Structural and Theoretical Study of Copper(II)-5-fluoro Uracil Acetate Coordination Compounds: Single-Crystal to Single-Crystal Transformation as Possible Humidity Sensor
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
Structural Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Batten, S.R.N.; Neville, S.M.; Turner, D. Coordination Polymers: Design, Analysis and Applications; RSC Publishing: Cambridge, UK, 2009; p. 7. [Google Scholar]
- Batten, S.R.; Chen, B.; Vittal, J.J. Coordination Polymers/MOFs: Structures, Properties and Applications. Chempluschem 2016, 81, 669–670. [Google Scholar] [CrossRef] [PubMed]
- Krasnovskaya, O.; Naumov, A.; Guk, D.; Gorelkin, P.; Erofeev, A.; Beloglazkina, E.; Majouga, A. Copper Coordination Compounds as Biologically Active Agents. Int. J. Mol. Sci. 2020, 21, 3965. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; AlAjmi, M.F.; Rehman, M.T.; Amir, S.; Husain, F.M.; Alsalme, A.; Siddiqui, M.A.; AlKhedhairy, A.A.; Khan, R.A. Copper(II) complexes as potential anticancer and Nonsteroidal anti-inflammatory agents: In vitro and in vivo studies. Sci. Rep. 2019, 9, 5237–5254. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.-Y.; Zhou, P.; Wang, Y.; Duan, R.; Chen, C.; Song, W.; Zhao, J. Copper-Based Coordination Polymer Nanostructure for Visible Light Photocatalysis. Adv. Mater. 2016, 28, 9657–9868. [Google Scholar] [CrossRef] [PubMed]
- Troyano, J.; Perles, J.; Amo-Ochoa, P.; Martínez, J.I.; Zamora, F.; Delgado, S. Reversible recrystallization process of copper and silver thioacetamide–halide coordination polymers and their basic building blocks. Crystengcomm 2014, 16, 8224–8231. [Google Scholar] [CrossRef]
- Vegas, V.G.; Villar-Alonso, M.; Gómez-García, C.J.; Zamora, F.; Amo-Ochoa, P. Direct Formation of Sub-Micron and Nanoparticles of a Bioinspired Coordination Polymer Based on Copper with Adenine. Polymers 2017, 9, 565. [Google Scholar] [CrossRef]
- Amo-Ochoa, P.; Castillo, O.; Gómez-García, C.J.; Hassanein, K.; Verma, S.; Kumar, J.; Zamora, F. Semiconductive and Magnetic One-Dimensional Coordination Polymers of Cu(II) with Modified Nucleobases. Inorg. Chem. 2013, 52, 11428–11437. [Google Scholar] [CrossRef]
- Usman, M.; Mendiratta, S.; Lu, K.-L. Semiconductor Metal-Organic Frameworks: Future Low-Bandgap Materials. Adv. Mater. 2017, 29, 1605071. [Google Scholar] [CrossRef] [PubMed]
- Dennehy, M.; Amo-Ochoa, P.; Freire, E.; Suárez, S.; Halac, E.; Baggio, R. Structure and electrical properties of a one-dimensional polymeric silver thiosaccharinate complex with argentophilic interactions. Acta Crystallogr. 2018, 74, 186–193. [Google Scholar] [CrossRef]
- Amo-Ochoa, P.; Alexandre, S.S.; Hribesh, S.; Galindo, M.A.; Castillo, O.; Gómez-García, C.J.; Pike, A.R.; Soler, J.M.; Houlton, A.; Harrington, R.W. Coordination Chemistry of 6-Thioguanine Derivatives with Cobalt: Toward Formation of Electrical Conductive One-Dimensional Coordination Polymers. Inorg. Chem. 2013, 52, 7306. [Google Scholar] [CrossRef]
- Rowsell, J.L.C.; Yaghi, O.M. Metal–organic frameworks: A new class of porous materials. Microporous Mesoporous Mater. 2004, 73, 3–14. [Google Scholar] [CrossRef]
- Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341, 974–989. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; McHale, R. Metal-Containing Polymers: Building Blocks for Functional (Nano)Materials. Macromol. Rapid Commun. 2010, 31, 331–350. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, Z.-O.; Ren, Z.-G.; Li, H.-X.; Li, D.-X.; Liu, D.; Zhang, Y.; Lang, J.-P. Solvothermal Stepwise Formation of Cu/I/S-Based Semiconductors from a Three-Dimensional Net to One-Dimensional Chains. Cryst. Growth Des. 2009, 9, 4963–4968. [Google Scholar] [CrossRef]
- Chen, X.-M.; Tong, M.-L. Solvothermal in Situ Metal/Ligand Reactions: A New Bridge between Coordination Chemistry and Organic Synthetic Chemistry. Acc. Chem. Res. 2007, 40, 162–170. [Google Scholar] [CrossRef]
- Han, Z.-P.; Li, Y. Solvothermal synthesis, structure and catalytic activity of a mixed-valence CuI/CuII complex with 1-D chain structure. Inorg. Chem. Commun. 2012, 22, 73–76. [Google Scholar] [CrossRef]
- Murillo, M.; García-Hernan, A.; López, J.; Perles, J.; Brito, I.; Amo-Ochoa, P. The flexibility of CuI chains and the functionality of pyrazine-2-thiocarboxamide keys to obtaining new Cu(I)-I coordination polymers with potential use as photocatalysts for organic dye degradation. Catal. Today 2023, 418, 114072–114081. [Google Scholar] [CrossRef]
- Cheng, L.; Zhang, W.-X.; Ye, B.-H.; Lin, J.-B.; Chen, X.-M. In Situ Solvothermal Generation of 1,2,4-Triazolates and Related Compounds from Organonitrile and Hydrazine Hydrate: A Mechanism Study. Inorg. Chem. 2007, 46, 1135–1143. [Google Scholar] [CrossRef]
- Das, M.C.; Bharadwaj, P.K. A Porous Coordination Polymer Exhibiting Reversible Single-Crystal to Single-Crystal Substitution Reactions at Mn(II) Centers by Nitrile Guest Molecules. J. Am. Chem. Soc. 2009, 131, 10942–10949. [Google Scholar] [CrossRef]
- Kobayashi, A.; Kato, M. Stimuli-responsive Luminescent Copper(I) Complexes for Intelligent Emissive Devices. Chem. Lett. 2017, 46, 154–162. [Google Scholar] [CrossRef]
- Chen, W.-H.; Liao, W.-C.; Sohn, Y.S.; Fadeev, M.; Cecconello, A.; Nechushtai, R.; Willner, I. Stimuli-Responsive Nucleic Acid-Based Polyacrylamide Hydrogel-Coated Metal-Organic Framework Nanoparticles for Controlled Drug Release. Adv. Funct. Mater. 2018, 28, 1705137–1705146. [Google Scholar] [CrossRef]
- Nishikawa, M.; Kume, S.; Nishihara, H. Stimuli-responsive pyrimidine ring rotation in copper complexes for switching their physical properties. Phys. Chem. Chem. Phys. 2013, 15, 10549–10565. [Google Scholar] [CrossRef] [PubMed]
- Burneo, I.; Stylianou, K.C.; Rodríguez-Hermida, S.; Juanhuix, J.; Fontrodona, X.; Imaz, I.; Maspoch, D. Two New Adenine-Based Co(II) Coordination Polymers: Synthesis, Crystal Structure, Coordination Modes, and Reversible Hydrochromic Behavior. Cryst. Growth Des. 2015, 15, 3182–3189. [Google Scholar] [CrossRef]
- Ke, S.-Y.; Chang, Y.-F.; Wang, H.-Y.; Yang, C.-C.; Ni, C.-W.; Lin, G.-Y.; Chen, T.-T.; Ho, M.-L.; Lee, G.-H.; Chuang, Y.-C.; et al. Self-Assembly of Four Coordination Polymers in Three-Dimensional Entangled Architecture Showing Reversible Dynamic Solid-State Structural Transformation and Color-Changing Behavior upon Thermal Dehydration and Rehydration. Cryst. Growth Des. 2014, 14, 4011–4018. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, B.; Xue, J.-P.; Xie, J.; Yao, Z.-S.; Tao, J. Giant single-crystal-to-single-crystal transformations associated with chiral interconversion induced by elimination of chelating ligands. Nat. Commun. 2021, 12, 6908–6917. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, G.; Morsali, A. Crystal-to-Crystal Transformation from a Weak Hydrogen-Bonded Two-Dimensional Network Structure to a Two-Dimensional Coordination Polymer on Heating. Cryst. Growth Des. 2008, 8, 391–394. [Google Scholar] [CrossRef]
