Inducing Crystallinity of Metal Thin Films with Weak Magnetic Fields without Thermal Annealing
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Element | Atomic Number | Valence Electrons | Density g/cm3 | Melting Point °C |
---|---|---|---|---|
Al | 13 | [Ne] 3s23p1 | 2.70 | 660 |
Fe | 26 | [Ar] 3d64s2 | 7.86 | 1535 |
Ni | 28 | [Ar] 3d84s2 | 8.908 | 1453 |
Cu | 29 | [Ar] 3d104s1 | 8.96 | 1085 |
In | 49 | [Kr] 4d105s25p1 | 7.31 | 156.6 |
Tin oxide | molecule | Sn = O | 6.95 | 1630 |
W | 74 | [Xe] 4f145d46s2 | 19.25 | 3422 |
Appendix B
References
- Zhang, Q.M.; Xu, H.; Fang, F.; Cheng, Z.Y.; Xia, F.; You, H. Critical thickness of crystallization and discontinuous change in ferroelectric behavior with thickness in ferroelectric polymer thin films. J. Appl. Phys. 2001, 89, 2613–2616. [Google Scholar] [CrossRef]
- Chen, R.Q.; Lu, Q.Q.; Cheng, Q.D.; Ao, L.B.; Zhang, C.Y.; Hou, H.; Liu, Y.M.; Li, D.W.; Yin, D.C. An ignored variable: Solution preparation temperature in protein crystallization. Sci. Rep. 2015, 5, 7797. [Google Scholar] [CrossRef] [PubMed]
- Ferri, F.A. Low-temperature metal-induced crystallization of Mn-containing amorphous Ge thin films. J. Non Cryst. Solids 2012, 358, 58–60. [Google Scholar] [CrossRef]
- Regula, M.; Ballif, C.; Remškar, M.; Lévy, F. Crystallinity and texture promotion in WS2 thin films. J. Vac. Sci. Technol. A 1997, 15, 2323–2329. [Google Scholar] [CrossRef]
- Pellegren, J.P.; Sokalski, V.M. Thickness and interface-dependent crystallization of CoFeB alloy thin films. IEEE Trans. Magn. 2015, 51, 1–3. [Google Scholar] [CrossRef]
- Yoon, S.Y.; Kim, K.H.; Kim, C.O.; Oh, J.Y.; Jang, J. Low temperature metal induced crystallization of amorphous silicon using a Ni solution. J. Appl. Phys. 1997, 82, 5865–5867. [Google Scholar] [CrossRef]
- JohnáK, A.; ReenaáPhilip, R. Rapid room temperature crystallization of TiO2 nanotubes. CrystEngComm 2017, 19, 1585–1589. [Google Scholar]
- Su, J.; Zou, X.; Li, B.; Chen, H.; Li, X.; Yu, Q.; Mi, Q.; Chen, J.S. Accelerated room-temperature crystallization of ultrahigh-surface-area porous anatase titania by storing photogenerated electrons. Chem. Commun. 2017, 53, 1619–1621. [Google Scholar] [CrossRef] [PubMed]
- Lamberti, A.; Chiodoni, A.; Shahzad, N.; Bianco, S.; Quaglio, M.; Pirri, C.F. Ultrafast room-temperature crystallization of TiO2 nanotubes exploiting water-vapor treatment. Sci. Rep. 2015, 5, 7808–7814. [Google Scholar] [CrossRef] [PubMed]
- Dubey, A.; Kantack, N.; Adhikari, N.; Reza, K.M.; Venkatesan, S.; Kumar, M.; Khatiwada, D.; Darling, S.; Qiao, Q. Room temperature, air crystallized perovskite film for high performance solar cells. J. Mater. Chem. A 2016, 4, 10231–10240. [Google Scholar] [CrossRef]
- Ciro, J.; Betancur, R.; Mesa, S.; Jaramillo, F. High performance perovskite solar cells fabricated under high relative humidity conditions. Sol. Energy Mater. Sol. Cells 2017, 163, 38–42. [Google Scholar] [CrossRef]
