The Influence of Friction Damage on Corrosion Resistance of Binderless WC-cBN-SiCw Composite in NaCl Solution
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Friction Behavior
3.2. Corrosion Resistance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Glossary
Term | Definition |
Multilayer Graphene (MLG) | A carbon-based nanomaterial composed of two to ten stacked graphene layers bound by weak van der Waals forces. |
β-Si3N4 whisker (β-Si3N4w) | A single-crystalline fibrous microstructure of beta-phase silicon nitride (β-Si3N4), characterized by high aspect ratio, exceptional mechanical strength, thermal stability, and oxidation resistance. |
Carbon Nanotubes (CNT) | Cylindrical nanostructures composed of rolled graphene sheets, classified as single-walled (SWCNT) or multi-walled (MWCNT) based on layer count. |
SiC Whisker (SiCw) | A single-crystalline, high-aspect-ratio fibrous form of silicon carbide (SiC), typically exhibiting exceptional mechanical strength, thermal stability, and chemical inertness. |
High Entropy Ceramics (HEC) | A class of ceramics comprising four or more principal metal cations in near-equimolar ratios, forming single-phase crystalline solid solutions stabilized by high configurational entropy. |
WC-cBN-SiCw (WBS) | A kind of novel binderless hard material containing WC, cBN and SiC whisker. |
Saturated Calomel Electrode (SCE) | A reference electrode composed of mercury (Hg), mercurous chloride (Hg2Cl2), and a saturated potassium chloride (KCl) solution. |
Open Circuit Potential (OCP) | The equilibrium electrode potential of a material in an electrolyte when no external current flows, reflecting the balance between oxidation and reduction reactions at the material’s surface. |
Electrochemical Impedance Spectroscopy (EIS) | A non-destructive analytical technique that measures the impedance of an electrochemical system across a range of frequencies by applying a sinusoidal AC voltage or current perturbation. |
Polarization Curve (Tafel curve) | A plot of electrode potential versus current density (typically on a logarithmic scale) that characterizes the electrochemical kinetics of a system. |
Friction Coefficient | A dimensionless scalar quantity representing the ratio of frictional force between two surfaces to the normal force pressing them together. |
Wear Volume (V) | The total material volume removed from a surface due to mechanical wear processes (e.g., abrasion, adhesion), typically quantified via 3D profilometry. |
Wear Rate (Kv) | The volumetric material loss per unit applied load and sliding distance. It quantifies material degradation under mechanical stress, serving as a key parameter for comparing wear resistance and predicting component durability in tribological systems. |
Self-corrosion Potential (Ecorr) | The equilibrium electrode potential of a material in a corrosive electrolyte under open-circuit conditions, reflecting the thermodynamic tendency for spontaneous redox reactions (e.g., metal oxidation and cathodic reduction) to occur. |
Self-corrosion Current Density (Icorr) | The current density corresponding to the equilibrium rate of spontaneous corrosion reactions (oxidation and reduction) on a material’s surface in a corrosive medium under open-circuit conditions. |
References
- Yang, L.; Liao, C.; Cao, C.; Zhang, H.; Gong, D.; Wan, L.; Wang, R. Preparation of extra coarse-grained WC-Co cemented carbides by doping sodium in the ammonium tungstate solution during evaporation crystallization process. Ceram. Int. 2024, 50, 12203–12211. [Google Scholar] [CrossRef]
