Repair of Impacted Thermoplastic Composite Laminates Using Induction Welding
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Low-Velocity Impact Testing
2.3. Repair Using Induction Welding
3. Results and Discussion
3.1. Impact Test Results
3.2. Recovery after Impact
3.3. Compressive Strength Recovery
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dillingham, G.L. Status of FAA’s Actions to Oversee the Safety of Composite Airplanes. 2011. Available online: https://www.gao.gov/assets/gao-11-849.pdf (accessed on 20 August 2022).
- Dillingham, R.G.; Oakley, B.R.; Dan-Jumbo, E.; Baldwin, J.; Keller, R.; Magato, J. Surface treatment and adhesive bonding techniques for repair of high-temperature composite materials. J. Compos. Mater. 2014, 48, 853–859. [Google Scholar] [CrossRef]
- Yang, G.; Yang, T.; Yuan, W.; Du, Y. The influence of surface treatment on the tensile properties of carbon fiber-reinforced epoxy composites-bonded joints. Compos. Part B Eng. 2019, 160, 446–456. [Google Scholar] [CrossRef]
- Ramaswamy, K.; O’Higgins, R.M.; Kadiyala, A.K.; McCarthy, M.A.; McCarthy, C.T. Evaluation of grit-blasting as a pre-treatment for carbon-fibre thermoplastic composite to aluminium bonded joints tested at static and dynamic loading rates. Compos. Part B Eng. 2020, 185, 107765. [Google Scholar] [CrossRef]
- Gude, M.R.; Prolongo, S.G.; Ureña, A. Adhesive bonding of carbon fibre/epoxy laminates: Correlation between surface and mechanical properties. Surf. Coat. Technol. 2012, 207, 602–607. [Google Scholar] [CrossRef]
- Zia, A.W.; Wang, Y.Q.; Lee, S. Effect of physical and chemical plasma etching on surface wettability of carbon fiber-reinforced polymer composites for bone plate applications. Adv. Polym. Technol. 2015, 34, 1–4. [Google Scholar] [CrossRef]
- Yousefpour, A.; Hojjati, M.; Immarigeon, J.-P. Fusion Bonding/Welding of Thermoplastic Composites. J. Thermoplast. Compos. Mater. 2004, 17, 303–341. [Google Scholar] [CrossRef]
- Ingen, V.; Wijngaarden, V.; Iii, S. Development of the Gulfstream G650 Induction Welded Thermoplastic Elevators and Rudder. 2010. Available online: https://www.researchgate.net/publication/332403057 (accessed on 21 September 2022).
- Beehag, A.; Falzon, P.; Paton, R. A Mouldable Thermoplastic Interface for Advanced Composite Components to Reduce Costs in Aircraft Assembly; No. 2005-01-3310; SAE Technical Paper; SAE: Warrendale, PA, USA, 2005. [Google Scholar]
- Robles, J.B.; Dubé, M.; Hubert, P. Repair of thermoplastic composites: An overview. Adv. Manuf. Polym. Compos. Sci. 2022, 8, 68–96. [Google Scholar] [CrossRef]
- Bandaru, A.K.; Clancy, G.; Peeters, D.; O’Higgins, R.M.; Weaver, P.M. Properties of a thermoplastic composite skin-stiffener interface in a stiffened structure manufactured by laser-assisted tape placement with in situ consolidation. Compos. Struct. 2019, 214, 123–131. [Google Scholar] [CrossRef]
- Chanteli, A.; Bandaru, A.K.; Peeters, D.; O’Higgins, R.M.; Weaver, P.M. Influence of repass treatment on carbon fibre-reinforced PEEK composites manufactured using laser-assisted automatic tape placement. Compos. Struct. 2020, 248, 112539. [Google Scholar] [CrossRef]
- Clancy, G.; Peeters, D.; Oliveri, V.; Jones, D.; O’Higgins, R.M.; Weaver, P.M. A study of the influence of processing parameters on steering of carbon Fibre/PEEK tapes using laser-assisted tape placement. Compos. Part B Eng. 2019, 163, 243–251. [Google Scholar] [CrossRef]
- Oliveri, V.; Peeters, D.; Clancy, G.J.; Jones, D.; O’Higgins, R.; Weaver, P.M. Design, optimization and manufacturing of a unitized carbon fiber/thermoplastic wingbox structure. In Proceedings of the 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Kissimmee, FL, USA, 8–12 January 2018; p. 210049. [Google Scholar] [CrossRef]
- Oliveri, V.; Zucco, G.; Peeters, D.; Clancy, G.; Telford, R.; Rouhi, M.; McHale, C.; O’Higgins, R.M.; Young, T.M.; Weaver, P.M. Design, manufacture and test of an in-situ consolidated thermoplastic variable-stiffness wingbox. AIAA J. 2019, 57, 1671–1683. [Google Scholar] [CrossRef]
- Mongan, P.G.; Modi, V.; McLaughlin, J.W.; Hinchy, E.P.; O’Higgins, R.M.; O’Dowd, N.P.; McCarthy, C.T. Multi-objective optimisation of ultrasonically welded dissimilar joints through machine learning. J. Intell. Manuf. 2022, 33, 1125–1138. [Google Scholar] [CrossRef]
- Ramaswamy, K.; Modi, V.; Rao, P.S.; Martin, P.P.; McCarthy, C.T.; O’Higgins, R.M. An investigation of the influence of matrix properties and fibre–matrix interface behaviour on the mechanical performance of carbon fibre-reinforced PEKK and PEEK composites. Compos. Part A Appl. Sci. Manuf. 2023, 165, 107359. [Google Scholar] [CrossRef]
- Rodgers, B.; Mallon, P.J. Repair of Thermoplastic Composites Using Induction Heating. Key Eng. Mater. 1992, 72–74, 313–322. [Google Scholar] [CrossRef]
- Miyake, T.; Takenaka, K. Monitoring and Repair Technique for Interfacial De-Bonding in Carbon Fiber Reinforced Thermoplastics by Means of Induction Heating. 2015. Available online: http://www1.gifu-u.ac.jp/~cfrp/http://www.eng.gifu-u.ac.jp/kikai/ (accessed on 10 December 2022).