- Sarma, D.; Natarajan, S. Usefulness of in Situ Single Crystal to Single Crystal Transformation (SCSC) Studies in Understanding the Temperature-Dependent Dimensionality Cross-over and Structural Reorganization in Copper-Containing Metal–Organic Frameworks (MOFs). Cryst. Growth Des. 2011, 11, 5415–5423. [Google Scholar] [CrossRef]
- Aríñez-Soriano, J.; Albalad, J.; Vila-Parrondo, C.; Pérez-Carvajal, J.; Rodríguez-Hermida, S.; Cabeza, A.; Juanhuix, J.; Imaz, I.; Maspoch, D. Single-crystal and humidity-controlled powder diffraction study of the breathing effect in a metal–organic framework upon water adsorption/desorption. Chem. Commun. 2016, 52, 7229–7232. [Google Scholar] [CrossRef]
- Daszkiewicz, M.; Puszyńska-Tuszkanow, M.; Staszak, Z.; Chojnacka, I.; Fałtynowicz, H.; Cieślak-Golonka, M. Single crystal-to-single crystal transformations induced by ammonia–water equilibrium changes. Crystengcomm 2018, 20, 2907–2911. [Google Scholar] [CrossRef]
- Vegas, V.G.; Latorre, A.; Marcos, M.L.; Gómez-García, C.J.; Castillo, O.; Zamora, F.; Gómez, J.; Martínez-Costas, J.; López, M.V.; Somoza, A.; et al. Rational Design of Copper(II)–Uracil Nanoprocessed Coordination Polymers to Improve Their Cytotoxic Activity in Biological Media. ACS Appl. Mater. Interfaces 2021, 13, 36948–36957. [Google Scholar] [CrossRef]
- Rao, X.; Zhao, L.; Xu, L.; Wang, Y.; Liu, K.; Wang, Y.; Chen, G.Y.; Liu, T.; Wang, Y. Review of Optical Humidity Sensors. Sensors 2021, 21, 8049. [Google Scholar] [CrossRef] [PubMed]
- Montes-García, V.; Samorì, P. Humidity Sensing with Supramolecular Nanostructures. Adv. Mater. 2022, 2208766. [Google Scholar] [CrossRef]
- Chou, K.-S.; Lee, T.-K.; Liu, F.-J. Sensing mechanism of a porous ceramic as humidity sensor. Sens. Actuators B Chem. 1999, 56, 106–111. [Google Scholar] [CrossRef]
- Li, Y.; Yang, M.; Camaioni, N.; Casalbore-Miceli, G. Humidity sensors based on polymer solid electrolytes: Investigation on the capacitive and resistive devices construction. Sens. Actuators B Chem. 2001, 77, 625–631. [Google Scholar] [CrossRef]
- Coleman, J.R.; Meggers, F. Sensing of Indoor Air Quality—Characterization of Spatial and Temporal Pollutant Evolution Through Distributed Sensing. Front. Built Environ. 2018, 4, 28. [Google Scholar] [CrossRef]
- McMullan, R. Environmental Science in Building; Bloomsbury Publishing: London, UK, 2017. [Google Scholar]
- Masao, T. Antineoplastic Agents. The Preparation of 5-Fluorouracil-1-acetic Acid Derivatives. Bull. Chem. Soc. Jpn. 1975, 48, 3427–3428. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SADABS, Program for Area Detector Adsorption Correction; Institute for Inorganic Chemistry, University of Gottingen: Göttingen, Germany, 1996. [Google Scholar]
- Bruker; AXS Inc.: Madison, WI, USA, 2012.
