Functionalized Polyphenols: Understanding Polymorphism of 2-Chloro-3′,4′-Diacetoxy-Acetophenone
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bernstein, J. Polymorphism in Molecular Crystals, 2nd ed.; Oxford University Press: Oxford, UK; New York, NY, USA, 2020; ISBN 978-0-19-965544-1. [Google Scholar]
- Byrn, S.R.; Zografi, G.; Chen, X. Solid State Properties of Pharmaceutical Materials; John Wiley & Sons: Hoboken, NJ, USA, 2017; ISBN 978-1-118-14530-2. [Google Scholar]
- Chaudhary, S.; Losus, R.M.; Dobrzańska, L. Polymorphism and the Phenomenon of Whole-Molecule Disorder Revealed in a Novel Dipodal Thiopyridine Ligand. Crystals 2025, 15, 289. [Google Scholar] [CrossRef]
- Nogueira, B.A.; Castiglioni, C.; Fausto, R. Color polymorphism in organic crystals. Commun. Chem. 2020, 3, 34. [Google Scholar] [CrossRef]
- Sengupta, B.; Beasley, M.; Mason, B. Conformational Polymorphism in Organic Crystals: Structural and Functional Aspects—A Review. Curr. Res. Mater. Chem. 2019, 1, 104. [Google Scholar]
- Cruz-Cabeza, A.J.; Bernstein, J. Conformational Polymorphism. Chem. Rev. 2014, 114, 2170–2191. [Google Scholar] [CrossRef]
- Zhou, D.; Bier, I.; Santra, B.; Jacobson, L.D.; Wu, C.; Garaizar Suarez, A.; Ramirez Almaguer, B.; Yu, H.; Abel, R.; Friesner, R.A.; et al. A robust crystal structure prediction method to support small molecule drug development with large scale validation and blind study. Nat. Commun. 2025, 16, 2210. [Google Scholar] [CrossRef] [PubMed]
- Gavale, R.; Khana, F.; Misra, R. Polymorphism in mechanochromic luminogens: Recent advances and perspectives. J. Mater. Chem. C 2025, 13, 1063–1129. [Google Scholar] [CrossRef]
- Nagaraju, V.; Jange, C.; Wassgren, C.; Ambrose, K. Understanding urea polymorphism and cocrystallization to develop enhanced fertilizers: A review. J. Environ. Chem. Eng. 2024, 12, 114308. [Google Scholar] [CrossRef]
- Artusio, F.; Contreras-Montoya, R.; Gavira, J.A. Advances in Pharmaceutical Crystals: Control over Nucleation and Polymorphism. Crystals 2024, 14, 805. [Google Scholar] [CrossRef]
- Barman, D.; Annadhasan, M.; Bidkar, A.P.; Rajamalli, P.; Barman, D.; Ghosh, S.S.; Chandrasekar, R.; Krishnan Iyer, P. Highly efficient color-tunable organic co-crystals unveiling polymorphism, isomerism, delayed fluorescence for optical waveguides and cell-imaging. Nat. Commun. 2023, 14, 6648. [Google Scholar] [CrossRef]
- Kim, Y.; Allain, C.; Guillot, R.; Audebert, P. s-Tetrazine derivative exhibiting unprecedented polymorphism-dependent emission properties. J. Photochem. Photobiol. A Chem. 2023, 439, 114629. [Google Scholar] [CrossRef]
- Huang, W.; Tang, Y.; Imler, G.H.; Parrish, D.A.; Shreeve, J.M. Nitrogen-Rich Tetrazolo[1,5-b]pyridazine: Promising Building Block for Advanced Energetic Materials. J. Am. Chem. Soc. 2020, 142, 3652–3657. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.H. A Practical Guide to Pharmaceutical Polymorph Screening & Selection. Asian J. Pharm. Sci. 2014, 9, 163–175. [Google Scholar] [CrossRef]
