their dispersion within the polymeric matrix, and their affinity for the globular rubber domains. The TUNA technique maps the samples’ electrical conductivity at micro- and nanoscale spatial domains. Detecting electrical currents reveals supramolecular networks, determined by hydrogen bonds, within the samples, showcasing the morphological features of the sample containing an embedded conductive nanofiller in the hosting matrix. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

23 pages, 10091 KiB  
Article
Size and Shape of Primary (Bio)Polyelectrolyte Complexes Chitosan/Gelatin: Study Using Small-Angle X-Ray Scattering from Synchrotron Radiation
by Aleksandr Podshivalov, Mikhail Litvinov, Aleksandr Kashurin and Ksenia Danilova
Polymers 2025, 17(9), 1236; https://doi.org/10.3390/polym17091236 - 30 Apr 2025
Viewed by 414
Abstract
In this work, using small-angle X-ray scattering from synchrotron radiation, the macromolecular structure of chitosan and gelatin polyelectrolytes and their mixtures at various pH values and ratios was studied to determine the size and shape of primary supramolecular (bio)PEC. Analysis of the scattering [...] Read more.
In this work, using small-angle X-ray scattering from synchrotron radiation, the macromolecular structure of chitosan and gelatin polyelectrolytes and their mixtures at various pH values and ratios was studied to determine the size and shape of primary supramolecular (bio)PEC. Analysis of the scattering profiles of the initial solutions of chitosan and gelatin with the building of the pair distance function showed the formation of single-modal distributions with a maximum molecular size of 46 and 32.2 nm, respectively. Ab initio reconstruction of the macromolecule’s shape showed the formation of objects shaped like an oblate spheroid. In mixtures of chitosan and gelatin at a pH below the isoelectric point, it was found that the scattering structures correspond to the initial biopolymers. However, it is observed that values of the aspect ratio at a ratio above 1:10 gradually increase, which indicates a slight elongation of the average particle and indirectly indicates the formation of dissipative structures of (bio)PEC. In mixtures at a pH above the isoelectric point, it was shown that at ratios above 1:5, the formation of primary supramolecular complexes is observed, which is accompanied by an increase in zero-scattering intensity by about three times, maximum molecular size by two to two-and-a-half times relative to the initial polymers, and the formation of elongated structures corresponding to the cylinder (swollen spiral). It may be a consequence of the increased efficiency of the polyelectrolyte associative interaction between chitosan and gelatin. Full article
(This article belongs to the Special Issue Advances in Polyelectrolytes and Polyelectrolyte Complexes)
Show Figures

Figure 1

11 pages, 2575 KiB  
Article
Concentration Gradient-Induced Syntheses and Crystal Structures of Two Copper(II) Coordination Polymer Based on Phthalic Acid and 2,2′-Bipyridine
by Tao Zhou, Gengyi Zhang, Chunhong Tan, Yong Liu and Xiao-Feng Wang
Molecules 2025, 30(9), 1953; https://doi.org/10.3390/molecules30091953 - 28 Apr 2025
Viewed by 502
Abstract
The reaction of copper nitrate, phthalic acid (1,2-H2BDC), and bipyridine in ammonia/ethanol media affords two multi-copper (II) cluster-based coordination polymers, namely {[Cu4(bpy)4(OH)2(BDC)2]·2OH·13H2O}n (USC-CP-6) and {[Cu2(BDC)2 [...] Read more.
The reaction of copper nitrate, phthalic acid (1,2-H2BDC), and bipyridine in ammonia/ethanol media affords two multi-copper (II) cluster-based coordination polymers, namely {[Cu4(bpy)4(OH)2(BDC)2]·2OH·13H2O}n (USC-CP-6) and {[Cu2(BDC)2(bpy)2(H2O)]·3H2O}n (USC-CP-7), under ambient conditions, with CP-6 forming at the bottom and CP-7 at the upper edge of the same beaker. The single-crystal structures reveal that it is a rare case of gradient-induced formation of different multi-copper(II) cluster-based CPs within a single-solution chemical reaction. CP-6 crystallizes in the monoclinic system, sp. gr. P21/c, and is composed of chair-like tetranuclear [Cu4(μ3-OH)2(bpy)4(BDC)2]2+ clusters as secondary building units, bridged by BDC2− ligands to form a two-dimensional layer framework, while CP-7 crystallizes in the monoclinic system, sp. gr. P21/n, with binuclear [Cu2(1,2-BDC)2(bpy)2(H2O)] clusters linked by bridging BDC2− ligands to form a one-dimensional looped double chain. Through intermolecular ππ stacking and hydrogen bonds between the coordination water, lattice water, and free oxygen atoms from carboxylate, both compounds yield a 3D supramolecular structure. Full article
(This article belongs to the Special Issue Reviews of Chemical Crystallography)
Show Figures

Figure 1

13 pages, 5391 KiB  
Article
Application of a Dopa Derivative for the Formation of Gels in the Presence of Commercial Surfactants
by Sofia Chinelli, Fabia Cenciarelli, Demetra Giuri and Claudia Tomasini
Gels 2025, 11(5), 320; https://doi.org/10.3390/gels11050320 - 25 Apr 2025
Viewed by 511
Abstract
Cosmetic formulations are complex mixtures of ingredients that must fulfill several requirements. One of the challenges of the cosmetic industry is to find natural alternatives to replace synthetic polymers, preserving desirable sensory characteristics. The aim of this work is to induce the formation [...] Read more.
Cosmetic formulations are complex mixtures of ingredients that must fulfill several requirements. One of the challenges of the cosmetic industry is to find natural alternatives to replace synthetic polymers, preserving desirable sensory characteristics. The aim of this work is to induce the formation of gels, by replacing synthetic polymers with a low-molecular-weight gelator (LMWG), a small molecule able to self-assemble and form supramolecular networks. The impact of low-molecular-weight gelators on the environment is reduced as they are highly biodegradable. Thus, the behavior of solutions containing Boc-L-Dopa(Bn)2-OH, an LMWG, together with ten different anionic surfactants, was studied to understand if the LMWG may act as a rheological modifier by increasing the viscosity of the formulation or forming gels with these ingredients. An amphoteric surfactant, cocamidopropyl betaine (CAPB), often used to increase cleansing gentleness, was also added to the solutions to better mimic a cosmetic formulation. In most cases, the addition of the gelator at only a 1% w/v concentration induces the gelification or an increase in the viscosity of the solutions, thus showing that this molecule is also able to self-assemble in complex mixtures. Full article
(This article belongs to the Section Gel Chemistry and Physics)
Show Figures

Graphical abstract

12 pages, 4462 KiB  
Article
Nanoscale Spatial Control over the Self-Assembly of Small Molecule Hydrogelators
by Samahir Sheikh Idris, Hucheng Wang, Yuliang Gao, Peiwen Cai, Yiming Wang and Shicheng Zhao
Gels 2025, 11(4), 289; https://doi.org/10.3390/gels11040289 - 14 Apr 2025
Viewed by 699
Abstract
Spatial control over molecular self-assembly at the nano scale offers great potential for many high-tech applications, yet remains a challenging task. Here, we report a polymer brush-mediated strategy to confine the self-assembly of hydrazone-based hydrogelators exclusively at nanoparticle surfaces. The surfaces of these [...] Read more.
Spatial control over molecular self-assembly at the nano scale offers great potential for many high-tech applications, yet remains a challenging task. Here, we report a polymer brush-mediated strategy to confine the self-assembly of hydrazone-based hydrogelators exclusively at nanoparticle surfaces. The surfaces of these nanoparticles are grafted with negatively charged polyacrylic acid, which enrich protons that can catalyze the in situ formation and self-assembly of hydrazone-based gelators. We found that, with respect to the polymer lengths, the concentration of the nanoparticles presents more significant effects on the self-assembly process and the properties of the resultant hydrogels, including gelation time, stiffness, and network morphology. More interestingly, the hydrogel fibers are found to be formed specifically around the nanoparticles, demonstrating the directed nanoscale molecular self-assembly. This work demonstrates that triggering molecular self-assembly using catalysis can serve as an effective way to realize directed molecular self-assembly at the nano scale, which may serve as a powerful approach to improve many material properties, such as the mechanical properties of supramolecular materials as we found in this work. Full article
(This article belongs to the Special Issue Gels: 10th Anniversary)
Show Figures

Figure 1

11 pages, 3856 KiB  
Article
Supramolecular Double-Helical Polymers: Supramolecular Chiral Induction and Asymmetric Catalysis
by Xiaojun Guo, Xinyu Jia, Qin He, Wengui Duan, Yanjun Zhang, Yan Huang and Luzhi Liu
Molecules 2025, 30(7), 1517; https://doi.org/10.3390/molecules30071517 - 28 Mar 2025
Viewed by 1008
Abstract
Seeking a supramolecular chiral system induced by trace chiral molecules instead of traditional complex and expensive chiral ligands to achieve high yield or ee value conversion of the products is of great significance in asymmetric synthesis but still remains a challenge. Herein, two [...] Read more.
Seeking a supramolecular chiral system induced by trace chiral molecules instead of traditional complex and expensive chiral ligands to achieve high yield or ee value conversion of the products is of great significance in asymmetric synthesis but still remains a challenge. Herein, two types of double helical supramolecular chiral systems, (M)-Helix and (P)-Helix, with opposite chiral optics were constructed in situ using tyrosine-functionalized pillar[5]arene as inducers. These systems exhibit chiroptical stability and enable remarkable chirality amplification from 7 mol% chiral seeds. When applied to intermolecular olefin cyano-trifluoromethylation, (M)-Helix exhibits remarkable catalytic efficiency (yield up to 89%), whereas (P)-Helix achieves higher enantioselectivity (ee up to 84%). This research will provide new ideas for supramolecular chiral catalysts in organic asymmetric catalysis applications. Full article
(This article belongs to the Special Issue Recent Advances in Supramolecular Chemistry)
Show Figures

