Rational Engineering in Protein Crystallization: Integrating Physicochemical Principles, Molecular Scaffolds, and Computational Design
Abstract
1. Introduction
1.1. Historical Context and Current Challenges
1.2. Physicochemical Basis of Crystallization
2. Surface Engineering via Physicochemical Approaches
2.1. Surface Entropy Reduction (SER) and Its Extensions
2.1.1. Lys/Glu to Ala Substitution
2.1.2. Use of Alternative Residues
2.1.3. Introduction of Electrostatic Interactions
2.2. Chemical Surface Modification
2.3. Heterogeneous Nucleation and Surface Modification
3. Utilizing Fusion Partners and Crystallization Chaperones
3.1. Rigid Fusion Partners
3.2. TELSAM as Polymeric Crystallization Enhancement
3.3. Antibody Fragments
4. Control of Complexes and Structural Homogeneity
4.1. Identifying the Stable Unit
4.2. Controlling Dissociation and Optimizing Solution Conditions
4.3. Engineering Nucleic-Acid Components in Protein–DNA Complex Crystallizations
4.4. A Generalized Workflow for Stabilizing and Crystallizing Complexes
5. Acceleration via AI and Computational Science
5.1. AlphaFold for Construct Design and Structure Prediction
5.2. De Novo Crystal Design and Artificial Lattices
6. Conclusions and Outlook
- 1.
- Target Assessment (AI-informed)Predict domain boundaries and IDRs using AlphaFold; identify regions suitable for truncation or surface redesign.This reduces the need for labor-intensive proteolysis experiments.
- 2.
- Stabilization by BiochemistryDetermine the minimal stable unit via biochemical assays and structure prediction.For complexes, evaluate dissociation behavior and optimize stoichiometry.
- 3.
- Physicochemical Principles (Strategy I)Improve crystallizability by altering surface features through mutations—SER, electrostatic engineering, and context-dependent Arg substitutions—to introduce directional contacts and enhance lattice compatibility. Nucleation enhancement utilize heterogeneous nucleation by introducing external seeds such as gold nanoparticles (AuNPs) or using porous materials to lower the nucleation barrier, especially when surface mutations alone are insufficient.
- 4.
- Scaffold Consideration (Strategy II)Introduce crystallization chaperones or fusion partners such as MBP, BRIL, or TELSAM to provide rigid surfaces or polymeric orientation control.TELSAM is particularly valuable for targets available only at low concentrations.
- 5.
- Iterative Screening and FeedbackAlways verify crystal composition, especially for complexes, and treat nucleic acids as tunable design variables.Computational predictions can be fed back into construct redesign, enabling fast convergence on successful conditions.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McPherson, A.; Gavira, J.A. Introduction to Protein Crystallization. Acta Crystallogr. Sect. F Struct. Biol. Commun. 2014, 70, 2–20. [Google Scholar] [CrossRef]
- Slabinski, L.; Jaroszewski, L.; Rodrigues, A.P.C.; Rychlewski, L.; Wilson, I.A.; Lesley, S.A.; Godzik, A. The Challenge of Protein Structure Determination—Lessons from Structural Genomics. Protein Sci. 2007, 16, 2472–2482. [Google Scholar] [CrossRef] [PubMed]
- Price Ii, W.N.; Chen, Y.; Handelman, S.K.; Neely, H.; Manor, P.; Karlin, R.; Nair, R.; Liu, J.; Baran, M.; Everett, J.; et al. Understanding the Physical Properties That Control Protein Crystallization by Analysis of Large-Scale Experimental Data. Nat. Biotechnol. 2009, 27, 51–57. [Google Scholar] [CrossRef]
- Derewenda, Z.S.; Godzik, A. The “Sticky Patch” Model of Crystallization and Modification of Proteins for Enhanced Crystallizability. In Protein Crystallography; Wlodawer, A., Dauter, Z., Jaskolski, M., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2017; Volume 1607, pp. 77–115. [Google Scholar]
- Vekilov, P.G. The Two-Step Mechanism of Nucleation of Crystals in Solution. Nanoscale 2010, 2, 2346. [Google Scholar] [CrossRef]
- Vekilov, P.G. Nucleation. Cryst. Growth Des. 2010, 10, 5007–5019. [Google Scholar] [CrossRef]
- Derewenda, Z.S. Rational Protein Crystallization by Mutational Surface Engineering. Structure 2004, 12, 529–535. [Google Scholar] [CrossRef]
- Derewenda, Z.S.; Vekilov, P.G. Entropy and Surface Engineering in Protein Crystallization. Acta Crystallogr. D Biol. Crystallogr. 2006, 62, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Longenecker, K.L.; Garrard, S.M.; Sheffield, P.J.; Derewenda, Z.S. Protein Crystallization by Rational Mutagenesis of Surface Residues: Lys to Ala Mutations Promote Crystallization of RhoGDI. Acta Crystallogr. D Biol. Crystallogr. 2001, 57, 679–688. [Google Scholar] [CrossRef]
- Garrard, S.M.; Longenecker, K.L.; Lewis, M.E.; Sheffield, P.J.; Derewenda, Z.S. Expression, Purification, and Crystallization of the RGS-like Domain from the Rho Nucleotide Exchange Factor, PDZ-RhoGEF, Using the Surface Entropy Reduction Approach. Protein Expr. Purif. 2001, 21, 412–416. [Google Scholar] [CrossRef]
- Mateja, A.; Devedjiev, Y.; Krowarsch, D.; Longenecker, K.; Dauter, Z.; Otlewski, J.; Derewenda, Z.S. The Impact of Glu→Ala and Glu→Asp Mutations on the Crystallization Properties of RhoGDI: The Structure of RhoGDI at 1.3 Å Resolution. Acta Crystallogr. D Biol. Crystallogr. 2002, 58, 1983–1991. [Google Scholar] [CrossRef] [PubMed]
- Goldschmidt, L.; Cooper, D.R.; Derewenda, Z.S.; Eisenberg, D. Toward Rational Protein Crystallization: A Web Server for the Design of Crystallizable Protein Variants. Protein Sci. 2007, 16, 1569–1576. [Google Scholar] [CrossRef] [PubMed]
- Cooper, D.R.; Boczek, T.; Grelewska, K.; Pinkowska, M.; Sikorska, M.; Zawadzki, M.; Derewenda, Z. Protein Crystallization by Surface Entropy Reduction: Optimization of the SER Strategy. Acta Crystallogr. D Biol. Crystallogr. 2007, 63, 636–645. [Google Scholar] [CrossRef]
- Nowotny, P.; Hermann, J.; Li, J.; Krautenbacher, A.; Klöpfer, K.; Hekmat, D.; Weuster-Botz, D. Rational Crystal Contact Engineering of Lactobacillus brevis Alcohol Dehydrogenase To Promote Technical Protein Crystallization. Cryst. Growth Des. 2019, 19, 2380–2387. [Google Scholar] [CrossRef]
- Hermann, J.; Bischoff, D.; Grob, P.; Janowski, R.; Hekmat, D.; Niessing, D.; Zacharias, M.; Weuster-Botz, D. Controlling Protein Crystallization by Free Energy Guided Design of Interactions at Crystal Contacts. Crystals 2021, 11, 588. [Google Scholar] [CrossRef]
- Walla, B.; Bischoff, D.; Janowski, R.; Von Den Eichen, N.; Niessing, D.; Weuster-Botz, D. Transfer of a Rational Crystal Contact Engineering Strategy between Diverse Alcohol Dehydrogenases. Crystals 2021, 11, 975. [Google Scholar] [CrossRef]
- Walla, B.; Maslakova, A.; Bischoff, D.; Janowski, R.; Niessing, D.; Weuster-Botz, D. Rational Introduction of Electrostatic Interactions at Crystal Contacts to Enhance Protein Crystallization of an Ene Reductase. Biomolecules 2025, 15, 467. [Google Scholar] [CrossRef]
- Rayment, I. [12] Reductive Alkylation of Lysine Residues to Alter Crystallization Properties of Proteins. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1997; Volume 276, pp. 171–179. ISBN 978-0-12-182177-7. [Google Scholar]
- Walter, T.S.; Meier, C.; Assenberg, R.; Au, K.-F.; Ren, J.; Verma, A.; Nettleship, J.E.; Owens, R.J.; Stuart, D.I.; Grimes, J.M. Lysine Methylation as a Routine Rescue Strategy for Protein Crystallization. Structure 2006, 14, 1617–1622. [Google Scholar] [CrossRef]
- Carter, P.W.; Ward, M. DTopographically Directed Nucleation of Organic Crystals on Molecular Single-Crystal Substrates. J. Am. Chem. Soc. 1993, 115, 11521–11535. [Google Scholar] [CrossRef]
- Frostman, L.M.; Bader, M.M.; Ward, M.D. Nucleation and Growth of Molecular Crystals on Self-Assembled Monolayers. Langmuir 1994, 10, 576–582. [Google Scholar] [CrossRef]
- Yip, C.M.; Ward, M.D. Atomic Force Microscopy of Insulin Single Crystals: Direct Visualization of Molecules and Crystal Growth. Biophys. J. 1996, 71, 1071–1078. [Google Scholar] [CrossRef]
- Yip, C.M.; Brader, M.L.; DeFelippis, M.R.; Ward, M.D. Atomic Force Microscopy of Crystalline Insulins: The Influence of Sequence Variation on Crystallization and Interfacial Structure. Biophys. J. 1998, 74, 2199–2209. [Google Scholar] [CrossRef]
- Chayen, N.E.; Saridakis, E.; El-Bahar, R.; Nemirovsky, Y. Porous Silicon: An Effective Nucleation-Inducing Material for Protein Crystallization 1 1Edited by R. Huber. Huber. J. Mol. Biol. 2001, 312, 591–595. [Google Scholar] [CrossRef]
- Saridakis, E.; Khurshid, S.; Govada, L.; Phan, Q.; Hawkins, D.; Crichlow, G.V.; Lolis, E.; Reddy, S.M.; Chayen, N.E. Protein Crystallization Facilitated by Molecularly Imprinted Polymers. Proc. Natl. Acad. Sci. USA 2011, 108, 11081–11086. [Google Scholar] [CrossRef]
- Ko, S.; Kim, H.Y.; Choi, I.; Choe, J. Gold Nanoparticles as Nucleation-Inducing Reagents for Protein Crystallization. Cryst. Growth Des. 2017, 17, 497–503. [Google Scholar] [CrossRef]
- Smyth, D.R.; Mrozkiewicz, M.K.; McGrath, W.J.; Listwan, P.; Kobe, B. Crystal Structures of Fusion Proteins with Large-affinity Tags. Protein Sci. 2003, 12, 1313–1322. [Google Scholar] [CrossRef] [PubMed]
- Cherezov, V.; Rosenbaum, D.M.; Hanson, M.A.; Rasmussen, S.G.F.; Thian, F.S.; Kobilka, T.S.; Choi, H.-J.; Kuhn, P.; Weis, W.I.; Kobilka, B.K.; et al. High-Resolution Crystal Structure of an Engineered Human β2 -Adrenergic G Protein–Coupled Receptor. Science 2007, 318, 1258–1265. [Google Scholar] [CrossRef]
- Chun, E.; Thompson, A.A.; Liu, W.; Roth, C.B.; Griffith, M.T.; Katritch, V.; Kunken, J.; Xu, F.; Cherezov, V.; Hanson, M.A.; et al. Fusion Partner Toolchest for the Stabilization and Crystallization of G Protein-Coupled Receptors. Structure 2012, 20, 967–976. [Google Scholar] [CrossRef]
- Liu, S.; Li, W. Protein Fusion Strategies for Membrane Protein Stabilization and Crystal Structure Determination. Crystals 2022, 12, 1041. [Google Scholar] [CrossRef]
- Kim, C.A. Polymerization of the SAM Domain of TEL in Leukemogenesis and Transcriptional Repression. EMBO J. 2001, 20, 4173–4182. [Google Scholar] [CrossRef]
- Nawarathnage, S.; Soleimani, S.; Mathis, M.H.; Bezzant, B.D.; Ramírez, D.T.; Gajjar, P.; Bunn, D.R.; Stewart, C.; Smith, T.; Pedroza Romo, M.J.; et al. Crystals of TELSAM–Target Protein Fusions That Exhibit Minimal Crystal Contacts and Lack Direct Inter-TELSAM Contacts. Open Biol. 2022, 12, 210271. [Google Scholar] [CrossRef] [PubMed]
- Nawarathnage, S.; Tseng, Y.J.; Soleimani, S.; Smith, T.; Pedroza Romo, M.J.; Abiodun, W.O.; Egbert, C.M.; Madhusanka, D.; Bunn, D.; Woods, B.; et al. Fusion Crystallization Reveals the Behavior of Both the 1TEL Crystallization Chaperone and the TNK1 UBA Domain. Structure 2023, 31, 1589–1603.e6. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, S.G.F.; Choi, H.-J.; Fung, J.J.; Pardon, E.; Casarosa, P.; Chae, P.S.; DeVree, B.T.; Rosenbaum, D.M.; Thian, F.S.; Kobilka, T.S.; et al. Structure of a Nanobody-Stabilized Active State of the Β2 Adrenoceptor. Nature 2011, 469, 175–180. [Google Scholar] [CrossRef]
- Nishino, T.; Takeuchi, K.; Gascoigne, K.E.; Suzuki, A.; Hori, T.; Oyama, T.; Morikawa, K.; Cheeseman, I.M.; Fukagawa, T. CENP-T-W-S-X Forms a Unique Centromeric Chromatin Structure with a Histone-like Fold. Cell 2012, 148, 487–501. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.; Nishino, T. Structural Analysis of the Chicken FANCM–MHF Complex and Its Stability. Acta Crystallogr. Sect. F Struct. Biol. Commun. 2021, 77, 1–7. [Google Scholar] [CrossRef]
- Ito, S.; Nishino, T. Biochemical and Crystallization Analysis of the CENP-SX–DNA Complex. Acta Crystallogr. Sect. F Struct. Biol. Commun. 2022, 78, 193–199. [Google Scholar] [CrossRef]
- Zhao, Q.; Saro, D.; Sachpatzidis, A.; Singh, T.R.; Schlingman, D.; Zheng, X.-F.; Mack, A.; Tsai, M.-S.; Mochrie, S.; Regan, L.; et al. The MHF Complex Senses Branched DNA by Binding a Pair of Crossover DNA Duplexes. Nat. Commun. 2014, 5, 2987. [Google Scholar] [CrossRef]
- Ariyoshi, M.; Nishino, T.; Iwasaki, H.; Shinagawa, H.; Morikawa, K. Crystal Structure of the Holliday Junction DNA in Complex with a Single RuvA Tetrame. Proc. Natl. Acad. Sci. USA 2000, 97, 8257–8262. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate Structure Prediction of Biomolecular Interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef]
- Tunyasuvunakool, K.; Adler, J.; Wu, Z.; Green, T.; Zielinski, M.; Žídek, A.; Bridgland, A.; Cowie, A.; Meyer, C.; Laydon, A.; et al. Highly Accurate Protein Structure Prediction for the Human Proteome. Nature 2021, 596, 590–596. [Google Scholar] [CrossRef] [PubMed]
- Evans, R.; O’Neill, M.; Pritzel, A.; Antropova, N.; Senior, A.; Green, T.; Žídek, A.; Bates, R.; Blackwell, S.; Yim, J.; et al. Protein Complex Prediction with AlphaFold-Multimer. bioRxiv 2021. [Google Scholar] [CrossRef]
- Watson, J.L.; Juergens, D.; Bennett, N.R.; Trippe, B.L.; Yim, J.; Eisenach, H.E.; Ahern, W.; Borst, A.J.; Ragotte, R.J.; Milles, L.F.; et al. De Novo Design of Protein Structure and Function with RFdiffusion. Nature 2023, 620, 1089–1100. [Google Scholar] [CrossRef]
- King, N.P.; Sheffler, W.; Sawaya, M.R.; Vollmar, B.S.; Sumida, J.P.; André, I.; Gonen, T.; Yeates, T.O.; Baker, D. Computational Design of Self-Assembling Protein Nanomaterials with Atomic Level Accuracy. Science 2012, 336, 1171–1174. [Google Scholar] [CrossRef]
- Lanci, C.J.; MacDermaid, C.M.; Kang, S.; Acharya, R.; North, B.; Yang, X.; Qiu, X.J.; DeGrado, W.F.; Saven, J.G. Computational Design of a Protein Crystal. Proc. Natl. Acad. Sci. USA 2012, 109, 7304–7309. [Google Scholar] [CrossRef] [PubMed]
- Wicky, B.I.M.; Milles, L.F.; Courbet, A.; Ragotte, R.J.; Dauparas, J.; Kinfu, E.; Tipps, S.; Kibler, R.D.; Baek, M.; DiMaio, F.; et al. Hallucinating Symmetric Protein Assemblies. Science 2022, 378, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, S.; Nattermann, U.; Bera, A.K.; Borst, A.J.; Yaman, M.Y.; Bick, M.J.; Yang, E.C.; Sheffler, W.; Lee, B.; et al. Accurate Computational Design of Three-Dimensional Protein Crystals. Nat. Mater. 2023, 22, 1556–1563. [Google Scholar] [CrossRef] [PubMed]








Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ito, S.; Nishino, T. Rational Engineering in Protein Crystallization: Integrating Physicochemical Principles, Molecular Scaffolds, and Computational Design. Crystals 2026, 16, 36. https://doi.org/10.3390/cryst16010036
Ito S, Nishino T. Rational Engineering in Protein Crystallization: Integrating Physicochemical Principles, Molecular Scaffolds, and Computational Design. Crystals. 2026; 16(1):36. https://doi.org/10.3390/cryst16010036
Chicago/Turabian StyleIto, Sho, and Tatsuya Nishino. 2026. "Rational Engineering in Protein Crystallization: Integrating Physicochemical Principles, Molecular Scaffolds, and Computational Design" Crystals 16, no. 1: 36. https://doi.org/10.3390/cryst16010036
APA StyleIto, S., & Nishino, T. (2026). Rational Engineering in Protein Crystallization: Integrating Physicochemical Principles, Molecular Scaffolds, and Computational Design. Crystals, 16(1), 36. https://doi.org/10.3390/cryst16010036

