Effect of Magnetic Stirring on the Microstructure of Eutectic Al-Si Alloys
Abstract
1. Introduction
2. Experiments
2.1. Solidification Experiment
2.2. Temperature Gradient and Eutectic Front Velocity
2.3. Measuring Methods
2.3.1. Sample Preparation for Examination
2.3.2. Eutectic Fraction
2.3.3. Eutectic Lamella Length Distribution (ELLD)
2.3.4. Average Lamella Distance (ALD)
- P0: the average perimeter of the Si lamellae in the examined image [μm];
- N: number of eutectic lamellae;
- Ap: area of the microscopic image (μm2);
- Af: area fraction of the eutectic lamellae in the eutectic structure.
2.3.5. Eutectic Lamella Orientation (ELO)
3. Results and Discussion
3.1. Meso-Structure: Aluminium Solid Solution and Eutectic Fraction
3.2. Eutectic Ratio
3.3. Eutectic Lamella Length Distribution Analysis
3.4. Average Lamella Distance
3.5. Eutectic Lamella Orientation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zimmermann, G.; Weiss, A.; Mbaya, Z. Effect of forced melt flow on microstructure evolution in AlSi7Mg0.6 alloy during directional solidification. Mater. Sci. Eng. 2005, 413, 236–242. [Google Scholar] [CrossRef]
- Zimmermann, G.; Weiss, A. Directional solidification of dendritic microstructures in microgravity and with forced melt flow. Micro. Sci. Tech. 2005, 16, 143–149. [Google Scholar] [CrossRef]
- Sriramamurthy, A.M.; Arunachalam, V.S. Eutectic growth in space. Bull. Mater. Sci. 1982, 4, 247–259. [Google Scholar] [CrossRef]
- Croker, M.N.; Fidler, R.S.; Smith, R.W. The Characterization of Eutectic Structures. R. Soc. Pub. 1973, 335, 15–37. [Google Scholar] [CrossRef]
- Brady, F.L. The Structure of Eutectics. J. Inst. Met. 1922, 28, 369–413. [Google Scholar]
- Portevin, A.M. The Structure of Eutectics. J. Inst. Met. 1923, 29, 239–273. [Google Scholar]
- Scheil, E. Über die eutektische Kristallisation. Int. J. Mater. Res. 1946, 37, 1–11. [Google Scholar] [CrossRef]
- Podolinsky, V.V.; Taran, Y.N.; Drykin, V.G. Classification of binary eutectics. J. Cryst. Growth 1989, 96, 445–449. [Google Scholar] [CrossRef]
- Jackson, K.A.; Hunt, J.D. Lamellar and Rod Eutectic Growth. Trans. Metall. Soc. 1966, 236, 1129–1142. [Google Scholar] [CrossRef]
- Walker, H.; Shan, L.; Lee, J.H.; Trivedi, R. Eutectic Growth in Three Dimensions. Metall. Mater. Trans. A 2007, 38, 1417–1425. [Google Scholar] [CrossRef]
- Fisher, D.; Kurz, W. A theory of branching limited growth of irregular eutectics. Acta Metall. 1980, 28, 777–794. [Google Scholar] [CrossRef]
- Magnin, P.; Mason, J.T.; Trivedi, R. Growth of irregular eutectics and the Al-Si system. Acta Metall. Mater. 1991, 39, 469–480. [Google Scholar] [CrossRef]
- Steen, H.A.H.; Hellawell, A. The growth of eutectic silicon—Contributions to undercooling. Acta Metall. 1975, 23, 529–535. [Google Scholar] [CrossRef]
- Clapham, L.; Smith, R.W. Partial modification in unidirectionally solidified Al-Si eutectic alloys. Acta Metall. 1989, 37, 303–311. [Google Scholar] [CrossRef]
- Stefanescu, D.M. Science and Engineering of Casting Solidification, 2nd ed.; Springer: New York, NY, USA, 2008; pp. 529–535. [Google Scholar] [CrossRef]
- Hernández, F.R.; Sokolowski, J. Comparison among chemical and electromagnetic stirring and vibration melt treatments for Al–Si hypereutectic alloys. J. Alloys Compd. 2006, 426, 205–212. [Google Scholar] [CrossRef]
- Li, X.; Fautrelle, Y.; Gagnoud, A.; Ren, Z.; Moreau, R. EBSD study of the influence of a high magnetic field on the microstructure and orientation of the Al–Si eutectic during directional solidification. Metall. Mater. Trans. 2016, 47, 2952–2963. [Google Scholar] [CrossRef]
- Abdallah, A.; Roósz, A.; Rónaföldi, A.; Veres, Z. Effect of Solid/Liquid and Eutectic Front Velocities on Microstructure Evolution in Al-20%Cu Alloys. Crystals 2024, 14, 638. [Google Scholar] [CrossRef]
- Zuo, X.; Zhao, C.; Zhang, L.; Wang, E. Influence of Growth Rate and Magnetic Field on Microstructure and Properties of Directionally Solidified Ag-Cu Eutectic Alloy. Materials 2016, 9, 569. [Google Scholar] [CrossRef]
- Koçak, Y.; Engin, S.; Böyük, U.; Marasli, N. The influence of the growth rate on the eutectic spacings, undercoolings and microhardness of directional solidified bismuth–lead eutectic alloy. Curr. Appl. Phys. 2013, 13, 587–593. [Google Scholar] [CrossRef]
