Effect of Gear Pump Extrusion Processing on the Properties of Fiber Reinforced Rubber Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Adhesion Mechanism of Short Fiber to Rubber Matrix
2.3. Processing Methods
2.3.1. Mixing Process
2.3.2. Extrusion Process
2.3.3. Vulcanization Process
2.4. Characterization
3. Results and Discussion
3.1. The Pressure and Temperature of the Rubber Compound during Extrusion
3.2. Extrusion Stability
3.3. Degree of Compaction
3.4. Mooney Viscosity and Vulcanization Characteristics
3.5. Physical and Mechanical Properties
3.6. Dynamic Thermo-Mechanical Analysis
3.7. Scanning Electron Microscopy (SEM) Observation and Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hintze, C.; Boldt, R.; Wiessner, S.; Heinrich, G. Influence of processing on morphology in short aramid fiber reinforced elastomer compounds. J. Appl. Polym. Sci. 2013, 130, 1682–1690. [Google Scholar] [CrossRef]
- Yu, X.M.; Gu, B.Q.; Zhang, B. Effects of the short-fiber tip geometry and interphase properties on the interfacial debonding behavior of rubber matrix composites. J. Appl. Polym. Sci. 2015, 132, 42774. [Google Scholar] [CrossRef]
- Yu, X.M.; Gu, B.Q.; Zhang, B. Effects of short fiber tip geometry and inhomogeneous interphase on the stress distribution of rubber matrix sealing composites. J. Appl. Polym. Sci. 2015, 132, 41638. [Google Scholar] [CrossRef]
- Kumar Sanat, K.; Benicewicz Brian, C.; Vaia Richard, A.; Winey Karen, I. 50th Anniversary Perspective: Are Polymer Nanocomposites Practical for Applications? Macromolecules 2017, 50, 714–731. [Google Scholar] [CrossRef]
- Gao, G.X.; Zhang, Z.C.; Zheng, Y.S.; Jin, Z.H. Effect of Fiber Orientation Angle on Thermal Degradation and Ablative Properties of Short-Fiber Reinforced EPDM/NBR Rubber Composites. Polym. Compos. 2010, 31, 1223–1231. [Google Scholar] [CrossRef]
- Li, Z.; Wan, J.J.; Li, Y.Z.; Li, Y.; Zhao, F.; Zhao, S.G. Effects of coupling agents on the properties of an NR/SBR matrix and its adhesion to continuous basalt fiber cords. J. Appl. Polym. Sci. 2019, 136, 47098. [Google Scholar] [CrossRef]
- Kong, H.J.; Ding, H.Q.; Yu, M.H.; Ding, X.M.; Qiao, M.M. Influence of poly(p-phenyleneterephalamide) pulp by surface modification with dopamine to nitrile butadiene rubber. Polym. Compos. 2019, 40, E476–E483. [Google Scholar] [CrossRef]
- Bokobza, L. Natural Rubber Nanocomposites: A Review. Nanomaterials 2019, 9, 12. [Google Scholar] [CrossRef] [Green Version]
- Jawaid, M.; Abdul Khalil, H.P.S. Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review. Carbohydr. Polym. 2011, 86, 1–18. [Google Scholar] [CrossRef]
- Jin, Z.; Luo, Z.; Yang, S.R.; Lu, S.J. Influence of complexing treatment and epoxy resin coating on the properties of aramid fiber reinforced natural rubber. J. Appl. Polym. Sci. 2015, 132, 42122. [Google Scholar] [CrossRef]
- Zhang, B.; Gu, B.Q.; Yu, X.M. Failure behavior of resorcinol-formaldehyde latex coated aramid short-fiber-reinforced rubber sealing under transverse tension. J. Appl. Polym. Sci. 2015, 132, 41672. [Google Scholar] [CrossRef]
- Luo, Z.; Chen, W.L.; Jin, Z.; Dong, F.P.; Yang, L.; Zheng, Q. Epoxy resin modified maleic anhydride-grafted-liquid polybutadiene on the properties of short aramid fiber reinforced natural rubber composite. Polym. Compos. 2018, 39, E2006–E2015. [Google Scholar] [CrossRef]
- Miedzianowska, J.; Maslowski, M.; Strzelec, K. Thermoplastic Elastomer Biocomposites Filled with Cereal Straw Fibers Obtained with Different Processing Methods-Preparation and Properties. Polymers 2019, 11, 641. [Google Scholar] [CrossRef] [Green Version]
