The Magical Combination of Polymer Science and Fluorometry
Conflicts of Interest
References
- McQuade, D.T.; Hegedus, A.H.; Swager, T.M. Signal amplification of a “Turn-on” sensor: Harvesting the light captured by a conjugated polymer. J. Am. Chem. Soc. 2000, 122, 12389–12390. [Google Scholar] [CrossRef]
- Uchiyama, S.; Matsumura, Y.; de Silva, A.P.; Iwai, K. Fluorescent molecular thermometers based on polymers showing temperature-induced phase transitions and labeled with polarity-responsive benzofurazans. Anal. Chem. 2003, 75, 5926–5935. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, S.; Gota, C.; Tsuji, T.; Inada, N. Intracellular temperature measurements with fluorescent polymeric thermometers. Chem. Commun. 2017, 53, 10976–10992. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.-Y.; Uchiyama, S.; de Silva, A.P. A personal journey across fluorescent sensing and logic associated with polymers of various kinds. Polymers 2019, 11, 1351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayashi, T.; Kawamoto, K.; Inada, N.; Uchiyama, S. Cationic fluorescent nanogel thermometers based on thermoresponsive poly(N-isopropylacrylamide) and environment-sensitive benzofurazan. Polymers 2019, 11, 305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uchiyama, S.; Tsuji, T.; Kawamoto, K.; Okano, K.; Fukatsu, E.; Noro, T.; Ikado, K.; Yamada, S.; Shibata, Y.; Hayashi, T.; et al. A cell-targeted non-cytotoxic fluorescent nanogel thermometer created with an imidazolium-containing cationic radical initiator. Angew. Chem. Int. Ed. 2018, 57, 5413–5417. [Google Scholar] [CrossRef] [PubMed]
- Saremi, B.; Bandi, V.; Kazemi, S.; Hong, Y.; D’Souza, F.; Yuan, B. Exploring NIR aza-BODIPY-based polarity sensitive probes with ON-and-OFF fluorescence switching in Pluronic nanoparticles. Polymers 2020, 12, 540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, I.; Jung, J.-E.; Lee, W.; Park, S.; Kim, H.; Jho, Y.-D.; Woo, H.Y.; Kyhm, K. Two-step energy transfer dynamics in conjugated polymer and dye-labeled aptamer-based potassium ion detection assay. Polymers 2019, 11, 1206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gou, Z.; Zhang, X.; Zuo, Y.; Lin, W. Synthesis of silane-based poly(thioether) via successive click reaction and their applications in ion detection and cell imaging. Polymers 2019, 11, 1235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.; Planalp, R.P.; Seitz, W.R. A Cu(II) indicator platform based on Cu(II) induced swelling that changes the extent of fluorescein self-quenching. Polymers 2019, 11, 1935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, W.-x.; Zhou, C.; Peng, H.-s. Ratiometric luminescent nanoprobes based on ruthenium and terbium-containing metallopolymers for intracellular oxygen sensing. Polymers 2019, 11, 1290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Zhao, L.; Cheng, D.; Yao, X.; Lu, Y. Highly selective fluorescence sensing and imaging of ATP using a boronic acid groups-bearing polythiophene derivate. Polymers 2019, 11, 1139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, R.; Narikiyo, H.; Gon, M.; Tanaka, K.; Chujo, Y. Oxygen-resistant electrochemiluminescence system with polyhedral oligomeric silsesquioxane. Polymers 2019, 11, 1170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Yang, S.; Chen, W.; Li, Y.; Wei, Y.; Luo, A. Magnetic fluorescence molecularly imprinted polymer based on FeOx/ZnS nanocomposites for highly selective sensing bisphenol A. Polymers 2019, 11, 1210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.; Cui, Y.; Wang, J.; Wang, J. Preparation of fluorescent molecularly imprinted polymers via Pickering emulsion interfaces and the application for visual sensing analysis of Listeria monocytogenes. Polymers 2019, 11, 984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsumura, Y.; Iwai, K. pH behavior of polymer complexes between poly(carboxylic acids) and poly(acrylamide derivatives) using a fluorescence label technique. Polymers 2019, 11, 1196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luthjens, L.H.; Yao, T.; Warman, J.M. A polymer-gel eye-phantom for 3D fluorescent imaging of millimetre radiation beams. Polymers 2018, 10, 1195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayesta, I.; Azkune, M.; Arrospide, E.; Arrue, J.; Illarramendi, M.A.; Durana, G.; Zubia, J. Fabrication of active polymer optical fibers by solution doping and their characterization. Polymers 2019, 11, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shchapova, E.; Nazarova, A.; Gurkov, A.; Borvinskaya, E.; Rzhechitskiy, Y.; Dmitriev, I.; Meglinski, I.; Timofeyev, M. Application of PEG-covered non-biodegradable polyelectrolyte microcapsules in the crustacean circulatory system on the example of the amphipod Eulimnogammarus verrucosus. Polymers 2019, 11, 1246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uchiyama, S. The Magical Combination of Polymer Science and Fluorometry. Polymers 2020, 12, 876. https://doi.org/10.3390/polym12040876
Uchiyama S. The Magical Combination of Polymer Science and Fluorometry. Polymers. 2020; 12(4):876. https://doi.org/10.3390/polym12040876
Chicago/Turabian StyleUchiyama, Seiichi. 2020. "The Magical Combination of Polymer Science and Fluorometry" Polymers 12, no. 4: 876. https://doi.org/10.3390/polym12040876
APA StyleUchiyama, S. (2020). The Magical Combination of Polymer Science and Fluorometry. Polymers, 12(4), 876. https://doi.org/10.3390/polym12040876