- Toyoda, H.; Sato, W.; Takahashi, J. Effect of thermal welding repair for damaged ultra-thin chopped carbon fiber tape reinforced thermoplastics. In Proceedings of the ECCM18—18th European Conference on Composite Materials, Athens, Greece, 24–28 June 2018. [Google Scholar]
- Markus, K.R. Repair Concept Supported by Laser Removal and Inductive Heating. In Proceedings of the 28th International Congress of the Aeronautical Sciences, Brisbane, Australia, 23–28 September 2012. [Google Scholar]
- Nijhuis, P. Repair of Thin Walled Thermoplastic Structures by Melting, an Experimental Research. 2013. Available online: http://www.nlr.nl (accessed on 12 January 2023).
- Zorer, E.; Özdemir, O.; Öztoprak, N. An experimental study on low velocity impact behavior of thermoplastic composites repaired by composite patches. J. Compos. Mater. 2020, 54, 4515–4524. [Google Scholar] [CrossRef]
- Bayazeid, S.M.; Poon, K.L.; Subeshan, B.; Alamir, M.; Asmatulu, E. Recovery of impact-damaged carbon fiber–reinforced composites using induction heating. J. Compos. Mater. 2022, 56, 605–618. [Google Scholar] [CrossRef]
- Vreeken, J.A. Repairing Impacted Thermoplastic Composites Using Ultrasonic Welding to Restore the Compressive Strength. 2022. Available online: https://repository.tudelft.nl/islandora/object/uuid%3A78ed96f0-1a52-49ac-b180-4ea8e34e8b35 (accessed on 12 January 2023).
- ASTM D7136; Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event. Available online: https://www.astm.org/d7136_d7136m-20.html (accessed on 10 August 2021).
- Evci, C.; Gülgeç, M. An experimental investigation on the impact response of composite materials. Int. J. Impact Eng. 2012, 43, 40–51. [Google Scholar] [CrossRef]
- Lin, S.; Waas, A.M. The effect of stacking sequence on the LVI damage of laminated composites; experiments and analysis. Compos. Part A Appl. Sci. Manuf. 2021, 145, 106377. [Google Scholar] [CrossRef]
- McLaughlin, J.W.; Tobin, E.; O’Higgins, R.M. An investigation of Polyether Imide (PEI) toughening of carbon fibre-reinforced Polyether Ether Ketone (PEEK) laminates. Mater. Des. 2021, 212, 110189. [Google Scholar] [CrossRef]
- Nezhad, H.Y.; Auffray, A.; McCarthy, C.T.; O’Higgins, R. Impact damage response of carbon fibre-reinforced aerospace composite panels. In Proceedings of the ICCM International Conferences on Composite Materials, Copenhagen, Denmark, 19–24 July 2015. [Google Scholar] [CrossRef]
- ASTM D7137; Standard Test Method for Compressive Residual Strength Properties of Damaged Polymer Matrix Composite Plates. Available online: https://www.astm.org/d7137_d7137m-17.html (accessed on 20 July 2022).
- Naik, N.K.; Shrirao, P. Composite structures under ballistic impact. Compos. Struct. 2004, 66, 579–590. [Google Scholar] [CrossRef]
- Naik, N.K.; Ramasimha, R.; Arya, H.; Prabhu, S.V.; Shamarao, N. Impact Response and Damage Tolerance Characteristics of Glass ± Carbon/Epoxy Hybrid Composite Plates. 2001. Available online: www.elsevier.com/locate/compositesb (accessed on 13 August 2022).