- Haslam, E. Practical Polyphenols: From Structure to Molecular Recognition and Physiological Action; Cambridge University Press: Cambridge, UK, 1998; ISBN 0521465133. [Google Scholar]
- Dolzhko, D.; Melnyk, N.; Kruk, A.; Granica, S.; Piwowarski, J. Traditional use of polar extracts from lavender flowers—systematic review of literature data. Prospect. Pharm. Sci. 2024, 22, 92–101. [Google Scholar] [CrossRef]
- Czerwińska, M.; Kuśnierek, M. Lycium barbarum fruits—Phytochemistry and activity of goji berries—From tradition to clinical studies. Prospect. Pharm. Sci. 2024, 22, 35–57. [Google Scholar] [CrossRef]
- Colomer, R.; Sarrats, A.; Lupu, R.; Puig, T. Natural Polyphenols and their Synthetic Analogs as Emerging Anticancer Agents. Curr. Drug Targets 2017, 18, 147–159. [Google Scholar] [CrossRef]
- Pereira, D.M.; Valentao, P.; Pereira, J.A.; Andrade, P.B. Phenolics: From Chemistry to Biology. Molecules 2009, 14, 2202–2211. [Google Scholar] [CrossRef]
- Mandal, M.K.; Gan, W.; Domb, A.J. Phenolate-based bioactive compounds: Design, delivery and biomedical applications. Coord. Chem. Rev. 2025, 544, 216941. [Google Scholar] [CrossRef]
- Vicente-Zurdo, D.; Gómez-Mejía, E.; Morante-Zarcero, S.; Rosales-Conrado, N.; Sierra, I. Analytical Strategies for Green Extraction, Characterization, and Bioactive Evaluation of Polyphenols, Tocopherols, Carotenoids, and Fatty Acids in Agri-Food Bio-Residues. Molecules 2025, 30, 1326. [Google Scholar] [CrossRef]
- Kataki, C. Unveiling the Anti-Inflammatory and Immunomodulatory Effects of Secondary Metabolites. In Secondary Metabolites and Their Applications in Various Diseases; Athanasios, A., Saurabh, K.J., Roma, P., Eds.; IGI Global Scientific Publishing: London, UK, 2025; pp. 193–222. ISBN 9798369391129. [Google Scholar]
- Mandal, M.K.; Domb, A.J. Antimicrobial Activities of Natural Bioactive Polyphenols. Pharmaceutics 2024, 16, 718. [Google Scholar] [CrossRef] [PubMed]
- Bié, J.; Sepodes, B.; Fernandes, P.C.; Ribeiro, M.H. Polyphenols in health and disease: Gut microbiota, bioaccessibility, and bioavailability. Compounds 2023, 3, 40–72. [Google Scholar] [CrossRef]
- Rathod, N.B.; Elabed, N.; Punia, S.; Ozogul, F.; Kim, S.-K.; Rocha, J.M. Recent developments in polyphenol applications on human health: A review with current knowledge. Plants 2023, 12, 1217. [Google Scholar] [CrossRef] [PubMed]
- Rana, A.; Samtiya, M.; Dhewa, T.; Mishra, V.; Aluko, R.E. Health benefits of polyphenols: A concise review. J. Food Biochem. 2022, 46, e14264. [Google Scholar] [CrossRef]
- Sajadimajd, S.; Bahramsoltani, R.; Iranpanah, A.; Patra, J.K.; Das, G.; Gouda, S.; Rahimi, R.; Rezaeiamiri, E.; Cao, H.; Giampieri, F.; et al. Advances on Natural Polyphenols as Anticancer Agents for Skin Cancer. Pharmacol. Res. 2020, 151, 104584. [Google Scholar] [CrossRef]
- Bouarab-Chibane, L.; Forquet, V.; Lantéri, P.; Clément, Y.; Léonard-Akkari, L.; Oulahal, N.; Degraeve, P.; Bordes, C. Antibacterial Properties of Polyphenols: Characterization and QSAR (Quantitative Structure–Activity Relationship) Models. Front. Microbiol. 2019, 10, 829. [Google Scholar] [CrossRef]