Graphical abstract

17 pages, 2952 KiB  
Article
Remediation of Hg-Contaminated Groundwater via Adsorption on Supramolecular Polymers in Batch Process and Column Test
by Zongwu Wang, Wei Liu, Xiaoyan Sun, Qing Zhang, Jiapu Ji, Yimeng Yan and Jianhui Sun
Molecules 2025, 30(7), 1406; https://doi.org/10.3390/molecules30071406 - 21 Mar 2025
Cited by 1 | Viewed by 446
Abstract
Mercury contamination in groundwater seriously affects human health and ecosystem security. The remediation of Hg-contaminated groundwater remains a challenging task. The applicability of an as-synthesized supramolecular polymer (SP) for low-concentration mercury in a high-salinity groundwater matrix has been verified through a batch process [...] Read more.
Mercury contamination in groundwater seriously affects human health and ecosystem security. The remediation of Hg-contaminated groundwater remains a challenging task. The applicability of an as-synthesized supramolecular polymer (SP) for low-concentration mercury in a high-salinity groundwater matrix has been verified through a batch process and column test. The remediation of mercury-contaminated groundwater, particularly in complex high-salinity environments, represents a significant and enduring challenge in environmental science. The batch test study demonstrated that the SP can efficiently adsorb Hg from groundwater with superior selectivity and a high uptake capacity (up to 926.1 ± 165.3 mg g−1). Increasing the pH and dissolved organic matter (DOM) and reducing the ionic strength can facilitate Hg adsorption; the coexistence of heavy metal ions slightly weakens the removal. In terms of its performance as a permeable reactive barrier, the SP can intercept Hg in flowing groundwater with a capacity of up to 3187 mg g−1. A low influent mercury concentration, low pore velocity, and high SP dosage can effectively extend the breakthrough time in column tests. Additionally, the Yan model (R2 = 0.960−0.989) can accurately depict the whole dynamic interception process (150 PVs) of SPs in a fixed column, and the Adams–Bohart model (R2 = 0.916−0.964) describes the initial stage (≤35 PVs) well. Considering the functional group in the SP and the Hg species in groundwater, complexation, electrostatic attraction, ion exchange, and precipitation/co-precipitation are the plausible mechanisms for mercury removal based on the characterization results of scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectrometer (FT-IR). These impressive features render the SP a promising candidate for the remediation of trace Hg in saline groundwater using permeable reactive barrier (PRB) technology. Full article
Show Figures

Figure 1

23 pages, 3919 KiB  
Article
Vibrational Properties of Doped P3HT Chains in Solution: Insight into the Doping Mechanism from Infrared IRAV and Raman RaAV Bands
by Kaiyue Hu, Sara Doti, Luigi Brambilla, Mirella Del Zoppo, Chiara Castiglioni and Giuseppe Zerbi
Molecules 2025, 30(7), 1403; https://doi.org/10.3390/molecules30071403 - 21 Mar 2025
Viewed by 562
Abstract
Chemical doping is a well-established technique for increasing the electrical conductivity of polyconjugated polymers, and its effectiveness can be assessed through IR spectroscopy, thanks to the rise of the so-called IRAVs (infrared activated vibrations), which prove the formation of polarons on the polymer [...] Read more.
Chemical doping is a well-established technique for increasing the electrical conductivity of polyconjugated polymers, and its effectiveness can be assessed through IR spectroscopy, thanks to the rise of the so-called IRAVs (infrared activated vibrations), which prove the formation of polarons on the polymer chain. While the mechanism of the IRAVs activation has been widely explored in the past, several peculiar features remain unclear. Changes in the Raman spectrum of doped polymers (RaAV, Raman activated vibrations) are widely used as well for monitoring the doping process, but the interpretation is often limited to purely empirical correlations. By means of an experimental campaign on doped regio-regular poly(3-hexylthiophene-2,5-diyl) (P3HT) samples in chloroform solution and on the solid samples cast from the same solutions, this paper presents for the first time a thorough comparative analysis of IRAVs and RaAVs, aiming at a unified description of the structure of doped P3HT. In particular, we will discuss the effect of the doping level on the vibrational features of the polymer and the dopant so that spectroscopic markers can be found to be used in the identification of the presence of ICT (integer charge transfer) complexes in different doping regimes. This study demonstrates that combining IR, Raman, and UV-Vis-NIR spectroscopies provides a powerful, complementary set of tools to diagnose not only the doping level but also the detailed molecular and supramolecular structure of the doped P3HT, useful for the development of structure/properties relationships in the perspective of the optimization of the charge transport performances. Full article
Show Figures

Graphical abstract

Back to TopTop