- Agode, K.; Wolff, C.; Guven, M.; Nouari, M. Modelling of the damage initiation at WC/WC and WC/Co boundaries in WC-Co tool material at the microstructure scale: Application to the tool/chip contact. Int. J. Refract. Met. Hard Mater. 2024, 119, 106508. [Google Scholar] [CrossRef]
- Li, H.; Zhang, H.; Chen, D.; Zhu, Y.; Jiang, Z. Analysis of interface microstructure and element diffusion of WC-Co-Ni-Fe powder and M2 high-speed steel composite. Mater. Chem. Phys. 2024, 315, 128976. [Google Scholar] [CrossRef]
- Wang, X.; Guo, J.; Hwang, K.S.; Fang, Z.Z. Review and recent progress on developments of functionally graded WC-Co via a carburizing process: Principles, insights, and industrial implications. Int. J. Refract. Met. Hard Mater. 2024, 118, 106443. [Google Scholar] [CrossRef]
- Sun, J.; Zhao, J.; Gong, F.; Ni, X.; Li, Z. Development and Application of WC-Based Alloys Bonded with Alternative Binder Phase. Crit. Rev. Solid State Mater. Sci. 2019, 44, 211–238. [Google Scholar] [CrossRef]
- Yang, J.; Chen, W. Unravelling the landscape of global cobalt trade: Patterns, robustness, and supply chain security. Resour. Policy 2023, 86, 104277. [Google Scholar] [CrossRef]
- Bastian, S.; Busch, W.; Kühnel, D.; Springer, A.; Meißner, T.; Holke, R.; Scholz, S.; Iwe, M.; Pompe, W.; Gelinsky, M.; et al. Toxicity of Tungsten Carbide and Cobalt-Doped Tungsten Carbide Nanoparticles in Mammalian Cells in Vitro. Environ. Health Perspect. 2009, 117, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Hui, J.; Zhou, Y.; Dong, W.; Luo, Y.; Zhu, S. Processing of ZrO2 strengthened and toughened WC matrix composites based on ML. J. Eur. Ceram. Soc. 2024, 44, 5528–5540. [Google Scholar] [CrossRef]
- Vázquez-Pelayo, A.; Becerril-Juarez, I.; Mireles, L.; Flores-Zúñiga, H.; Avalos-Borja, M. TaC-WC synthesis by a new approach of mechanical milling and low-temperature spark plasma sintering. Mater. Today Commun. 2024, 38, 108433. [Google Scholar] [CrossRef]
- Silva, M.C.; Leite, M.M.; Raimundo, R.A.; Henriques, G.F.; Valcacer, S.M.; Mashhadikarimi, M.; Morales, M.A.; Gomes, U.U. Consolidation and mechanical properties of WC-Al2O3 composite prepared via high energy ball milling and spark plasma sintering. Ceram. Int. 2022, 48, 19026–19035. [Google Scholar] [CrossRef]
- Radajewski, M.; Schimpf, C.; Krüger, L. Study of processing routes for WC-MgO composites with varying MgO contents consolidated by FAST/SPS. J. Eur. Ceram. Soc. 2017, 37, 2031–2037. [Google Scholar] [CrossRef]
- Sun, J.; Zhao, J.; Huang, Z.; Yan, K.; Shen, X.; Xing, J.; Gao, Y.; Jian, Y.; Yang, H.; Li, B. A Review on Binderless Tungsten Carbide: Development and Application. Nano-Micro Lett. 2019, 12, 13. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, Y.; Zou, B.; Huang, C.; Xue, K.; Shi, Z. Mechanical properties and microstructure of Al2O3-SiCw ceramic tool material toughened by Si3N4 particles. Ceram. Int. 2020, 46, 8845–8852. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhu, T.; Sun, N.; Li, Y.; Xie, Z.; Liao, N.; Sang, S.; Liang, X.; Dai, J. Synergistic strengthening and toughening of oscillatory pressure sintered WC-ZrO2-Al2O3 ceramics. J. Alloys Compd. 2022, 922, 166133. [Google Scholar] [CrossRef]
- Sun, J.; Zhao, J.; Chen, Y.; Wang, L.; Yun, X.; Huang, Z. Macro-micro-nano multistage toughening in nano-laminated graphene ceramic composites. Mater. Today Phys. 2022, 22, 100595. [Google Scholar] [CrossRef]
- Cai, H.; Jing, W.; Guo, S.; Liu, L.; Ye, Y.; Wen, Y.; Wu, Y.; Wang, S.; Huang, X.; Zhang, J. Effects of micro/nano CeO2 on the microstructure and properties of WC-10Co cemented carbides. Int. J. Refract. Met. Hard Mater. 2021, 95, 105432. [Google Scholar] [CrossRef]