- Estrela, J.M.; Mena, S.; Obrador, E.; Benlloch, M.; Castellano, G.; Salvador†, R.; Dellinger, R.W. Polyphenolic Phytochemicals in Cancer Prevention and Therapy: Bioavailability versus Bioefficacy. Med. Chem. 2017, 60, 9413–9436. [Google Scholar] [CrossRef]
- Coşkun, N.; Sarıtaş, S.; Bechelany, M.; Karav, S. Polyphenols in Foods and Their Use in the Food Industry: Enhancing the Quality and Nutritional Value of Functional Foods. Int. J. Mol. Sci. 2025, 26, 5803. [Google Scholar] [CrossRef] [PubMed]
- Sardaru, M.C.; Al Matarneh, C.M.; Simionescu, N.; Mangalagiu, I.I.; Pinteala, M.; Danac, R. New Monoquarternary Salts of N-Heterocycles: Synthesis and Antitumor Assessment. Rev. Roum. Chim. 2024, 69, 63–74. [Google Scholar] [CrossRef]
- Lungu, C.N.; Bratanovici, B.I.; Grigore, M.M.; Antoci, V.; Mangalagiu, I.I. Hybrid imidazole-pyridine derivatives: Computational approach to novel anticancer DNA intercalators. Curr. Med. Chem. 2020, 27, 154–169. [Google Scholar] [CrossRef]
- Balan, A.M.; Miron, A.; Tuchilus, C.; Rotinberg, P.; Mihai, C.T.; Mangalagiu, I.I.; Zbancioc, G. Syntheses, Antimicrobial and Antitumoral Activity of Some Novel Dihydroxyacetophenone Derivatives. Med. Chem. 2014, 10, 476–483. [Google Scholar]
- Luca, M.C.; Tura, V.; Mangalagiu, I.I. Considerations concerning design and mechanism of action of a new class of dual DNA intercalators. Med. Hyp. 2010, 75, 627–629. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.; Mangalagiu, I.I. Concominant polymorphism and conformational isomerism in 4-acetylresorcinol. Acta Cryst. C 2009, C65, o300–o302. [Google Scholar] [CrossRef]
- Rigaku Oxford Diffraction. CrysAlis Pro Software System; Rigaku Corporation: Oxford, UK, 2015. [Google Scholar]
- Sheldrick, G.M. SHELXT—Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. Sect. A Found. Crystallogr. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. Sect. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Mingoia, M.; Conte, C.; Di Rienzo, A.; Dimmito, M.P.; Marinucci, L.; Magi, G.; Turkez, H.; Cufaro, M.C.; Del Boccio, P.; Di Stefano, A.; et al. Synthesis and Biological Evaluation of Novel Cinnamic Acid-Based Antimicrobials. Pharmaceuticals 2022, 15, 228. [Google Scholar] [CrossRef] [PubMed]
Compound 3 (1149) | Polymorph I (6731) | Polymorph II (6732) | |
---|---|---|---|
Emp. formula | C10H9ClO4 | C12H11ClO5 | C12H11ClO5 |
Fw | 228.62 | 270.66 | 270.66 |
T [K] | 293 | 293 | 293 |
Space group | P21/c | P21/c | P212121 |
a [Å] | 4.77080(10) | 12.5751(11) | 6.6155(3) |
b [Å] | 20.7983(4) | 13.4660(10) | 12.0609(5) |
c [Å] | 10.6313(2) | 7.5855(7) | 16.0245(7) |
α [°] | 90 | 90 | 90 |
β [°] | 98.077(2) | 97.174(9) | 90 |
γ [°] | 90 | 90 | 90 |
V [Å3] | 1044.42(4) | 1274.45(19) | 1278.58(9) |
Z | 4 | 4 | 4 |
ρcalcd [g cm−3] | 1.454 | 1.411 | 1.406 |
μ [mm−1] | 3.202 | 0.309 | 0.308 |
