Facile Conversion of Polystyrene Waste into an Efficient Sorbent for Water Purification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of SPS Foams
2.3. Determination of Degree of Sulfonation (DoS)
2.4. Structural Characterization
2.5. Batch Adsorption Tests
2.6. Filtration Adsorption Tests
2.7. Cyclic Adsorption Tests
3. Results and Discussion
3.1. Structural Characterization
3.2. Adsorption Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baig, N.; Ihsanullah; Sajid, M.; Saleh, T.A. Graphene-Based Adsorbents for the Removal of Toxic Organic Pollutants: A Review. J. Environ. Manag. 2019, 244, 370–382. [Google Scholar] [CrossRef]
- Shi, C.; Wang, X.; Zhou, S.; Zuo, X.; Wang, C. Mechanism, Application, Influencing Factors and Environmental Benefit Assessment of Steel Slag in Removing Pollutants from Water: A Review. J. Water Process Eng. 2022, 47, 102666. [Google Scholar] [CrossRef]
- Darabdhara, J.; Ahmaruzzaman, M.d. Recent Developments in MOF and MOF Based Composite as Potential Adsorbents for Removal of Aqueous Environmental Contaminants. Chemosphere 2022, 304, 135261. [Google Scholar] [CrossRef] [PubMed]
- Bruno, P.; Campo, R.; Giustra, M.G.; De Marchis, M.; Di Bella, G. Bench Scale Continuous Coagulation-Flocculation of Saline Industrial Wastewater Contaminated by Hydrocarbons. J. Water Process Eng. 2020, 34, 101156. [Google Scholar] [CrossRef]
- Pelaez, M.; Nolan, N.T.; Pillai, S.C.; Seery, M.K.; Falaras, P.; Kontos, A.G.; Dunlop, P.S.M.; Hamilton, J.W.J.; Byrne, J.A.; O’Shea, K.; et al. Review on the Visible Light Active Titanium Dioxide Photocatalysts for Environmental Applications. Appl. Catal. B 2012, 125, 331–349. [Google Scholar] [CrossRef] [Green Version]
- Aldalbahi, A.; El-Naggar, M.; Khattab, T.; Abdelrahman, M.; Rahaman, M.; Alrehaili, A.; El-Newehy, M. Development of Green and Sustainable Cellulose Acetate/Graphene Oxide Nanocomposite Films as Efficient Adsorbents for Wastewater Treatment. Polymers 2020, 12, 2501. [Google Scholar] [CrossRef]
- Cevallos-Mendoza, J.; Amorim, C.G.; Rodríguez-Díaz, J.M.; Montenegro, M.d.C.B.S.M. Removal of Contaminants from Water by Membrane Filtration: A Review. Membranes 2022, 12, 570. [Google Scholar] [CrossRef]
- Dinu, I.A.; Ghimici, L.; Raschip, I.E. Macroporous 3D Chitosan Cryogels for Fastac 10EC Pesticide Adsorption and Antibacterial Applications. Polymers 2022, 14, 3145. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Huang, Z.; Zhou, X.; Deng, L.; Liao, M.; Yang, S.; Chen, S.; Wang, H.; Wang, L. Ferrous-Oxalate-Modified Aramid Nanofibers Heterogeneous Fenton Catalyst for Methylene Blue Degradation. Polymers 2022, 14, 3491. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Ling, Q.; Cai, Y.; Xu, L.; Su, J.; Yu, K.; Wu, X.; Xu, J.; Hu, B.; Wang, X. Synthesis of Carbon-Based Nanomaterials and Their Application in Pollution Management. Nanoscale Adv. 2022, 4, 1246–1262. [Google Scholar] [CrossRef]
- Shayegan, Z.; Bahri, M.; Haghighat, F. A Review on an Emerging Solution to Improve Indoor Air Quality: Application of Passive Removal Materials. Build. Environ. 2022, 219, 109228. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, H.; Zhang, M.; Shen, X.; Zhang, X.; Wu, F.; Hu, J.; Wang, B.; Wang, X. Removal of PAHs at High Concentrations in a Soil Washing Solution Containing TX-100 via Simultaneous Sorption and Biodegradation Processes by Immobilized Degrading Bacteria in PVA-SA Hydrogel Beads. J. Hazard. Mater. 2021, 410, 124533. [Google Scholar] [CrossRef]