- Chen, F.; Yan, K.; Zhou, J.; Zhu, Y.; Hong, J. High toughness Si3N4 ceramic composites synergistically toughened by multilayer graphene/β-Si3N4 whisker: Preparation and toughening mechanism investigation. J. Alloys Compd. 2022, 921, 166183. [Google Scholar] [CrossRef]
- Sun, J.; Zhao, J.; Chen, Y.; Wang, L.; Yun, X.; Huang, Z. Toughening in low-dimensional nanomaterials high-entropy ceramic nanocomposite. Compos. Part B Eng. 2022, 231, 109586. [Google Scholar] [CrossRef]
- Mao, C.; Zhou, F.; Hu, Y.; Cai, P.; Jiang, Y.; Bi, Z.; Peng, G. Tribological behavior of cBN-WC-10Co composites for dry reciprocating sliding wear. Ceram. Int. 2019, 45, 6447–6458. [Google Scholar] [CrossRef]
- Mao, C.; Zhang, Y.; Peng, X.; Zhang, B.; Hu, Y.; Bi, Z. Wear mechanism of single cBN-WC-10Co fiber cutter in machining of Ti-6Al-4V alloy. J. Mater. Process. Technol. 2018, 259, 45–57. [Google Scholar] [CrossRef]
- Mao, C.; Ren, Y.; Gan, H.; Zhang, M.; Zhang, J.; Tang, K. Microstructure and mechanical properties of cBN-WC-Co composites used for cutting tools. Int. J. Adv. Manuf. Technol. 2015, 76, 2043–2049. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Z.; Wang, H.; Wang, C.; Hou, Z.; Wu, D.; Ouyang, X. High-pressure synthesis of tungsten carbide–cubic boron nitride (WC–cBN) composites: Effect of cBN particle size and volume fraction on their microstructure and properties. Int. J. Refract. Met. Hard Mater. 2023, 110, 106037. [Google Scholar] [CrossRef]
- Wu, J.; Wang, H.; Wang, C.; Tang, Y.; Hou, Z.; Wan, S.; Liu, B.; Wu, D.; Chen, B.; Tan, Z.; et al. High pressure synthesis of tungsten carbide–cubic boron nitride (WC-cBN) composites: Effect of thermodynamic condition and cBN volume fraction on their microstructure and properties. J. Eur. Ceram. Soc. 2022, 42, 4503–4512. [Google Scholar] [CrossRef]
- Wang, B.; Matsumaru, K.; Yang, J.; Fu, Z.; Ishizaki, K. The Effect of cBN Additions on Densification, Microstructure and Properties of WC-Co Composites by Pulse Electric Current Sintering. J. Am. Ceram. Soc. 2012, 95, 2499–2503. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Y.; Liu, K.; Wang, B. Mechanical properties and microstructure of spark plasma sintered WC-8 wt.%Co-VC-cBN ultrafine grained cemented carbide. Ceram. Int. 2019, 45, 23658–23665. [Google Scholar] [CrossRef]
- Sun, J.; Chen, Y.; Zhai, P.; Zhou, Y.; Zhao, J.; Huang, Z. Tribological performance of binderless tungsten carbide reinforced by multilayer graphene and SiC whisker. J. Eur. Ceram. Soc. 2022, 42, 4817–4824. [Google Scholar] [CrossRef]
- Sun, J.; Zhao, L.; Li, X.; Du, Q.; Zhao, J.; Zhou, Y.; Zhang, L.; Li, A. Effect of graphene and SiC whisker on the mechanical properties of WC-TiC-TiN-Al2O3 nanocomposites. J. Alloys Compd. 2023, 938, 168612. [Google Scholar] [CrossRef]
- Fan, B.; Zhang, Y.; Wang, J.; Qin, T.; Song, J.; Yu, Z.; Zhang, X. Effect of sintering temperature on mechanical properties of WC-cBN-SiCw composites with multi-scale and multi-morphology toughening strategy. Mater. Lett. 2024, 374, 137183. [Google Scholar] [CrossRef]
- Chen, Z.; Ji, L.; Guo, N.; Xu, C.; Zhang, S. Crack healing and strength recovery of Al2O3/TiC/TiB2 ceramic tool materials. Int. J. Refract. Met. Hard Mater. 2020, 87, 105167. [Google Scholar] [CrossRef]
- He, R.; Hu, P.; Zhang, X.; Han, W.; Wei, C.; Hou, Y. Preparation of high solid loading, low viscosity ZrB2-SiC aqueous suspensions using PEI as dispersant. Ceram. Int. 2013, 39, 2267–2274. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L.; Yang, Z.; Zhu, X.-C.; He, Y.; Kang, X. Tracing the evolution of contact area during the running-in process of AgCu-MoS2 composite. Tribol. Int. 2022, 174, 107739. [Google Scholar] [CrossRef]