- Kye, Y.H.; Yu, C.J.; Jong, U.G.; Chen, Y.; Walsh, A. Critical role of water in defect aggregation and chemical degradation of perovskite solar cells. J. Phys. Chem. Lett. 2018, 9, 2196–2201. [Google Scholar] [CrossRef] [PubMed]
- Ohsaki, H.; Shibayama, Y.; Suzuki, M.; Kinbara, A.; Yashiro, H.; Watanabe, T. Room temperature crystallization by RF plasma. Thin Solid Films 2008, 516, 4490–4494. [Google Scholar] [CrossRef]
- Ohsaki, H.; Suzuki, M.; Shibayama, Y.; Kinbara, A.; Watanabe, T. Room temperature crystallization of indium tin oxide films on glass and polyethylene terephthalate substrates using RF plasma. J. Vac. Sci. Technol. A 2007, 25, 1052–1055. [Google Scholar] [CrossRef]
- Morgese, G.; Dolcet, P.; Feis, A.; Gellini, C.; Gialanella, S.; Speghini, A.; Badocco, D.; Pastore, P.; Casarin, M.; Gross, S. Room-temperature crystallization of CuS nanostructures for photothermal applications through a nanoreactor approach. Eur. J. Inorg. Chem. 2017, 20, 2745–2754. [Google Scholar] [CrossRef]
- Bretos, I.; Jiménez, R.; Ricote, J.; Calzada, M.L. Low-temperature crystallization of solution-derived metal oxide thin films assisted by chemical processes. Chem. Soc. Rev. 2018, 47, 291–308. [Google Scholar] [CrossRef] [PubMed]
- Stefan, R.; Jakmunee, J.; Punyodom, W.; Singjai, P. A novel strategy for longevity prolongation of iron-based nanoparticle thin films by applied magnetic force. New J. Chem. 2018, 42, 4807–4810. [Google Scholar]
- Maillé, L.; Sant, C.; Le Paven-Thivet, C.; Legrand-Buscema, C.; Garnier, P. Structure and morphological study of nanometer W and W3O thin films. Thin Solid Films 2003, 428, 237–241. [Google Scholar] [CrossRef]
- Degen, T.; Sadki, M.; Bron, E.; König, U.; Nénert, G. The highscore suite. Powder Diffr. 2014, 29, S13–S18. [Google Scholar] [CrossRef]
- Kumpika, T.; Thongsuwan, W.; Singjai, P. Optical and electrical properties of ZnO nanoparticle thin films deposited on quartz by sparking process. Thin Solid Films 2008, 516, 5640–5644. [Google Scholar] [CrossRef]
- Chuminjak, Y.; Daothong, S.; Kuntarug, A.; Phokharatkul, D.; Horprathum, M.; Wisitsoraat, A.; Tuantranont, A.; Jakmunee, J.; Singjai, P. High-performance electrochemical energy storage electrodes based on nickel oxide-coated nickel foam prepared by sparking method. Electrochim. Acta 2017, 238, 298–309. [Google Scholar] [CrossRef]
- Chuminjak, Y.; Daothong, S.; Reanpang, P.; Mensing, J.P.; Phokharatkul, D.; Jakmunee, J.; Wisitsoraat, A.; Tuantranont, A.; Singjai, P. Electrochemical energystorage performances of nickel oxide films prepared by a sparking. RSC Adv. 2015, 5, 67795–67802. [Google Scholar] [CrossRef]
- Meuller, B.O.; Messing, M.E.; Engberg, D.L.; Jansson, A.M.; Johansson, L.I.; Norlén, S.M.; Tureson, N.; Deppert, K. Review of spark discharge generators for production of nanoparticle aerosols. Aerosol Sci. Technol. 2012, 46, 1256–1270. [Google Scholar] [CrossRef]
- Kumpika, T.; Thongsuwan, W.; Singjai, P. Atomic force microscopy imaging of ZnO nanodots deposited on quartz by sparking off different tip shapes. Surf. Interface Anal. 2007, 39, 58–63. [Google Scholar] [CrossRef]