- Biswal, B.K.; Vijayaraghavan, K.; Tsen-Tieng, D.L.; Balasubramanian, R. Biochar-Based Bioretention Systems for Removal of Chemical and Microbial Pollutants from Stormwater: A Critical Review. J. Hazard. Mater. 2022, 422, 126886. [Google Scholar] [CrossRef]
- Chu, G.; Zhao, J.; Liu, Y.; Lang, D.; Wu, M.; Pan, B.; Steinberg, C.E.W. The Relative Importance of Different Carbon Structures in Biochars to Carbamazepine and Bisphenol A Sorption. J. Hazard. Mater. 2019, 373, 106–114. [Google Scholar] [CrossRef]
- Saleh, T.A.; Gupta, V.K. Processing Methods, Characteristics and Adsorption Behavior of Tire Derived Carbons: A Review. Adv. Colloid Interface Sci. 2014, 211, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Wang, J.; Wang, C.; Strong, P.J.; Jiang, P.; Ok, Y.S.; Wang, H. Carbon Nanotube-Grafted Chitosan and Its Adsorption Capacity for Phenol in Aqueous Solution. Sci. Total Environ. 2019, 682, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Wang, X.; Li, J.; Wang, X. Cotton Derived Carbonaceous Aerogels for the Efficient Removal of Organic Pollutants and Heavy Metal Ions. J. Mater. Chem. A 2015, 3, 6073–6081. [Google Scholar] [CrossRef]
- Sharma, V.K.; McDonald, T.J.; Kim, H.; Garg, V.K. Magnetic Graphene–Carbon Nanotube Iron Nanocomposites as Adsorbents and Antibacterial Agents for Water Purification. Adv. Colloid Interface Sci. 2015, 225, 229–240. [Google Scholar] [CrossRef]
- Chen, D.H.; Cao, L.; Hanley, T.L.; Caruso, R.A. Facile Synthesis of Monodisperse Mesoporous Zirconium Titanium Oxide Microspheres with Varying Compositions and High Surface Areas for Heavy Metal Ion Sequestration. Adv. Funct. Mater. 2012, 22, 1966. [Google Scholar] [CrossRef]
- Sendão, R.M.S.; Esteves da Silva, J.C.G.; Pinto da Silva, L. Photocatalytic Removal of Pharmaceutical Water Pollutants by TiO2 —Carbon Dots Nanocomposites: A Review. Chemosphere 2022, 301, 134731. [Google Scholar] [CrossRef] [PubMed]
- Chang, R.; Wu, X.; Cheung, O.; Liu, W. Synthetic Solid Oxide Sorbents for CO2 Capture: State-of-the Art and Future Perspectives. J. Mater. Chem. A 2022, 10, 1682–1705. [Google Scholar] [CrossRef]
- Wang, L.; Pan, Y.; Li, Y.; Sui, Z.; Li, J.; Xu, X. Destructive Sorption of NF3 as a Novel Greenhouse Gas over Al2O3@Mn2O3 Sorbents with High Surface Area. Process Saf. Environ. Prot. 2022, 162, 1082–1090. [Google Scholar] [CrossRef]
- Maiti, D.; Mukhopadhyay, S.; Devi, P.S. Evaluation of Mechanism on Selective, Rapid, and Superior Adsorption of Congo Red by Reusable Mesoporous α-Fe2O3 Nanorods. ACS Sustain. Chem. Eng. 2017, 5, 11255–11267. [Google Scholar] [CrossRef]
- Liang, J.; Li, X.; Yu, Z.; Zeng, G.; Luo, Y.; Jiang, L.; Yang, Z.; Qian, Y.; Wu, H. Amorphous MnO 2 Modified Biochar Derived from Aerobically Composted Swine Manure for Adsorption of Pb(II) and Cd(II). ACS Sustain. Chem. Eng. 2017, 5, 5049–5058. [Google Scholar] [CrossRef]
- Wang, J.; Wang, P.Y.; Wang, H.H.; Dong, J.F.; Chen, W.Y.; Wang, X.X.; Wang, S.H.; Hayat, T.; Alsaedi, A.; Wang, X.K. Preparation of Molybdenum Disulfide Coated Mg/Al Layered Double Hydroxide Composites for Efficient Removal of Chromium(VI). ACS Sustain. Chem. Eng. 2017, 5, 7165–7174. [Google Scholar] [CrossRef]
