Effect of Laser Power on the Microstructure and Corrosion Resistance of NiCrBSi(Nb) Laser Clad Coatings
Abstract
1. Introduction
2. Materials and Methods
2.1. Base Materials
2.2. Laser Cladding
2.3. Characterization and Testing Methods
3. Results and Discussion
3.1. Microstructural Characterization of Coatings
3.2. Phase Composition
3.3. Microhardness
3.4. Corrosion Behavior of the NiCrBSiNb-Cladded Coatings
4. Conclusions
- NiCrBSiNb coatings with reduced porosity and free of cracks were manufactured using pulsed laser cladding, exhibiting good metallurgical bonding to the base material.
- The power of the laser has a significant impact on the thickness, microstructure, hardness, and corrosion resistance of the coatings.
- Increasing the laser power from 2800 W to 3200 W significantly changes the morphology of the coating grains, promoting a transition from columnar to equiaxed crystals. This is due to greater heat accumulation at higher laser power, which reduces the G/R ratio, favoring the formation of equiaxed grains in Sample 3 deposited at 3200 W.
- If the laser power during pulsed laser cladding is too low, it leads to the preferential melting of the low-carbon steel substrate rather than the feedstock powder, as encountered for Sample 1, which was deposited using 2800W laser power. This results in the diffusion of the Ni-Cr solid solution with Nb-based carbides at the grain boundaries within the heat-affected zone, due to the intense localized heating generated by the pulsed laser.
- Compared with the other samples, the coating deposited at a laser power of 3200 W exhibited enhanced hardness and improved corrosion resistance in a 3.5% NaCl solution. This can be attributed to several factors, such as increased coating thickness, grain refinement, and a more uniform distribution of carbides and secondary phases within the microstructure.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yu, T.; Chen, J.; Wen, Y.; Deng, Q. High Temperature Phase Stability and Wear Behavior of Laser Clad Ta Reinforced NiCrBSi Coating. Appl. Surf. Sci. 2021, 547, 149171. [Google Scholar] [CrossRef]
- Wang, W.; Zheng, Y.; Zheng, W.; Shen, Z.; Hu, M.; Wang, Y.; Feng, D.; Ma, Y.; Cai, Z.; Yang, J. Dilution Induced Variation of Microstructure and Mechanical Properties on Co-Cr-Fe-Ni High Entropy Alloy Coatings Prepared by Laser Cladding. Surf. Coat. Technol. 2024, 493, 131256. [Google Scholar] [CrossRef]
- Yang, J.; Bai, B.; Ke, H.; Cui, Z.; Liu, Z.; Zhou, Z.; Xu, H.; Xiao, J.; Liu, Q.; Li, H. Effect of Metallurgical Behavior on Microstructure and Properties of FeCrMoMn Coatings Prepared by High-Speed Laser Cladding. Opt. Laser Technol. 2021, 144, 107431. [Google Scholar] [CrossRef]
- Santo, L. Laser Cladding of Metals: A Review. Int. J. Surf. Sci. Eng. 2008, 2, 327. [Google Scholar] [CrossRef]
- Alimohammadi, A.; Khorram, A.; Araee, A. Laser alloying of Hastelloy X with Metco 204 NS powder: Statistical modeling and optimization. Phys. Scr. 2025, 100, 085018. [Google Scholar] [CrossRef]