- Summerscales, J.; Green, D.; Guild, F.J. Effect of processing dwell-time on the microstructure of a fibre-reinforced composite. J. Microsc. 1993, 169, 173–182. [Google Scholar] [CrossRef]
- Kashani, M.R. Aramid-short-fiber reinforced rubber as a tire tread composite. J. Appl. Polym. Sci. 2009, 113, 1355–1363. [Google Scholar] [CrossRef]
- Ozkoc, G.; Bayram, G.; Bayramli, E. Short glass fiber reinforced ABS and ABS/PA6 composites: Processing and characterization. Polym. Compos. 2005, 26, 745–755. [Google Scholar] [CrossRef]
- Thomas, R.P.K.S. Tear and Processing Behaviour of Short Sisal Fibre Reinforced Styrene Butadiene Rubber Composites. Polym. Int. 1995, 38, 173–182. [Google Scholar]
- Zhang, B.; Gu, B.; Yu, X. Failure behavior of resorcinol-formaldehyde latex coated aramid short-fiber-reinforced rubber sealing under transverse tension. J. Appl. Polym. Sci. 2014. [Google Scholar] [CrossRef]
- Lekube, B.; Purgleitner, B.; Renner, K.; Burgstaller, C. Influence of Screw Configuration and Processing Temperature on the Properties of Short Glass Fiber Reinforced Polypropylene Composites. Polym. Eng. Sci. 2019. [Google Scholar] [CrossRef]
- Wang, C.S.; Liu, C.J.; Bian, H.G. Radial orientation mechanism and experimental research of short fiber in tread compound. J. Donghua Univ. 2009, 26, 666–672. [Google Scholar]
- Wang, C.S.; Zhang, D.W.; Li, L. Experimental study of integration and polyblends performance for improved mixing-extruding machine. J. Donghua Univ. 2014, 31, 453–457. [Google Scholar] [CrossRef]
- Li, L.; Wang, C.S.; Zhang, D.W. Effects of radial-orientation-die structure parameters on properties of short fiber and rubber composite material. J. Donghua Univ. (Engl. Ed.) 2014, 31, 249–255. [Google Scholar] [CrossRef]
- Shirazi, M.; Talma, A.G.; Noordermeer, J.W.M. Viscoelastic properties of short aramid fibers-reinforced rubbers. J. Appl. Polym. Sci. 2013, 128, 2255–2261. [Google Scholar] [CrossRef]
- Hotaka, T.; Ishikawa, Y.; Mori, K. Effect of Compound Ingredients on Adhesion between Rubber and Brass-Plated Steel Cord. Rubber Chem. Technol. 2005, 78, 175–187. [Google Scholar] [CrossRef]
- Patil, P. Mechanistic Investigation of Rubber-Brass Adhesion: Effect of Formulation Ingredients. Ph.D. Thesis, University of Cincinnati, Cincinnati, OH, USA, 2005. [Google Scholar]
- Kargarzadeh, H.; Mariano, M.; Huang, J.; Lin, N.; Ahmad, I.; Dufresne, A.; Thomas, S. Recent developments on nanocellulose reinforced polymer nanocomposites: A review. Polymer 2017, 132, 368–393. [Google Scholar] [CrossRef]
- Saba, N.; Jawaid, M.; Alothman Othman, Y.; Paridah, M.T. A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Constr. Build. Mater. 2016, 106, 149–159. [Google Scholar] [CrossRef]
- Thaptong, P.; Sae-Oui, P.; Sirisinha, C. Effects of silanization temperature and silica type onproperties of silica-filled solution styrene butadiene rubber (SSBR) for passenger car tire treadcompounds. J. Appl. Polym. Sci. 2016, 133, 43342. [Google Scholar] [CrossRef]
- Gabriel, C.F.S.; de Alencar Padua Gabino, A.; de Sousa, A.M.F.; Furtado, C.R.G.; Nunes, R.C.R. Tire tread rubber compounds with ternary system filler based on carbon black, silica, and metakaolin: Contribution of silica/metakaolin content on the final properties. J. Elastomers Plast. 2019, 51, 712–726. [Google Scholar] [CrossRef]
Component | Formulation A (phr) | Formulation B (phr) |
---|---|---|
NR | 100 | 100 |
Carbon black N330 | 37.4 | 37.4 |
Silica | 15 | 15 |
ZnO | 3.6 | 3.6 |
Oil | 2 | 2 |
Anti-aging agent | 2 | 2 |
Stearic acid | 2 | 2 |
Accelerator | 1.5 | 1.5 |