- Kumpika, T.; Kantarak, E.; Sroila, W.; Panthawan, A.; Jhuntama, N.; Sanmuangmoon, P.; Thongsuwan, W.; Singjai, P. Superhydrophilic/superhydrophobic surfaces fabricated by spark-coating. Surf. Interface Anal. 2018, 50, 827–834. [Google Scholar] [CrossRef]
- Isaac, N.A.; Valenti, M.; Schmidt-Ott, A.; Biskos, G. Characterization of tungsten oxide thin films produced by spark ablation for NO2 gas sensing. ACS Appl. Mater. Interfaces 2016, 8, 3933–3939. [Google Scholar] [CrossRef] [PubMed]
- Vernardou, D.; Psifis, K.; Louloudakis, D.; Papadimitropoulos, G.; Davazoglou, D.; Katsarakis, N.; Koudoumas, E. Low pressure CVD of electrochromic WO3 at 400 °C. J. Electrochem. Soc. 2015, 162, H579–H582. [Google Scholar] [CrossRef]
- Sun, H.L.; Song, Z.X.; Guo, D.G.; Ma, F.; Xu, K.W. Microstructure and mechanical properties of nanocrystalline tungsten thin films. J. Mater. Sci. Technol. 2010, 26, 87–92. [Google Scholar] [CrossRef]
- Zakeri, K.; Peixoto, T.R.F.; Zhang, Y.; Prokop, J.; Kirschner, J. On the preparation of clean tungsten single crystals. Surf. Sci. 2010, 604, L1–L3. [Google Scholar] [CrossRef]
- Girault, B.; Eyidi, D.; Goudeau, P.; Sauvage, T.; Guerin, P.; Bourhis, E.L.; Renault, P.O. Controlled nanostructuration of polycrystalline tungsten thin films. J. Appl. Phys. 2013, 113, 174310. [Google Scholar] [CrossRef]
- Hao, Q.; Chen, W.; Xiao, G. Beta (β) tungsten thin films: Structure, electron transport, and giant spin Hall effect. Appl. Phys. Lett. 2015, 106, 182403. [Google Scholar] [CrossRef]
- Quintero, J.H.; Mariño, A.; Šiller, L.; Restrepo-Parra, E.; Caro-Lopera, F.J. Rocking curves of gold nitride species prepared by arc pulsed-physical assisted plasma vapor deposition. Surf. Coat. Technol. 2017, 309, 249–257. [Google Scholar] [CrossRef]
- Shalom, M.; Ressnig, D.; Yang, X.; Clavel, G.; Fellinger, T.P.; Antonietti, M. Nickel nitride as an efficient electrocatalyst for water splitting. J. Mater. Chem. A 2015, 3, 8171–8177. [Google Scholar] [CrossRef]
- Rudd, P.A.; Liu, S.; Gagliardi, L.; Young, V.G., Jr.; Lu, C.C. Metal-alane adducts with zero-valent nickel, cobalt, and iron. J. Am. Chem. Soc. 2011, 133, 20724–207273. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Guo, X.; Ramlawi, N.; Pfeiffer, T.V.; Geutjens, R.; Basak, S.; Nirschl, H.; Biskos, G.; Zandbergen, H.W.; Schmidt-Ott, A. Green manufacturing of metallic nanoparticles: A facile and universal approach to scaling up. J. Mater. Chem. A 2016, 4, 11222–11227. [Google Scholar] [CrossRef]
- Swann, S. Magnetron sputtering. Phys. Technol. 1988, 19, 67–75. [Google Scholar] [CrossRef]
- Matsuda, T.; Umeda, K.; Kato, Y.; Nishimoto, D.; Furuta, M.; Kimura, M. Raremetal-free high-performance Ga-Sn-O thin film transistor. Sci. Rep. 2017, 7, 44326–44332. [Google Scholar] [CrossRef] [PubMed]
- Sudha, C.; Sivanarendiran, R.; Srinivasan, K. Influence of magnetic field on the nucleation rate control of mono paracetamol. Cryst. Res. Technol. 2015, 50, 230–235. [Google Scholar] [CrossRef]