- Jian, S.; Liu, K.; Li, J.; Xu, C. A New Test for Evaluating the Cracking Susceptibility of Laser Cladding Coatings and Its Validity on Assessing the Effect of Laser Power. Opt. Laser Technol. 2025, 180, 111609. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhang, Z.; Yang, K.; Liu, X.; Zhang, S. High-Temperature Oxidation Behavior and Tribological Performance of Nickel-Based Alloy Coatings Reinforced with ZrB 2 Ceramic. J. Mater. Res. Technol. 2025, 38, 406–417. [Google Scholar] [CrossRef]
- Bochenek, K.; Węglewski, W.; Strojny-Nędza, A.; Pietrzak, K.; Chmielewski, T.; Chmielewski, M.; Basista, M. Microstructure, Mechanical, and Wear Properties of NiCr-Re-Al2O3 Coatings Deposited by HVOF, Atmospheric Plasma Spraying, and Laser Cladding. J. Therm. Spray Technol. 2022, 31, 1609–1633. [Google Scholar] [CrossRef]
- Ortiz, A.; García, A.; Cadenas, M.; Fernández, M.R.; Cuetos, J.M. WC Particles Distribution Model in the Cross-Section of Laser Cladded NiCrBSi + WC Coatings, for Different Wt% WC. Surf. Coat. Technol. 2017, 324, 298–306. [Google Scholar] [CrossRef]
- Guo, H.; Li, B.; Lu, C.; Zhou, Q.; Jia, J. Effect of WC–Co Content on the Microstructure and Properties of NiCrBSi Composite Coatings Fabricated by Supersonic Plasma Spraying. J. Alloys Compd. 2019, 789, 966–975. [Google Scholar] [CrossRef]
- Avram, D.N.; Davidescu, C.M.; Dan, M.L.; Mirza-Rosca, J.C.; Hulka, I.; Pascu, A.; Stanciu, E.M. Electrochemical Evaluation of Protective Coatings with Ti Additions on Mild Steel Substrate with Potential Application for PEM Fuel Cells. Materials 2022, 15, 5364. [Google Scholar] [CrossRef]
- Sun, R.L.; Lei, Y.W.; Niu, W. Laser Clad TiC Reinforced NiCrBSi Composite Coatings on Ti-6Al-4V Alloy Using a CW CO2 Laser. Surf. Coatings Technol. 2009, 203, 1395–1399. [Google Scholar] [CrossRef]
- Satya Prasad, V.V.; Baligidad, R.G.; Gokhale, A.A. Niobium and Other High Temperature Refractory Metals for Aerospace Applications. In Aerospace Materials and Material Technologies: Volume 1: Aerospace Materials; Springer: Singapore, 2017; pp. 267–288. [Google Scholar]
- Funch, C.V.; Proust, G. Laser-Based Additive Manufacturing of Refractory Metals and Their Alloys: A Review. Addit. Manuf. 2024, 94, 104464. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.; Cui, X.; Wen, X.; Wang, J.; Zha, M.; Jin, G. Effects of Nb Addition on the Laser Energy Efficiency and Properties of (NiCrCoFe)100-XNbx HEA Underwater Wet Laser Cladding Coatings. Opt. Laser Technol. 2024, 178, 111234. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, G.; Zhang, Z.; Wang, X.; Gao, L.; Song, X. Effect of Niobium Content on Microstructure and Wear and Corrosion Resistance of Laser-Clad FeCo0.5CrNi1.5B0.5Nbx Coatings on Ductile Iron. Surf. Coat. Technol. 2024, 476, 130210. [Google Scholar] [CrossRef]
- Chen, Z.; Luo, F.; Jin, H.; Peng, Z.; Shi, W.; Huang, J. Effect of Nb on Laves Phase Formation and Wear Resistance in Laser-Cladding CrFeNi Medium-Entropy Alloy Coatings. Coatings 2025, 15, 667. [Google Scholar] [CrossRef]