- Sheldrick, G.M. SHELXT-Integrated Space-Group and Crystal-Structure Determination. Acta Cryst. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. SHELXL-97, Program for Crystal Structure Refinement; University Gottingen: Gottingen, Germany, 1997. [Google Scholar]
- Frisch, M.; Cahill, C.L. In situ ligand synthesis with the UO22+ cation under hydrothermal conditions. J. Solid State Chem. 2007, 180, 2597–2602. [Google Scholar] [CrossRef]
- Jin, H.-G.; Wang, M.-F.; Hong, X.-J.; Yang, J.; Li, T.; Ou, Y.-J.; Zhao, L.-Z.; Cai, Y.-P. 2D pillar-chained lanthanide(III)-copper(I) metal–organic frameworks based on isonicotinate and in situ generated oxalate. Inorg. Chem. Commun. 2013, 36, 236–240. [Google Scholar] [CrossRef]
- Vegas, V.G.; Maldonado, N.; Castillo, O.; Gómez-García, C.J.; Amo-Ochoa, P. Multifunctional coordination polymers based on copper with modified nucleobases, easily modulated in size and conductivity. J. Inorg. Biochem. 2019, 200, 110805–110814. [Google Scholar] [CrossRef]
- Scano, A.; Mereu, E.; Cabras, V.; Mannias, G.; Garau, A.; Pilloni, M.; Orrù, G.; Scano, A.; Ennas, G. Green Preparation of Antimicrobial 1D-Coordination Polymers: [Zn(4,4′-bipy)Cl2]∞ and [Zn(4,4′-bipy)2(OAc)2]∞ by Ultrasonication of Zn(II) Salts and 4,4′-Bipyridine. Molecules 2022, 27, 6677. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, M.K.; Branton, A.; Trivedi, D.; Nayak, G.; Bairwa, K.; Jana, S. Spectroscopic Characterization of Disodium Hydrogen Orthophosphate and Sodium Nitrate after Biofield Treatment. J. Chromatogr. Sep. Tech. 2015, 6, 5. [Google Scholar] [CrossRef]
- Nara, M.; Torii, H.; Tasumi, M. Correlation between the Vibrational Frequencies of the Carboxylate Group and the Types of Its Coordination to a Metal Ion: An ab Initio Molecular Orbital Study. J. Phys. Chem. 1996, 100, 19812–19817. [Google Scholar] [CrossRef]
- Maldonado, N.; Vegas, V.G.; Halevi, O.; Martínez, J.I.; Lee, P.S.; Magdassi, S.; Wharmby, M.T.; Platero-Prats, A.E.; Moreno, C.; Zamora, F.; et al. 3D Printing of a Thermo- and Solvatochromic Composite Material Based on a Cu(II)–Thymine Coordination Polymer with Moisture Sensing Capabilities. Adv. Funct. Mater. 2019, 29, 1808424–1808435. [Google Scholar] [CrossRef]
- Jimenez-Bescos, C.; Prewett, R. Monitoring IAQ and thermal comfort in a conservation area low energy retrofit. In Proceedings of the International Scientific Conference on Environmental and Climate Technologies (CONECT), Riga, Latvia, 16–18 May 2018; Volume 147, pp. 195–201. [Google Scholar]
- Silva, H.E.; Coelho, G.B.A.; Henriques, F.M.A. Climate monitoring in World Heritage List buildings with low-cost data loggers: The case of the Jerónimos Monastery in Lisbon (Portugal). J. Build. Eng. 2020, 28, 101029–1011046. [Google Scholar] [CrossRef]
- Gu, H.-T.; Yang, Z.-H.; Fan, Z.; Jiang, W. Real-time in situ visualization of internal relative humidity in fluorescence embedded cement-based materials. J. Cent. South Univ. 2021, 28, 3790–3799. [Google Scholar] [CrossRef]