- Lei, W.W.; Portehault, D.; Liu, D.; Qin, S.; Chen, Y. Porous Boron Nitride Nanosheets for Effective Water Cleaning. Nat. Commun. 2013, 4, 1777. [Google Scholar] [CrossRef] [Green Version]
- Shahsavari, R.; Zhao, S. Merger of Energetic Affinity and Optimal Geometry Provides New Class of Boron Nitride Based Sorbents with Unprecedented Hydrogen Storage Capacity. Small 2018, 14, 1702863. [Google Scholar] [CrossRef]
- Sun, Y.; Ha, W.; Chen, J.; Qi, H.; Shi, Y. Advances and Applications of Graphitic Carbon Nitride as Sorbent in Analytical Chemistry for Sample Pretreatment: A Review. TrAC Trends Anal. Chem. 2016, 84, 12–21. [Google Scholar] [CrossRef]
- Zhang, W.T.; Shi, S.; Zhu, W.X.; Huang, L.J.; Yang, C.Y.; Li, S.H.; Liu, X.N.; Wang, R.; Hu, N.; Suo, Y.R.; et al. Agar Aerogel Containing Small-Sized Zeolitic Imidazolate Framework Loaded Carbon Nitride: A Solar-Triggered Regenerable Decontaminant for Convenient and Enhanced Water Purification. ACS Sustain. Chem. Eng. 2017, 5, 9347–9354. [Google Scholar] [CrossRef]
- Sapurina, I.Y.; Shishov, M.A.; Ivanova, V.T. Sorbents for Water Purification Based on Conjugated Polymers. Russ. Chem. Rev. 2020, 89, 1115–1131. [Google Scholar]
- Alnaqbi, M.A.; Al Blooshi, A.G.; Greish, Y.E. Polyethylene and Polyvinyl Chloride-Blended Polystyrene Nanofibrous Sorbents and Their Application in the Removal of Various Oil Spills. Adv. Polym. Technol. 2020, 2020, 4097520. [Google Scholar] [CrossRef]
- Ge, Y.Y.; Li, Z.L. Application of Lignin and Its Derivatives in Adsorption of Heavy Metal Ions in Water: A Review. ACS Sustain. Chem. Eng. 2018, 6, 7181–7192. [Google Scholar] [CrossRef]
- Duan, Y.Q.; Freyburger, A.; Kunz, W.; Zollfrank, C. Lignin/Chitin Films and Their Adsorption Characteristics for Heavy Metal Ions. ACS Sustain. Chem. Eng. 2018, 6, 6965–6973. [Google Scholar] [CrossRef]
- Deng, S.; Zhang, G.S.; Liang, S.; Wang, P. Microwave Assisted Preparation of Thio-Functionalized Polyacrylonitrile Fiber for the Selective and Enhanced Adsorption of Mercury and Cadmium from Water. ACS Sustain. Chem. Eng. 2017, 5, 6054–6063. [Google Scholar] [CrossRef]
- Huang, M.L.; Mishra, S.B.; Liu, S.Q. Waste Glass Fiber Fabric as A Support for Facile Synthesis of Microporous Carbon to Adsorb Cr(VI) from Wastewater. ACS Sustain. Chem. Eng. 2017, 5, 8127–8136. [Google Scholar] [CrossRef]
- Shen, Y.; Li, L.; Xiao, K.J.; Xi, J.Y. Constructing Three-Dimensional Hierarchical Architectures by Integrating Carbon Nanofibers into Graphite Felts for Water Purification. ACS Sustain. Chem. Eng. 2016, 4, 2351–2358. [Google Scholar] [CrossRef]
- Li, L.; Shen, Y.; Wang, Z.M. Synthesis of 3D Iron and Carbon-Based Composite as A Bifunctional Sorbent and Catalyst for Remediation of Organic Pollutants. Mater. Res. Exp. 2017, 4, 7. [Google Scholar] [CrossRef]
- Shen, Y.; Li, L.; Zhang, Z.H. Scalable and Environmentally Friendly Synthesis of Hierarchical Magnetic Carbon Nanosheet Assemblies and Their Application in Water Treatment. J. Phys. Chem. C 2016, 120, 6659–6668. [Google Scholar] [CrossRef]
- Gong, B.; Peng, Y.T.; Pan, Z.Y.; Chen, W.M.; Shen, Y.; Xiao, K.J.; Zhang, L. Gram-Scale Synthesis of Monodisperse Sulfonated Polystyrene Nanospheres for Rapid and Efficient Sequestration of Heavy Metal Ions. Chem. Commun. 2017, 53, 12766. [Google Scholar] [CrossRef]
