Next Article in Journal
Improvement of Rice Husk/HDPE Bio-Composites Interfacial Properties by Silane Coupling Agent and Compatibilizer Complementary Modification
Previous Article in Journal
Nanocrystal Encapsulation, Release and Application Based on pH-Sensitive Covalent Dynamic Hyperbranched Polymers
Open AccessArticle

Development of Nontoxic Biodegradable Polyurethanes Based on Polyhydroxyalkanoate and L-lysine Diisocyanate with Improved Mechanical Properties as New Elastomers Scaffolds

1
Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen Key Laboratory of Polymer Science and Technology, Shenzhen Key Laboratory of Special Functional Materials, Nanshan District Key Lab for Biopolymers and Safety Evaluation, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
2
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
*
Authors to whom correspondence should be addressed.
Polymers 2019, 11(12), 1927; https://doi.org/10.3390/polym11121927
Received: 31 October 2019 / Revised: 20 November 2019 / Accepted: 21 November 2019 / Published: 22 November 2019
A nontoxic and biodegradable polyurethane was prepared, characterized, and evaluated for biomedical applications. Stretchable, biodegradable, and biocompatible polyurethanes (LPH) based on L-lysine diisocyanate (LDI) with poly(ethylene glycol) (PEG) and polyhydroxyalkanoates(PHA) of different molar ratios were synthesized. The chemical and physical characteristics of the LPH films are tunable, enabling the design of mechanically performance, hydrophilic, and biodegradable behavior. The LPH films have a Young’s modulus, tensile strength, and elongation at break in the range of 3.07–25.61 MPa, 1.01–9.49 MPa, and 102–998%, respectively. The LPH films demonstrate different responses to a change of temperature from 4 to 37 °C, with the swelling ratio for the same sample at equilibrium varying from 184% to 151%. In vitro degradation tests show the same LPH film has completely different degradation morphologies in pH of 3, 7.4, and 11 phosphate buffered solution (PBS). In vitro cell tests show feasibility that some of the LPH films are suitable for culturing rat bone marrow stem cells (rBMSCs), for future soft-tissue regeneration. The results demonstrate the feasibility of the LPH scaffolds for many biomedical applications. View Full-Text
Keywords: L-lysine diisocyanate; biodegradable; polyurethanes; non-toxic; mechanical performance L-lysine diisocyanate; biodegradable; polyurethanes; non-toxic; mechanical performance
Show Figures

Graphical abstract

MDPI and ACS Style

Wang, C.; Xie, J.; Xiao, X.; Chen, S.; Wang, Y. Development of Nontoxic Biodegradable Polyurethanes Based on Polyhydroxyalkanoate and L-lysine Diisocyanate with Improved Mechanical Properties as New Elastomers Scaffolds. Polymers 2019, 11, 1927.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop