Next Article in Journal
Lignin Redistribution for Enhancing Barrier Properties of Cellulose-Based Materials
Previous Article in Journal
Development of Nontoxic Biodegradable Polyurethanes Based on Polyhydroxyalkanoate and L-lysine Diisocyanate with Improved Mechanical Properties as New Elastomers Scaffolds
Open AccessArticle

Improvement of Rice Husk/HDPE Bio-Composites Interfacial Properties by Silane Coupling Agent and Compatibilizer Complementary Modification

1
MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China
2
Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
3
MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
*
Authors to whom correspondence should be addressed.
Polymers 2019, 11(12), 1928; https://doi.org/10.3390/polym11121928
Received: 2 November 2019 / Revised: 18 November 2019 / Accepted: 18 November 2019 / Published: 22 November 2019
(This article belongs to the Section Biopolymers)
Composites using agricultural and forestry residues as raw materials with potentially high-performance, multifunctional and biodegradable ecological advantages, are viewed as very promising for new-generation lightweight and low-cost bio-based sustainable building materials. At present, the research on wood-plastic composite materials is relatively mature. However, it is still a challenge to effectively use other biomass and improve the interface of the high-polymer compound system. Herein, we proposed a simple and effective method to enhance the interfacial adhesion properties of rice husk fibre and High Density Polyethylene (HDPE) composites by the silane coupling agent KH-550 and compatibilizer Maleic anhydride grafted polyethylene (MAPE) with complementary modification. It was found that the coupling agent KH-550 cross-linked with the hydroxyl group on the husk fibre surface and solidified with the high polymer by –NH–, –C=O– functional group generation. Compatibilizer MAPE strengthened the two phases by covalently bonding with an ester linkage and lowered the roughness of the cross-section of the composites. Meanwhile the modification enhanced the dispersibility, and mechanical properties of the husk-high polymer compound system, the bending and flexural strength were improved by 11.5% and 28.9% with KH-550, and MAPE added, respectively. The flexural strength of the composites increased by 40.7% after complementary modification. Furthermore, the complementary modification treatment reduced the hydrophilic hydroxyl groups and increased the molecular chain to improve the water-resistance, elastic modulus and toughness of the composite. This study prepared a bio-composite, which is expected to expand the use of agricultural and forestry residues as an extension of wood-plastic composites. View Full-Text
Keywords: rice husk; high-density polyethylene; bio-composite; interface modification rice husk; high-density polyethylene; bio-composite; interface modification
Show Figures

Figure 1

MDPI and ACS Style

Sun, J.; Pang, Y.; Yang, Y.; Zhao, J.; Xia, R.; Li, Y.; Liu, Y.; Guo, H. Improvement of Rice Husk/HDPE Bio-Composites Interfacial Properties by Silane Coupling Agent and Compatibilizer Complementary Modification. Polymers 2019, 11, 1928.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop