Crystallographic Characterization of Different Forms of the Salt of Pazufloxacin Mesylate
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation and Crystallization of the Salts
2.2. Single-Crystal X-Ray Diffraction
3. Results and Discussion
3.1. Preparation, TGA and IR Spectroscopy
3.2. Molecular Structures 1a–4
3.3. Crystal Packing in Solid 1a–4
3.4. Multitemperature Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Takieddin, K.; Khimyak, Y.Z.; Fábián, L. Prediction of Hydrate and Solvate Formation Using Statistical Models. Cryst. Growth Des. 2016, 16, 70–81. [Google Scholar] [CrossRef]
- Braga, D.; Casali, L.; Grepioni, F. The Relevance of Crystal Forms in the Pharmaceutical Field: Sword of Damocles or Innovation Tools? Int. J. Mol. Sci. 2022, 23, 9013. [Google Scholar] [CrossRef] [PubMed]
- Anuar, N.; Yusop, S.N.; Roberts, K.J. Crystallisation of Organic Materials from the Solution Phase: A Molecular, Synthonic and Crystallographic Perspective. Crystallogr. Rev. 2022, 28, 97–215. [Google Scholar] [CrossRef]
- Desiraju, G.R. Hydration in Organic Crystals: Prediction from Molecular Structure. J. Chem. Soc. Chem. Commun. 1991, 426–428. [Google Scholar] [CrossRef]
- Infantes, L.; Fábián, L.; Sam Motherwell, W.D. Organic Crystal Hydrates: What Are the Important Factors for Formation. CrystEngComm 2007, 9, 65–71. [Google Scholar] [CrossRef]
- Gillon, A.L.; Feeder, N.; Davey, R.J.; Storey, R. Hydration in Molecular CrystalsA Cambridge Structural Database Analysis. Cryst. Growth Des. 2003, 3, 663–673. [Google Scholar] [CrossRef]
- Griesser, U.J. The Importance of Solvates. In Polymorphism: In the Pharmaceutical Industry; Wiley-VCH: Weinheim, Germany, 2006; pp. 211–233. ISBN 3-527-31146-7. [Google Scholar]
- Dhaval, M.; Dudhat, K.; Gadoya, A.; Shah, S.; Pethani, T.; Jambukiya, N.; Patel, A.; Kalsariya, C.; Ansari, J.; Borkhataria, C. Pharmaceutical Salts: Comprehensive Insights from Fundamental Chemistry to FDA Approvals (2019–2023). AAPS PharmSciTech 2025, 26, 36. [Google Scholar] [CrossRef]
- Tao, Y.; Gao, Y.; Zhang, B.; Hu, K.; Xie, Y.; Zhang, L.; Yang, S.; Lu, Y. Advances in Quantitative Analytical Methods for Solid Drugs. Crystals 2025, 15, 38. [Google Scholar] [CrossRef]
- Surov, A.O.; Drozd, K.V.; Ramazanova, A.G.; Churakov, A.V.; Vologzhanina, A.V.; Kulikova, E.S.; Perlovich, G.L. Polymorphism of Carbamazepine Pharmaceutical Cocrystal: Structural Analysis and Solubility Performance. Pharmaceutics 2023, 15, 1747. [Google Scholar] [CrossRef]
- Li, W.; Zhou, L.; Tian, B.; Chen, K.; Feng, Y.; Wang, T.; Wang, N.; Huang, X.; Hao, H. Polymorphism of Pradofloxacin: Crystal Structure Analysis, Stability Study, and Phase Transformation Behavior. Pharm. Res. 2023, 40, 999–1012. [Google Scholar] [CrossRef]
- D’Abbrunzo, I.; Voinovich, D.; Perissutti, B. Mechanochemical Synthesis of Praziquantel Hemihydrate in the Presence of Five Solvents with Different Water Miscibility. Crystals 2024, 14, 374. [Google Scholar] [CrossRef]
- Bernstein, J. Polymorphism in Molecular Crystals; Oxford University Press: Oxford, England, 2020; ISBN 978-0-19-965544-1. [Google Scholar]
- Bučar, D.-K.; Lancaster, R.W.; Bernstein, J. Disappearing Polymorphs Revisited. Angew. Chem. Int. Ed. 2015, 54, 6972–6993. [Google Scholar] [CrossRef] [PubMed]
- Garg, U.; Azim, Y. Challenges and Opportunities of Pharmaceutical Cocrystals: A Focused Review on Non-Steroidal Anti-Inflammatory Drugs. RSC Med. Chem. 2021, 12, 705–721. [Google Scholar] [CrossRef] [PubMed]
- Batisai, E. Multicomponent Crystals of Anti-Tuberculosis Drugs: A Mini-Review. RSC Adv. 2020, 10, 37134–37141. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Liu, R.; Wang, L.; Chen, C.; Zhao, Y.; Guo, W.; Zhang, Z. Ciprofloxacin Salts of Benzene Mono/Di-Carboxylate: Crystal Structures and the Improvement of Solubility. CrystEngComm 2024, 26, 2662–2672. [Google Scholar] [CrossRef]
- Costa, W.S.; de Oliveira, Y.S.; Ayala, A.P. Polymorphism in Cocrystals of Metronidazole Benzoate. CrystEngComm 2023, 25, 4716–4728. [Google Scholar] [CrossRef]
- Prashanth, J.; Surov, A.O.; Drozd, K.V.; Perlovich, G.L.; Balasubramanian, S. Polymorphs, Cocrystal and Hydrate of Nilutamide. CrystEngComm 2023, 25, 3501–3513. [Google Scholar] [CrossRef]
- Baranowska, J.; Szeleszczuk, Ł. Exploring Various Crystal and Molecular Structures of Gabapentin—A Review. Crystals 2024, 14, 257. [Google Scholar] [CrossRef]
- Muratani, T.; Inoue, M.; Mitsuhashi, S. In Vitro Activity of T-3761, a New Fluoroquinolone. Antimicrob. Agents Chemother. 1992, 36, 2293–2303. [Google Scholar] [CrossRef]
- Bryskier, A. Fluoroquinolones. In Antimicrobial Agents: Antibacterials and Antifungals; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2005; pp. 668–788. ISBN 978-1-119-73921-0. [Google Scholar]
- Ravindra, N.V.; Panpalia, G.M.; Jagarlapudi, A.R.P.S. Norfloxacin Sesquihydrate. Acta Crystallogr. Sect. E Struct. Rep. Online 2009, 65, o303. [Google Scholar] [CrossRef]
- Turel, I.; Bukovec, P.; Quirós, M. Crystal Structure of Ciprofloxacin Hexahydrate and Its Characterization. Int. J. Pharm. 1997, 152, 59–65. [Google Scholar] [CrossRef]
- Sun, H.-Y.; She, N.-F. Synthesis and Crystal Structure of 7-((7S)-7-Aminospiro [2.4]Heptan-5-Yl)-8-Chloro-6-Fluoro-1-((1R,2S)-Cis-2-Fluorocyclopropyl)-4-Oxo-1,4-Dihydroqun-Oline-3-Carboxylic Acid Fumaric Acid Monohydrate. Jiegou Huaxue 2016, 35, 1054. [Google Scholar] [CrossRef]
- Chernyshov, I.Y.; Vener, M.V.; Prikhodchenko, P.V.; Medvedev, A.G.; Lev, O.; Churakov, A.V. Peroxosolvates: Formation Criteria, H2O2 Hydrogen Bonding, and Isomorphism with the Corresponding Hydrates. Cryst. Growth Des. 2017, 17, 214–220. [Google Scholar] [CrossRef]
- Kiseleva, M.A.; Prikhodchenko, P.V.; Churakov, A.V. Novel Peroxosolvates of Quinolone Antibiotics Containing Large Hydrogen Peroxide Clusters. Mend. Commun. 2024, 34, 25–27. [Google Scholar] [CrossRef]
- Lazarenko, V.A.; Dorovatovskii, P.V.; Zubavichus, Y.V.; Burlov, A.S.; Koshchienko, Y.V.; Vlasenko, V.G.; Khrustalev, V.N. High-Throughput Small-Molecule Crystallography at the ‘Belok’ Beamline of the Kurchatov Synchrotron Radiation Source: Transition Metal Complexes with Azomethine Ligands as a Case Study. Crystals 2017, 7, 325. [Google Scholar] [CrossRef]
- Svetogorov, R.D.; Dorovatovskii, P.V.; Lazarenko, V.A. Belok/XSA Diffraction Beamline for Studying Crystalline Samples at Kurchatov Synchrotron Radiation Source. Cryst. Res. Technol. 2020, 55, 1900184. [Google Scholar] [CrossRef]
- Kabsch, W. XDS. Acta Crystallogr. Sect. D Biol. Crystallogr. 2010, 66, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. SHELXT—Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Blatov, V.A.; Shevchenko, A.P.; Proserpio, D.M. Applied Topological Analysis of Crystal Structures with the Program Package ToposPro. Cryst. Growth Des. 2014, 14, 3576–3586. [Google Scholar] [CrossRef]
- Flack, H.D.; Bernardinelli, G.; Clemente, D.A.; Linden, A.; Spek, A.L. Centrosymmetric and Pseudo-Centrosymmetric Structures Refined as Non-Centrosymmetric. Acta Crystallogr. Sect. B Struct. Sci. 2006, 62, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Macrae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler, M.; et al. Mercury 4.0: From Visualization to Analysis, Design and Prediction. J. Appl. Cryst. 2020, 53, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Blatov, V.A.; O’KEeffe, M.; Proserpio, D.M. Vertex-, Face-, Point-, Schläfli-, and Delaney-Symbols in Nets, Polyhedra and Tilings: Recommended Terminology. CrystEngComm 2010, 12, 44–48. [Google Scholar] [CrossRef]
- Dunitz, J.D.; Gavezzotti, A.; Rizzato, S. “Coulombic Compression”, a Pervasive Force in Ionic Solids. A Study of Anion Stacking in Croconate Salts. Cryst. Growth Des. 2014, 14, 357–366. [Google Scholar] [CrossRef]
- Chernyshev, V.V. Structural Characterization of Pharmaceutical Cocrystals with the Use of Laboratory X-Ray Powder Diffraction Patterns. Crystals 2023, 13, 640. [Google Scholar] [CrossRef]
- Coelho, A.A. TOPAS and TOPAS-Academic: An Optimization Program Integrating Computer Algebra and Crystallographic Objects Written in C++. J. Appl. Cryst. 2018, 51, 210–218. [Google Scholar] [CrossRef]