- Ji, X.; Guan, K.; Bao, Y.; Mao, Z.; Wang, F.; Dai, H. Effect of Nb Addition on the Corrosion and Wear Resistance of Laser Clad AlCr2FeCoNi High-Entropy Alloy Coatings. Lubricants 2024, 12, 5. [Google Scholar] [CrossRef]
- Hulka, I.; Uțu, I.D.; Avram, D.; Dan, M.L.; Pascu, A.; Stanciu, E.M.; Roată, I.C. Influence of the Laser Cladding Parameters on the Morphology, Wear and Corrosion Resistance of Wc-Co/Nicrbsi Composite Coatings. Materials 2021, 14, 5583. [Google Scholar] [CrossRef]
- Hulka, I.; Utu, D.; Serban, V.A.; Negrea, P.; Lukáč, F.; Chráska, T. Effect of Ti Addition on Microstructure and Corrosion Properties of Laser Cladded WC-Co/NiCrBSi(Ti) Coatings. Appl. Surf. Sci. 2020, 504, 144349. [Google Scholar] [CrossRef]
- Stanciu, E.M.; Pascu, A.; Ţierean, M.H.; Voiculescu, I.; Roată, I.C.; Croitoru, C.; Hulka, I. Dual Coating Laser Cladding of NiCrBSi and Inconel 718. Mater. Manuf. Process. 2016, 31, 1556–1564. [Google Scholar] [CrossRef]
- Khorram, A.; Meraji, H.; Dibaji, V. Microstructural evolution of laser repair welded rene 142 superalloy with IN625/C263 welding materials. Phys. Scr. 2025, 100, 075045. [Google Scholar] [CrossRef]
- Pratheesh Kumar, S.; Elangovan, S.; Mohanraj, R.; Sathya Narayanan, V. Significance of Continuous Wave and Pulsed Wave Laser in Direct Metal Deposition. Mater. Today Proc. 2021, 46, 8086–8096. [Google Scholar] [CrossRef]
- Gobber, F.S.; Priarone, P.C.; Pennacchio, A.; Actis Grande, M. Effect of Inert Gas Pressure on the Properties and Carbon Footprint of UNS S32760 Powders Made from Waste Materials by Gas Atomization. J. Mater. Res. Technol. 2024, 33, 8814–8828. [Google Scholar] [CrossRef]
- Wang, X.; Ren, X.; Xue, Y.; Luan, B. Investigation on Microstructure and High-Temperature Wear Properties of High-Speed Laser Cladding Inconel 625 Alloy. J. Mater. Res. Technol. 2024, 30, 626–639. [Google Scholar] [CrossRef]
- Pal, S.; Lojen, G.; Hudakb, R.; Rajtukova, V.; Brajlih, T.; Kokol, V.; Drstvenšek, I. As-fabricated surface morphologies of Ti-6Al-4V samples fabricated by different laser processing parameters in selective laser melting. Addit. Manuf. 2020, 30, 101147. [Google Scholar]
- Ding, C.; Liu, Y.; Ni, H.; Wang, X.; Wang, H. Effects of Laser Energy Density on Microstructure, Texture and Tribological Property of CoCrFeMnNi High Entropy Alloy Coatings Fabricated by Laser Cladding. Surf. Interfaces 2025, 61, 106107. [Google Scholar] [CrossRef]
- Qian, S.; Dai, Y.; Guo, Y. Microstructure and Wear Resistance of Multi-Layer Ni-Based Alloy. Materials 2021, 14, 781. [Google Scholar] [CrossRef]
- Tao, S.; Zhang, G.; Zhao, Y.; Wu, G.; Jiang, E.; Wang, Y.; Guo, X.; Huang, Y.; Wu, Z.; Piao, Z. Preparation and corrosion resistance of Inconel 625 laser cladding coating for high temperature supercritical carbon dioxide environment. J. Mater. Res. Technol. 2025, 38, 2751–2765. [Google Scholar] [CrossRef]
- Kharanzhevskiy, E.; Reshetnikov, S. Chromium oxide dissolution in steels via short pulse laser processing. Appl. Phys. A 2014, 115, 1469–1477. [Google Scholar] [CrossRef]