Sulphur | 1 | 1 |
Coupling agent Si-69 | 2 | 2 |
Resin | 2 | 0 |
Adhesive | 1 | 0 |
Aramid short fibers | 3 | 0 |
First Stage | Second Stage | |
---|---|---|
Mixing parameters | Degree of fill is 65%; chamber wall, rotor and lower top bolt temperature is 40 °C; rotor speed is 40 rpm; Top plug pressure is 0.6 MPa | Roller temperature is (50 ± 5) °C |
Mixing processing 1 | (1) The NR and (Short Aramid Fiber) were incorporated on the internal mixer. (2) After 30 s, ZnO, silica, Si-69, SA, 4010, (SL3020) and half of CB were added into internal mixing. (3) After 30 s, the other half of CB were added into mixer. (4) The Oil was added into mixer when the temperature of mixing achieved 110 °C. (5) The rubber composite (called Master rubber) was discharged when the temperature of mixing achieve 155 °C | The master rubber was added into two-roll mill, The S, NS and (RA 65) were added when the master rubber wrapped on a roller. |
Numbering | Gear Pump 1 | Formulation | Screw Speed/rpm |
---|---|---|---|
X-1 | N | B | 10 |
X-2 | N | B | 20 |
X-3 | N | B | 30 |
Y-1 | N | A | 10 |
Y-2 | N | A | 20 |
Y-3 | N | A | 30 |
Z-1 | Y | A | 10 |
Z-2 | Y | A | 20 |
Z-3 | Y | A | 30 |
Numbering | Maximum of Extruder Pressure/MPa | Maximum of Extruder Temperature/°C | The Pressure of the Extrusion Head/MPa | Extrusion Temperature of the Extrusion Head/°C |
---|---|---|---|---|
X-1 | 1.89 | 73 | 2.88 | 83 |
X-2 | 2.47 | 77 | 3.59 | 94 |
X-3 | 3.4 | 80 | 4.62 | 98 |
Y-1 | 2.09 | 75 | 3.17 | 85 |
Y-2 | 3.17 | 79 | 4.18 | 97 |
Y-3 | 3.98 | 82 | 5.43 | 103 |
Z-1 | 1.06 | 74 | 3.36 | 84 |
Z-2 | 1.64 | 78 | 5.08 | 94 |
Z-3 | 2.00 | 80 | 6.68 | 99 |
Numbering | Mooney Viscosity Pa·s | ML/(dN·m) | MH/(dN·m) | t10/min | t90/min |
---|---|---|---|---|---|
X-1 | 38.55 | 2.44 | 16.54 | 4.52 | 13.63 |
X-2 | 36.18 | 2.3 | 16.59 | 4.27 | 13.32 |
X-3 | 35.91 | 2.26 | 16.63 | 4.12 | 12.53 |
Y-1 | 44.51 | 2.79 | 17.73 | 5.47 | 16.25 |
Y-2 | 43.17 | 2.68 | 17.86 | 5.42 | 15.78 |
Y-3 | 44.36 | 2.82 | 17.69 | 5.57 | 16.97 |
Z-1 | 44.65 | 2.8 | 17.73 | 5.43 | 16.27 |
Z-2 | 43.57 | 2.71 | 17.82 | 5.27 | 15.68 |
Z-3 | 42.78 | 2.55 | 17.84 | 5.13 | 15.20 |
Numbering | Hardness/° | Tensile Strength/MPa | Tear Strength/KN·m−1 | Wear/μm3 |
---|---|---|---|---|
X-1 | 61 | 18.16 | 58.65 | 114 |
X-2 | 61.5 | 18.52 | 60.75 | 113 |
X-3 | 61.5 | 18.72 | 63.05 | 110 |
Y-1 | 67.5 | 20.85 | 68.65 | 102 |
Y-2 | 68 | 21.2 | 70.12 | 100 |
Y-3 | 67.5 | 17.41 | 67.05 | 120 |
Z-1 | 68 | 21.11 | 70.81 | 100 |
Z-2 | 68 | 21.58 | 71.47 | 99 |
Z-3 | 68 | 21.65 | 71.48 | 98 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, X.; Zhu, L.; Li, K.; Wang, K.; Bian, H.; Li, L.; Li, S.; Wang, C. Effect of Gear Pump Extrusion Processing on the Properties of Fiber Reinforced Rubber Composites. Polymers 2020, 12, 985. https://doi.org/10.3390/polym12040985
Tian X, Zhu L, Li K, Wang K, Bian H, Li L, Li S, Wang C. Effect of Gear Pump Extrusion Processing on the Properties of Fiber Reinforced Rubber Composites. Polymers. 2020; 12(4):985. https://doi.org/10.3390/polym12040985
Chicago/Turabian StyleTian, Xiaolong, Lin Zhu, Kunling Li, Kongshuo Wang, Huiguang Bian, Lin Li, Shaoming Li, and Chuansheng Wang. 2020. "Effect of Gear Pump Extrusion Processing on the Properties of Fiber Reinforced Rubber Composites" Polymers 12, no. 4: 985. https://doi.org/10.3390/polym12040985
APA StyleTian, X., Zhu, L., Li, K., Wang, K., Bian, H., Li, L., Li, S., & Wang, C. (2020). Effect of Gear Pump Extrusion Processing on the Properties of Fiber Reinforced Rubber Composites. Polymers, 12(4), 985. https://doi.org/10.3390/polym12040985