- Heddagaard, F.E.; Møller, P. Hazard Assessment of Small-Size Plastic Particles: Is the Conceptual Framework of Particle Toxicology Useful? Food Chem. Toxicol. 2020, 136, 111106. [Google Scholar] [CrossRef]
- Maharana, T.; Negi, Y.S.; Mohanty, B. Review Article: Recycling of Polystyrene. Polym.-Plast. Technol. Eng. 2007, 46, 729–736. [Google Scholar] [CrossRef]
- Smith, M.; Love, D.C.; Rochman, C.M.; Neff, R.A. Microplastics in Seafood and the Implications for Human Health. Curr. Envir. Health Rpt. 2018, 5, 375–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fonseca, W.S.; Meng, X.H.; Deng, D. Trash to Treasure: Transforming Waste Polystyrene Cups into Negative Electrode Materials for Sodium Ion Batteries. ACS Sustain. Chem. Eng. 2015, 3, 2153–2159. [Google Scholar] [CrossRef]
- Mangalara, S.C.H.; Varughese, S. Green Recycling Approach to Obtain Nano- and Microparticles from Expanded Polystyrene Waste. ACS Sustain. Chem. Eng. 2016, 4, 6095–6100. [Google Scholar] [CrossRef]
- Ramanan, V.; Siddaiah, B.; Raji, K.; Ramamurthy, P. Green Synthesis of Multifunctionalized, Nitrogen-Doped, Highly Fluorescent Carbon Dots from Waste Expanded Polystyrene and Its Application in the Fluorimetric Detection of Au3+ Ions in Aqueous Media. ACS Sustain. Chem. Eng. 2018, 6, 1627–1638. [Google Scholar] [CrossRef]
- Shen, Y.; Qiu, X.P.; Shen, J.; Xi, J.Y.; Zhu, W.T. PVDF-g-PSSA and Al2O3 Composite Proton Exchange Membranes. J. Power Sources 2006, 161, 54–60. [Google Scholar] [CrossRef]
- Sułkowski, W.W.; Nowak, K.; Sułkowska, A.; Mikuła, B.; Wierzba, P. The Conditions of Cationic Exchange with the Use of Recycling Polystyrene Derivative, the Product of Sulfonation by Silica Sulfuric Acid. J. Appl. Polym. Sci. 2013, 128, 2611–2617. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; Abdou, A.E.H.; Ahmed, S.B. Conversion of Waste Styrofoam into Engineered Adsorbents for Efficient Removal of Cadmium, Lead and Mercury from Water. ACS Sustain. Chem. Eng. 2016, 4, 819–827. [Google Scholar] [CrossRef]
Sorbates | Langmuir Model | Freundlich Model | |||
---|---|---|---|---|---|
R2 | qmax | b | R2 | k | |
Lysozyme | 0.9981 | 15.7 | 0.48 | 0.8079 | 5.42 |
MB | −0.3031 | −146.8 | −0.011 | 0.8608 | 1.50 |
Pb2+ | 0.9633 | 10.5 | 0.071 | 0.9311 | 1.11 |
Sorbates | Pseudo-First-Order | Pseudo-Second-Order | Intraparticle Diffusion | |||||
---|---|---|---|---|---|---|---|---|
R2 | qe | k1 | R2 | qe | k2 | R2 | k | |
Lysozyme | 0.8747 | 21.29 | 0.01 | 0.9937 | 33.0 | 0.021 | 0.9003 | 1.55 |
MB | 0.9745 | 18.42 | 0.025 | 0.9992 | 26.4 | 0.078 | 0.7243 | 1.22 |
Pb2+ | 0.8967 | 1.74 | 0.002 | 0.9930 | 2.4 | 0.0043 | 0.9126 | 0.057 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, C.; Pan, Z.; Shen, Y. Facile Conversion of Polystyrene Waste into an Efficient Sorbent for Water Purification. Polymers 2022, 14, 4477. https://doi.org/10.3390/polym14214477
Ye C, Pan Z, Shen Y. Facile Conversion of Polystyrene Waste into an Efficient Sorbent for Water Purification. Polymers. 2022; 14(21):4477. https://doi.org/10.3390/polym14214477
Chicago/Turabian StyleYe, Cuizhu, Ziyan Pan, and Yi Shen. 2022. "Facile Conversion of Polystyrene Waste into an Efficient Sorbent for Water Purification" Polymers 14, no. 21: 4477. https://doi.org/10.3390/polym14214477