- Correa, E.; Gamstedt, E.K.; París, F.; Mantič, V. Effects of the presence of compression in transverse cyclic loading on fibre–matrix debonding in unidirectional composite plies. Compos. Part A Appl. Sci. Manuf. 2007, 38, 2260–2269. [Google Scholar] [CrossRef]
- Wronkowicz-Katunin, A.; Katunin, A.; Dragan, K. Reconstruction of barely visible impact damage in composite structures based on non-destructive evaluation results. Sensors 2019, 19, 4629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, T.J.; Stavrov, D.; Bersee, H.E.N.; Beukers, A. Induction welding of thermoplastic composites-an overview. Compos. Part A Appl. Sci. Manuf. 2006, 37, 1638–1651. [Google Scholar] [CrossRef]
- Yarlagadda, S.; Kim, H.J.; Gillespie, J.W.; Shevchenko, N.B.; Fink, B.K. A Study on the Induction Heating of Conductive Fiber Reinforced Composites. J. Compos. Mater. 2002, 36, 401–421. [Google Scholar] [CrossRef]
Author | Material | Repair Technique |
---|---|---|
Rodgers and Mallon [18] | CF/PEEK | Induction heating to assess damage area |
Markus [21] | CF/PEEK | Induction heating to see if consolidation is possible |
Nijhuis [22] | CF/PEEK | Heat blanket with pressure and vacuum to see if viable |
Miyake and Takenaka [19] | CF/PEEK | Induction heating to assess the stiffness |
Toyoda et al. [20] | CF/PEEK | Ultrasonic welding to assess bending stiffness |
Zorer et al. [23] | GF/PP | Hot-press to evaluate impact response |
Bayazeid et al. [24] | CF/PEEK | Induction heating to evaluate damage area and tensile strength |
Vreeken [25] | CF/PPS | Ultrasonic heating to assess damage area and compressive strength |
Material Properties | CF/PEEK | CF/PEKK | ||
---|---|---|---|---|
Laminate type | Parent Laminate | Patch | Parent Laminate | Patch |
Layup orientation | [−45/0/45/90]4s | [−45/0/45/90]2S | [−45/0/45/90]4s | [−45/0/45/90]2S |
Laminate thickness | 4.5 mm | 2.2 mm | 5.8 mm | 2.9 mm |
Laminate dimension | 150 × 100 mm2 | ∅50 mm | 150 × 100 mm2 | ∅50 mm |
Material | Impact Energy (J) | Repair Technique | Damage Area (mm2) | Damage Width (mm) | Damage Indent (mm) | Compressive Strength (MPa) |
---|---|---|---|---|---|---|
CF/PEEK | 20 ± 1 | N/A | 1578 ± 29 | 43 ± 2 | 3.2 ± 0.3 | 116 ± 5 |
CF/PEKK | 20 ± 1 | N/A | 1413 ± 38 | 41 ± 1 | 1.9 ± 0.2 | 204 ± 6 |
CF/PEEK | 20 ± 1 | RT-1 | 1501 ± 31 | 41 ± 1 | 2.2 ± 0.4 | 134 ± 12 |
CF/PEKK | 20 ± 1 | RT-1 | 1380 ± 18 | 36 ± 1 | 1.4 ± 0.2 | 230 ± 8 |
CF/PEEK | 20 ± 1 | RT-2 | 1534 ± 26 | 39 ± 2 | 2.5 ± 0.3 | 141 ± 10 |
CF/PEKK | 20 ± 1 | RT-2 | 1405 ± 21 | 38 ± 1 | 1.7 ± 0.2 | 217 ± 22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Modi, V.; Bandaru, A.K.; Ramaswamy, K.; Kelly, C.; McCarthy, C.; Flanagan, T.; O’Higgins, R. Repair of Impacted Thermoplastic Composite Laminates Using Induction Welding. Polymers 2023, 15, 3238. https://doi.org/10.3390/polym15153238
Modi V, Bandaru AK, Ramaswamy K, Kelly C, McCarthy C, Flanagan T, O’Higgins R. Repair of Impacted Thermoplastic Composite Laminates Using Induction Welding. Polymers. 2023; 15(15):3238. https://doi.org/10.3390/polym15153238
Chicago/Turabian StyleModi, Vedant, Aswani Kumar Bandaru, Karthik Ramaswamy, Conor Kelly, Conor McCarthy, Tomas Flanagan, and Ronan O’Higgins. 2023. "Repair of Impacted Thermoplastic Composite Laminates Using Induction Welding" Polymers 15, no. 15: 3238. https://doi.org/10.3390/polym15153238
APA StyleModi, V., Bandaru, A. K., Ramaswamy, K., Kelly, C., McCarthy, C., Flanagan, T., & O’Higgins, R. (2023). Repair of Impacted Thermoplastic Composite Laminates Using Induction Welding. Polymers, 15(15), 3238. https://doi.org/10.3390/polym15153238