- Al Helal, A.; Soames, A.; Gubner, R.; Iglauer, S.; Barifcani, A. Influence of magnetic fields on calcium carbonate scaling in aqueous solutions at 150 °C and 1 bar. J. Colloid Interface Sci. 2018, 509, 472–484. [Google Scholar] [CrossRef] [PubMed]
- Chibowski, E.; Szcześ, A. Magnetic water treatment–a review of the latest approaches. Chemosphere 2018, 203, 54–67. [Google Scholar] [CrossRef] [PubMed]
- Thongpan, W.; Kumpika, T.; Kantarak, E.; Panthawan, A.; Pooseekheaw, P.; Singjai, P.; Tuantranont, A.; Thongsuwan, W. External-electric-field-enhanced uniformity and deposition rate of a TiO2 film prepared by the sparking process. Ukr. J. Phys. 2018, 63, 531–536. [Google Scholar] [CrossRef]
- Liu, X.; Zhuang, K.; Lin, S.; Zhang, Z.; Li, X. Determination of supercooling degree, nucleation and growth rates, and particle size for ice slurry crystallization in vacuum. Crystals 2017, 7, 128. [Google Scholar] [CrossRef]
- Kim, H.N.; Suslick, K.S. The effects of ultrasound on crystals: Sonocrystallization and sonofragmentation. Crystals 2018, 8, 280. [Google Scholar] [CrossRef]
- Zabihi, F.; Eslamian, M. Effect of the ultrasonic substrate vibration on nucleation and crystallization of PbI2 crystals and thin films. Crystals 2018, 8, 60. [Google Scholar] [CrossRef]
Thin Film | Time of Deposition | Thickness (nm ± SD) | Roughness (nm ± SD) |
---|---|---|---|
Aluminum | 12 h | 530 ± 14.07 | 16.41 ± 1.691 |
Nickel 1 | 30 min | 164.87 ± 27.4 | 33.35 ± 5.0 |
Indium | 30 min | 137 ± 1.79 | 14.32 ± 3.12 |
Copper | 30 min | 274.5 ± 2.012 | 10.6 ± 0.39 |
Tungsten | 45 min | 438.9 ± 23.2 | 21.4 ± 2.3 |
Tungsten 2 | 45 min | 618.2 ± 20.3 | 3.85 ± 0.3 |
Tin oxide (SnO) | 45 min | 294.7 ± 31.2 | 9.5 ± 0.2 |
Iron 1 | 45 min | 364.7 ± 2.35 | 10 ± 0.5 |
Element | Magnetic Field | Concentration (mg/L) | Concentration mg/cm2 | Variation (%) |
---|---|---|---|---|
Al | 0.4 T | 9.159 | 0.229 | 1.497 |
Sn | 0.4 T | 10.427 | 0.261 | 2.25 |
Ni | 0 T | 0.846 | 0.021 | 0.72 |
Ni | 0.4 T | 0.371 | 0.047 | 0.83 |
Fe | 0 T | 0.502 | 0.013 | 0.36 |
Fe | 0.2 T | 0.695 | 0.087 | 0.51 |
Fe | 0.4 T | 0.564 | 0.014 | 0.88 |
Cu | 0 T | 1.016 | 0.026 | 0.18 |
Cu | 0.4 T | 1.005 | 0.025 | 0.39 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ručman, S.S.; Punyodom, W.; Jakmunee, J.; Singjai, P. Inducing Crystallinity of Metal Thin Films with Weak Magnetic Fields without Thermal Annealing. Crystals 2018, 8, 362. https://doi.org/10.3390/cryst8090362
Ručman SS, Punyodom W, Jakmunee J, Singjai P. Inducing Crystallinity of Metal Thin Films with Weak Magnetic Fields without Thermal Annealing. Crystals. 2018; 8(9):362. https://doi.org/10.3390/cryst8090362
Chicago/Turabian StyleRučman, Stefan S., Winita Punyodom, Jaroon Jakmunee, and Pisith Singjai. 2018. "Inducing Crystallinity of Metal Thin Films with Weak Magnetic Fields without Thermal Annealing" Crystals 8, no. 9: 362. https://doi.org/10.3390/cryst8090362
APA StyleRučman, S. S., Punyodom, W., Jakmunee, J., & Singjai, P. (2018). Inducing Crystallinity of Metal Thin Films with Weak Magnetic Fields without Thermal Annealing. Crystals, 8(9), 362. https://doi.org/10.3390/cryst8090362