- Goloveshkin, A.S.; Korlyukov, A.A.; Vologzhanina, A.V. Novel Polymorph of Favipiravir—An Antiviral Medication. Pharmaceutics 2021, 13, 139. [Google Scholar] [CrossRef]
- Buikin, P.; Korlyukov, A.; Kulikova, E.; Novikov, R.; Vologzhanina, A. Crystal Structure of Rilpivirine Hydrochloride, N6H19C22Cl. Powder Diffr. 2024, 39, 151–158. [Google Scholar] [CrossRef]
- Buikin, P.; Korlyukov, A.; Ushakov, I.; Goloveshkin, A.; Kulikova, E.; Vologzhanina, A. Crystal Structure of Palbociclib Form A, C24H29N7O2. Powder Diffr. 2024, 39, 270–274. [Google Scholar] [CrossRef]
- Buikin, P.; Vologzhanina, A.V.; Svetogorov, R.D.; Bakuleva, N.; Novikov, R.A.; Aysin, R.R.; Bukalov, S.S.; Korlyukov, A.A. Polymorphs of the Antiviral Drug 6-[2-(1H-Imidazol-4-Yl)Ethylamino]-5-Oxopentanoic Acid (C10H15N3O3, IPA): Crystal Structures, DFT Studies, NMR, and Vibrational Spectra. Cryst. Growth Des. 2024, 24, 8589–8597. [Google Scholar] [CrossRef]
- Goloveshkin, A.S.; Kulikova, E.S.; Novikov, R.A.; Vologzhanina, A.V.; Korlyukov, A.A. Crystal Structure of Nilotinib Hydrochloride Monohydrate According to Powder X-Ray Diffraction Data. J. Struct. Chem. 2024, 65, 585–595. [Google Scholar] [CrossRef]
PzfMes | PzfMes | PzfMes·2H2O | PzfMes·1.667 (H2O) | PzfMes·2H2O2 | |
---|---|---|---|---|---|
1a | 1a | 2 | 3 | 4 | |
Formula | C17H19FN2- O7S | C17H19FN2- O7S | C17H23FN2- O9S | C17H22.33FN2- O8.67S | C17H23FN2- O11S |
Formula weight | 414.40 | 414.40 | 450.43 | 444.43 | 482.43 |
T, K | 120 | 293 | 100 | 100 | 120 |
Crystal system | Monoclinic | Monoclinic | Monoclinic | Orthorhombic | Monoclinic |
Space group | P21 | P21 | C2 | P212121 | P21 |
Z | 4 | 4 | 8 | 12 | 4 |
a/Å | 13.7304(3) | 13.797(4) | 36.539(7) | 16.306(3) | 7.6389(7) |
b/Å | 7.57230(10) | 7.618(2) | 6.7570(14) | 17.798(4) | 15.4500(14) |
c/Å | 17.2104(3) | 17.209(5) | 17.611(4) | 19.960(4) | 17.3135(14) |
β/° | 92.2110(10) | 92.322(13) | 114.56(3) | 90 | 98.458(2) |
V/Å3 | 1788.05(6) | 1807.3(9) | 3954.8(16) | 5793(2) | 2021.1(3) |
Dcalc/g cm−3 | 1.539 | 1.523 | 1.513 | 1.529 | 1.585 |
μ/cm−1 | 2.37 | 2.34 | 2.63 | 2.66 | 2.36 |
F(000) | 864 | 864 | 1888 | 2792 | 1008 |
2Ѳmax/° | 50 | 50 | 53 | 53 | 61 |
No measured rfls. | 20,860 | 19,303 | 18,893 | 60,553 | 21,830 |
No indep. rfls. | 11,336 [Rint = 0.019] | 10,397 [Rint = 0.024] | 10,106 [0.044] | 15,304 [Rint = 0.069] | 11,826 [Rint = 0.027] |
No refls. with I ≥ 2σ(I) | 10,175 | 8341 | 8354 | 13,087 | 9365 |
No parameters | 513 | 513 | 562 | 812 | 635 |
R1 [I ≥ 2σ(I)] | 0.0308 | 0.0354 | 0.0433 | 0.0424 | 0.0391 |
wR2 [all data] | 0.0820 | 0.0918 | 0.1155 | 0.1063 | 0.0871 |
GOF | 1.059 | 1.021 | 1.031 | 1.024 | 0.996 |
Residual density/e × Å−3 (dmin/dmax) | 0.414/−0.411 | 0.279/−0.423 | 0.388/−0.340 | 0.444/−0.417 | 0.300/−0.397 |
Flack | −0.01(2) | −0.01(3) | 0.08(5) | 0.01(3) | 0.00(3) |
CCDC | 2,454,777 | 2,454,778 | 2,454,779 | 2,454,780 | 2,454,781 |
Parameter | 1a (at 120 K) | 2 | 3 | 4 |
---|---|---|---|---|
C3=O3 | 1.261(2)–1.266(2) | 1.263(4)–1.269(4) | 1.258(4)–1.270(4) | 1.267(3)–1.270(3) |
C12=O1 | 1.212(2)–1.219(2) | 1.219(4)–1.232(4) | 1.209(4)–1.217(4) | 1.220(3)–1.225(3) |
C12–O2 | 1.323(2)–1.332(2) | 1.324(4)–1.326(4) | 1.325(4)–1.338(4) | 1.323(3)–1.326(3) |
O4–C8 | 1.356(2)–1.357(2) | 1.349(3)–1.357(4) | 1.351(3)–1.361(3) | 1.349(3)–1.354(3) |
O4–C11 | 1.448(2)–1.453(2) | 1.436(3)–1.440(4) | 1.441(3)–1.444(4) | 1.447(3)–1.450(3) |
C1=C2 | 1.382(2)–1.383(2) | 1.384(4)–1.388(4) | 1.376(4)–1.377(3) | 1.379(3)–1.381(3) |
N1–C1 | 1.334(2)–1.339(2) | 1.326(4)–1.328(4) | 1.331(4)–1.335(4) | 1.330(3)–1.333(3) |
N1–C9 | 1.391(2)–1.392(2) | 1.384(4)–1.387(4) | 1.384(4)–1.393(4) | 1.390(3)–1.393(3) |
N1–C10 | 1.487(2)–1.493(2) | 1.488(4)–1.496(4) | 1.486(4)–1.489(4) | 1.483(3)–1.485(3) |
C7–C14 | 1.494(2)–1.496(2) | 1.490(4)–1.501(4) | 1.491(4)–1.495(4) | 1.497(4)–1.502(3) |
C14–N2(H3) | 1.481(2)–1.488(2) | 1.480(5)–1.481(5) | 1.482(4)–1.487(4) | 1.475(4)–1.482(4) |
S1–O | 1.446(1)–1.468(1) | 1.446(3)–1.456(3) | 1.444(3)–1.466(2) | 1.459(2)–1.467(2) |
N2–C14–C7 | 112.6(1)–112.7(1) | 111.8(3)–112.1(3) | 112.4(3)–114.7(3) | 113.7(2)–114.6(2) |
C14–C15–C16 | 59.6(1)–60.5(1) | 59.8(2)–60.0(2) | 59.2(2)–60.2(2) | 59.7(2)–59.9(2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tselukovskaya, E.D.; Buikin, P.A.; Goloveshkin, A.S.; Dorovatovskii, P.V.; Vologzhanina, A.V. Crystallographic Characterization of Different Forms of the Salt of Pazufloxacin Mesylate. Crystals 2025, 15, 812. https://doi.org/10.3390/cryst15090812
Tselukovskaya ED, Buikin PA, Goloveshkin AS, Dorovatovskii PV, Vologzhanina AV. Crystallographic Characterization of Different Forms of the Salt of Pazufloxacin Mesylate. Crystals. 2025; 15(9):812. https://doi.org/10.3390/cryst15090812
Chicago/Turabian StyleTselukovskaya, Ekaterina D., Petr A. Buikin, Alexander S. Goloveshkin, Pavel V. Dorovatovskii, and Anna V. Vologzhanina. 2025. "Crystallographic Characterization of Different Forms of the Salt of Pazufloxacin Mesylate" Crystals 15, no. 9: 812. https://doi.org/10.3390/cryst15090812
APA StyleTselukovskaya, E. D., Buikin, P. A., Goloveshkin, A. S., Dorovatovskii, P. V., & Vologzhanina, A. V. (2025). Crystallographic Characterization of Different Forms of the Salt of Pazufloxacin Mesylate. Crystals, 15(9), 812. https://doi.org/10.3390/cryst15090812