- Qabbal, L.; Younsi, Z.; Naji, H. An indoor air quality and thermal comfort appraisal in a retrofitted university building via low-cost smart sensor. Indoor Built Environ. 2022, 31, 586–606. [Google Scholar] [CrossRef]
- Castillo, O.; Alonso, J.; García-Couceiro, U.; Luque, A.; Román, P. A 2D polymer constructed through bridging oxalato and 4,4′-bipyridine ligands: Crystal structure and magnetic behavior of [Cu3(μ-ox)3(μ-4,4′-bpy)2(4,4′-bpy)2]n. Inorg. Chem. Commun. 2003, 6, 803–806. [Google Scholar] [CrossRef]
- Mantasha, I.; Hussain, S.; Ahmad, M.; Shahid, M. Two dimensional (2D) molecular frameworks for rapid and selective adsorption of hazardous aromatic dyes from aqueous phase. Sep. Purif. Technol. 2020, 238, 116413. [Google Scholar] [CrossRef]
- Huang, J.; Li, Y.-Z.; Sun, G.-C.; Dai, R.-B.; Li, Q.-X.; Wang, L.-F.; Xia, C.-G. Tetraaqua(5-fluorouracil-1-acetato-O)copper(II) tetrahydrate. Acta Crystallogr. Sect. C 2000, 56, 489–490. [Google Scholar] [CrossRef]
Time | 0 (Initial) | ½ Day | 6 Days | 30 Days |
---|---|---|---|---|
CCs and concentration variation | [(H2bipy)+2 2NO3−] (1) | Stable | Decrease | Decrease |
[Cu2(5-FUA)2(ox)(bipy)]n ·2n H2O (CP2) | Stable | Decrease | [Cu3(ox)3(bipy)4]n [Cu(ox)(bipy)]n | |
[Cu(5-FUA)2(H2O)(bipy)]n ·2n H2O (CP3) | Increase | Increase | Decrease | |
[Cu(5-FUA)2(bipy)]n ·3.5n H2O | Increase | Increase |
Time | ½ Day | 6 Days | 30 Days |
---|---|---|---|
CCs and concentration variation | [Cu(5-FUA)2(H2O)4]·4H2O | Increase | |
[Cu(5-FUA)2(H2O)(bipy)]n ·2n H2O (CP3) | Increase | Decrease | |
[Cu(5-FUA)2(bipy)]n ·3.5n H2O | Increase | Increase |
Compound | Relative Energy (eV) |
---|---|
[Cu(5-FUA)2(H2O)(bipy)]n·2nH2O | 0.00 |
[Cu(5-FUA)2(bipy)]n·2nH2O + 8H2O (isolated) | 4.86 |
[Cu(5-FUA)2(bipy)]n·2nH2O + 8H2O (condensed phase) | −0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vegas, V.G.; García-Hernán, A.; Aguilar-Galindo, F.; Perles, J.; Amo-Ochoa, P. Structural and Theoretical Study of Copper(II)-5-fluoro Uracil Acetate Coordination Compounds: Single-Crystal to Single-Crystal Transformation as Possible Humidity Sensor. Polymers 2023, 15, 2827. https://doi.org/10.3390/polym15132827
Vegas VG, García-Hernán A, Aguilar-Galindo F, Perles J, Amo-Ochoa P. Structural and Theoretical Study of Copper(II)-5-fluoro Uracil Acetate Coordination Compounds: Single-Crystal to Single-Crystal Transformation as Possible Humidity Sensor. Polymers. 2023; 15(13):2827. https://doi.org/10.3390/polym15132827
Chicago/Turabian StyleVegas, Verónica G., Andrea García-Hernán, Fernando Aguilar-Galindo, Josefina Perles, and Pilar Amo-Ochoa. 2023. "Structural and Theoretical Study of Copper(II)-5-fluoro Uracil Acetate Coordination Compounds: Single-Crystal to Single-Crystal Transformation as Possible Humidity Sensor" Polymers 15, no. 13: 2827. https://doi.org/10.3390/polym15132827
APA StyleVegas, V. G., García-Hernán, A., Aguilar-Galindo, F., Perles, J., & Amo-Ochoa, P. (2023). Structural and Theoretical Study of Copper(II)-5-fluoro Uracil Acetate Coordination Compounds: Single-Crystal to Single-Crystal Transformation as Possible Humidity Sensor. Polymers, 15(13), 2827. https://doi.org/10.3390/polym15132827