Crystal size [mm] | 0.15 × 0.10 × 0.05 | 0.35 × 0.05 × 0.05 | 0.30 × 0.30 × 0.02 |
2Θ range | 8.502 to 133.168 | 3.264 to 50.042 | 4.226 to 50.022 |
Refls. collected | 6150 | 7170 | 7594 |
Indep. Refls., Rint | 1852, 0.0266 | 2237, 0.0388 | 2261, 0.0323 |
Data/rests./params. | 1852/0/138 | 2237/0/165 | 2261/0/165 |
GOF | 1.066 | 1.014 | 1.078 |
R1, wR2 (all data) | 0.0416, 0.1189 | 0.0744, 0.1822 | 0.0503, 0.0903 |
Flack parameter | - | - | 0.01(4) |
CCDC no. | 2482798 | 2481078 | 2481079 |
H/C | H3′ (from CH3) | H4′ (from CH3) | H2 (from CH2) | H (from OH) | - | - |
---|---|---|---|---|---|---|
C3′ (from CH3) | C4′ (from CH3) | C2 (from CH2) | - | C, of C=O from 3′ | C, of C=O from 4′ | |
2 | 2.31 | 2.32 | 4.66 | - | - | - |
20.79 | 20.68 | 45.82 | - | 167.67 | 168.06 | |
3 | - | 2.40 | 4.63 | 6.07 | - | - |
- | 21.09 | 45.68 | - | - | 169.05 |
Polymorph I | |||||
D-H···A | dD-H/Å | dH-A/Å | dD-A/Å | ∠DHA/° | Symmetry code |
C1-H···O5 | 0.97 | 2.49 | 3.461(6) | 175.1 | x, 1.5 − y, 0.5 + z |
C1-H···O1 | 0.97 | 2.57 | 3.332(6) | 135.7 | x, 1.5 − y, −0.5 + z |
C8-H···Cl1 | 0.93 | 2.94 | 3.648(4) | 134.0 | 1 − x, −0.5 + y, 1.5 − z |
Polymorph II | |||||
C1-H···Cl1 | 0.97 | 2.93 | 3.533(4) | 121.1 | −0.5 + x, 1.5 − y, 1 − z |
C1-H···O5 | 0.97 | 2.54 | 3.401(5) | 148.3 | 1 − x, 0.5 + y, 0.5 − z |
C1-H···O4 | 0.97 | 2.63 | 3.512(5) | 150.6 | 1 + x, y, z |
C4-H···O3 | 0.93 | 2.59 | 3.289(5) | 132.3 | 1 + x, y, z |
C5-H···O1 | 0.93 | 2.57 | 3.423(5) | 151.9 | 1 − x,0.5 + y, 0.5 − z |
C10-H···O2 | 0.96 | 2.59 | 3.379(5) | 140.0 | −0.5 + x, 1.5 − y, −z |
C12-H···Cl1 | 0.96 | 2.95 | 3.700(5) | 135.9 | 0.5 − x, 1 − y, −0.5 + z |
Compound 3 | |||||
C1-H···Cl1 | 0.97 | 2.83 | 3.769(2) | 163.8 | 1 + x, y, z |
O3-H···O4 | 0.82 | 1.97 | 2.785(2) | 175.8 | 1 + x, 1.5 − y, z − 0.5 |
C1-H···O2 | 0.97 | 2.39 | 3.362(3) | 176.0 | x − 1, 1.5 − y, z − 0.5 |
C5-H···O4 | 0.93 | 2.60 | 3.289(2) | 131.4 | 1 + x, 1.5 − y, z − 0.5 |
C8-H···O2 | 0.93 | 2.65 | 3.464(3) | 146.7 | x − 1, y, z |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tucaliuc, R.A.; Shova, S.; Mangalagiu, V.; Mangalagiu, I.I. Functionalized Polyphenols: Understanding Polymorphism of 2-Chloro-3′,4′-Diacetoxy-Acetophenone. Crystals 2025, 15, 780. https://doi.org/10.3390/cryst15090780
Tucaliuc RA, Shova S, Mangalagiu V, Mangalagiu II. Functionalized Polyphenols: Understanding Polymorphism of 2-Chloro-3′,4′-Diacetoxy-Acetophenone. Crystals. 2025; 15(9):780. https://doi.org/10.3390/cryst15090780
Chicago/Turabian StyleTucaliuc, Roxana Angela, Sergiu Shova, Violeta Mangalagiu, and Ionel I. Mangalagiu. 2025. "Functionalized Polyphenols: Understanding Polymorphism of 2-Chloro-3′,4′-Diacetoxy-Acetophenone" Crystals 15, no. 9: 780. https://doi.org/10.3390/cryst15090780
APA StyleTucaliuc, R. A., Shova, S., Mangalagiu, V., & Mangalagiu, I. I. (2025). Functionalized Polyphenols: Understanding Polymorphism of 2-Chloro-3′,4′-Diacetoxy-Acetophenone. Crystals, 15(9), 780. https://doi.org/10.3390/cryst15090780