- Tan, Z.; Zhang, M.; Zhao, S.; Huang, Y.; Huang, Z. Microstructure, mechanical and friction-wear properties of SiC-WC composite with Al and C as sintering aids. J. Eur. Ceram. Soc. 2024, 44, 3557–3568. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, G.; Song, Z.; Liu, S.; Zhou, Y.; Qiu, X.; Wu, C.; Wang, X.; Chen, Z.; Meng, C. Microstructure evolution, wear and corrosion behavior of WC reinforced CoCrFeNiMn high-entropy alloy composite coatings by induction cladding. Surf. Coat. Technol. 2024, 486, 130938. [Google Scholar] [CrossRef]
- Zhang, B.; Ma, X.; Liu, L.; Wang, Y.; Yu, H.; Morina, A.; Lu, X. Reciprocating sliding friction behavior and wear state transition mechanism of cylinder liner and piston ring. Wear 2024, 546–547, 205293. [Google Scholar] [CrossRef]
- Ghosh, G.; Sidpara, A.; Bandyopadhyay, P. Understanding the role of surface roughness on the tribological performance and corrosion resistance of WC-Co coating. Surf. Coat. Technol. 2019, 378, 125080. [Google Scholar] [CrossRef]
- Wang, Z.; Feng, Z.; Fan, X.-H.; Zhang, L. Pseudo-passivation mechanism of CoCrFeNiMo0.01 high-entropy alloy in H2S-containing acid solutions. Corros. Sci. 2021, 179, 109146. [Google Scholar] [CrossRef]
- Konadu, D.; van der Merwe, J.; Potgieter, J.; Potgieter-Vermaak, S.; Machio, C. The corrosion behaviour of WC-VC-Co hardmetals in acidic media. Corros. Sci. 2010, 52, 3118–3125. [Google Scholar] [CrossRef]
- Wang, Z.B.; Hu, H.X.; Liu, C.B.; Zheng, Y.G. The effect of fluoride ions on the corrosion behavior of pure titanium in 0.05M sulfuric acid. Electrochim. Acta 2014, 135, 526–535. [Google Scholar] [CrossRef]
- Han, B.; Zhu, S.; Dong, W.; Bai, Y.; Ding, H.; Luo, Y.; Di, P. Improved mechanical performance and electrochemical corrosion of WC-Al2O3 composite in NaCl solution by adding the TiC additives. Int. J. Refract. Met. Hard Mater. 2021, 99, 105566. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Y.; Wan, Q.L.; Liu, T.; Zhu, J.F.; Tian, W. Electrochemical corrosion behaviors of straight WC-Co alloys: Exclusive variation in grain sizes and aggressive media. Int. J. Refract. Met. Hard Mater. 2016, 57, 70–77. [Google Scholar] [CrossRef]
- Esfandiari, N.; Kashefi, M.; Mirjalili, M.; Afsharnezhad, S. Role of silica mid-layer in thermal and chemical stability of hierarchical Fe3O4-SiO2-TiO2 nanoparticles for improvement of lead adsorption: Kinetics, thermodynamic and deep XPS investigation. Mater. Sci. Eng. B 2020, 262, 114690. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, B.; Yu, J.; Qin, T.; Wang, J.; Zhang, Y.; Chen, C.; Song, J.; Ji, H. The Influence of Friction Damage on Corrosion Resistance of Binderless WC-cBN-SiCw Composite in NaCl Solution. Crystals 2025, 15, 760. https://doi.org/10.3390/cryst15090760
Fan B, Yu J, Qin T, Wang J, Zhang Y, Chen C, Song J, Ji H. The Influence of Friction Damage on Corrosion Resistance of Binderless WC-cBN-SiCw Composite in NaCl Solution. Crystals. 2025; 15(9):760. https://doi.org/10.3390/cryst15090760
Chicago/Turabian StyleFan, Bowen, Jincheng Yu, Tao Qin, Jinyi Wang, Ying Zhang, Chen Chen, Jiana Song, and Hanmiao Ji. 2025. "The Influence of Friction Damage on Corrosion Resistance of Binderless WC-cBN-SiCw Composite in NaCl Solution" Crystals 15, no. 9: 760. https://doi.org/10.3390/cryst15090760
APA StyleFan, B., Yu, J., Qin, T., Wang, J., Zhang, Y., Chen, C., Song, J., & Ji, H. (2025). The Influence of Friction Damage on Corrosion Resistance of Binderless WC-cBN-SiCw Composite in NaCl Solution. Crystals, 15(9), 760. https://doi.org/10.3390/cryst15090760