- Hu, Z.; Huo, Q.; Chen, Y.; Liu, M.; Chen, X. Improving Mechanical Property of Hyper-Eutectic Al-Si Alloys via Regulating the Microstructure by Rheo-Die-Casting. Metals 2023, 13, 968. [Google Scholar] [CrossRef]
- Zemlyanov, A.V.; Utyaganova, V.R.; Dymnich, E.; Shamari, N.N.; Nikonov, S.Y.; Romanova, V.A.; Kulkov, A.S.; Balokhonov, R.R. A Study of Deformation and Fracture of the Eutectic in an Additively Manufactured Al-Si Composite Alloy. Phys. Mesomech. 2023, 26, 678–690. [Google Scholar] [CrossRef]
- Bibik, N.; Metel, A.; Cherenda, N.; Sotova, C.; Astashynski, V.; Kuzmitski, A.; Melnik, Y.; Vereschaka, A. Structure of Eutectic Al-Si Alloy Subjected to Compression Plasma Flow Impact. Metals 2024, 14, 1415. [Google Scholar] [CrossRef]
- Bayram, Ü. Directional Solidification of Al-Si-Ti Irregular Ternary Eutectic Alloy and Thermophysical Properties. Metall. Mater. Trans. B 2022, 53, 3865–3881. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, Y.; Zhong, G.; Zhang, J.; Chen, Y.; Jie, W.; Schumacher, P.; Li, J. Effects of Si and Sr elements on solidification microstructure and thermal conductivity of Al–Si-based alloys. J. Mater. Sci. 2022, 57, 6428–6444. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zeng, Y.; Li, Y.; Wang, C.; Ji, X. Study of Microstructure Scale and Regulation of Mechanical Properties of Al-6Si Hypoeutectic Alloy. Silicon 2023, 15, 1635–1646. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Majhi, J.; Patnaik, S.C.; Sahoo, B.P.; Sahoo, A. Microstructure characterisation and dry sliding wear behaviour of Al-Si near eutectic and hypereutectic alloys reinforced with in-situ TiB2 synthesized by stir casting route. Discov. Mater. 2024, 4, 87. [Google Scholar] [CrossRef]
- El-Eraki, B.; El-Sayed Seleman, M.; El-Sissy, A.; Eisa, A. Structural and mechanical modifications of hyper-eutectic Al–16Si alloy using friction stir processing. Discov. Appl. Sci. 2025, 7, 875. [Google Scholar] [CrossRef]
- Zakaraia, D.; Roósz, A.; Rónaföldi, A.; Veres, Z.S. Influence of Magnetic Stirring and Eutectic Front Velocity on the Solidified Microstructure of Al-18 wt.% Si Alloy. Materials 2024, 17, 6029. [Google Scholar] [CrossRef]
- Choudhary, C.; Sahoo, K.L.; Keche, A.J.; Mandal, D. Effect of Ti addition on the microstructure and mechanical properties of hypo-eutectic and eutectic Al–Si alloys. In Light Metals 2023; TMS 2023; The Metals & Materials Series; Broek, S., Ed.; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Veres, Z.; Roósz, A.; Rónaföldi, A.; Sycheva, A.; Svéda, M. The effect of melt flow induced by RMF on the meso- and micro-structure of unidirectionally solidified Al–7wt.% Si alloy Benchmark experiment under magnetic stirring. J. Mater. Sci. Tech. 2022, 103, 197–208. [Google Scholar] [CrossRef]
- Kassab, A.; Rónaföldi, A.; Roósz, A.; Veres, Z. Complex Characterization of Irregular Eutectic Structure. Hung. Mater. Chem. Sci. Eng. 2020, 45, 171–181. [Google Scholar] [CrossRef]
- Kim, Y.W.; Shingu, P.H. The effect of the fluid flow strength on macro-segregation in the unidirectionally solidified structure of eutectic Al-Si. J. Mater. Sci. Lett. 1990, 9, 241–243. [Google Scholar] [CrossRef]
- Zhiqiang, C.; Junze, J.; Dong, L.; Xianshu, Z.; Cho, Y.; Oh, Y.; Shim, J. Thermodynamic criterion of separated eutectic phenomena. J. Mater. Sci. 1998, 33, 2313–2317. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kócsák, É.; Roósz, A.; Rónaföldi, A.; Veres, Z. Effect of Magnetic Stirring on the Microstructure of Eutectic Al-Si Alloys. Crystals 2025, 15, 778. https://doi.org/10.3390/cryst15090778
Kócsák É, Roósz A, Rónaföldi A, Veres Z. Effect of Magnetic Stirring on the Microstructure of Eutectic Al-Si Alloys. Crystals. 2025; 15(9):778. https://doi.org/10.3390/cryst15090778
Chicago/Turabian StyleKócsák, Éva, András Roósz, Arnold Rónaföldi, and Zsolt Veres. 2025. "Effect of Magnetic Stirring on the Microstructure of Eutectic Al-Si Alloys" Crystals 15, no. 9: 778. https://doi.org/10.3390/cryst15090778
APA StyleKócsák, É., Roósz, A., Rónaföldi, A., & Veres, Z. (2025). Effect of Magnetic Stirring on the Microstructure of Eutectic Al-Si Alloys. Crystals, 15(9), 778. https://doi.org/10.3390/cryst15090778