- Diao, M.; Guo, C.; Wang, S.; Li, L.; Dong, T.; Xin, S.; Sun, Z.; Chen, Z.; Konovalov, S.; Jiang, F. Influence of Laser Power on Grain Refinement of Ti5321G Alloy Fabricated by Laser Powder Direct Energy Deposition Assisted with Ultrasonic Energy Field. Adv. Eng. Mater. 2025, 27, 2403002. [Google Scholar] [CrossRef]
- Wang, Q.; Shu, X.; Xu, H.; Xu, S.; Zhang, S. Study on the Effect of Laser Power on the Microstructure and Properties of Cladding Stellite 12 Coatings on H13 Steel. Materials 2024, 17, 6098. [Google Scholar] [CrossRef]
- Wu, Z.; Qian, M.; Brandt, M. Ultra-High-Speed Laser Cladding of Stellite 6 Alloy on Mild Steel. JOM 2020, 72, 4632–4638. [Google Scholar] [CrossRef]
- Chen, X.; Jiang, N.; Zhan, Y.; Luo, Y.; Ye, N.; Tang, J.; Zhuo, H. Preparation and Tribological Performance of Ni-SiC Composite Coating on 304 Stainless Steel through Brush Plating. Surf. Coat. Technol. 2024, 494, 131491. [Google Scholar] [CrossRef]
- Tang, J.; Wang, K.; Fu, H. Laser Cladding In Situ Carbide-Reinforced Iron-Based Alloy Coating: A Review. Metals 2024, 14, 1419. [Google Scholar] [CrossRef]
- Huang, Y.; Zeng, X.; Hu, Q.; Zhou, S. Microstructure and Interface Interaction in Laser Induction Hybrid Cladding of Ni-Based Coating. Appl. Surf. Sci. 2009, 255, 3940–3945. [Google Scholar] [CrossRef]
- Venkatesh, L.; Samajdar, I.; Tak, M.; Doherty, R.D.; Gundakaram, R.C.; Prasad, K.S.; Joshi, S.V. Microstructure and Phase Evolution in Laser Clad Chromium Carbide-NiCrMoNb. Appl. Surf. Sci. 2015, 357, 2391–2401. [Google Scholar] [CrossRef]
- Bernsmann, J.S.L.; Hillebrandt, S.; Rommerskirchen, M.; Bold, S.; Schleifenbaum, J.H. On the Use of Metal Sinter Powder in Laser Powder Bed Fusion Processing. Materials 2023, 16, 5697. [Google Scholar] [CrossRef]
- Clark, R.N.; Searle, J.; Martin, T.L.; Walters, W.S.; Williams, G. The Role of Niobium Carbides in the Localised Corrosion Initiation of 20Cr-25Ni-Nb Advanced Gas-Cooled Reactor Fuel Cladding. Corros. Sci. 2020, 165, 108365. [Google Scholar] [CrossRef]
Sample Annotation | Laser Power (W) | Clad. Speed (cm/min) | Pulse Duration (ms) | Frequency (Hz) | Overlap Degree (%) | Powder Feeding (g/min) |
---|---|---|---|---|---|---|
Sample 1 | 2800 | 20 | 3 | 45 | 55 | 3.5 |
Sample 2 | 3000 | |||||
Sample 3 | 3200 |
Sample | Ecorr (V) | Icorr (µA) | Corr Rate (mm/year) |
---|---|---|---|
Substrate | −0.504 | 28.13 | 1.243 |
Sample 1 | −0.462 | 21.82 | 0.457 |
Sample 2 | −0.381 | 5.95 | 0.389 |
Sample 3 | −0.368 | 5.18 | 0.295 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hulka, I.; Pascu, A.; Cuculea, D.-C. Effect of Laser Power on the Microstructure and Corrosion Resistance of NiCrBSi(Nb) Laser Clad Coatings. Crystals 2025, 15, 759. https://doi.org/10.3390/cryst15090759
Hulka I, Pascu A, Cuculea D-C. Effect of Laser Power on the Microstructure and Corrosion Resistance of NiCrBSi(Nb) Laser Clad Coatings. Crystals. 2025; 15(9):759. https://doi.org/10.3390/cryst15090759
Chicago/Turabian StyleHulka, Iosif, Alexandru Pascu, and Dan-Cristian Cuculea. 2025. "Effect of Laser Power on the Microstructure and Corrosion Resistance of NiCrBSi(Nb) Laser Clad Coatings" Crystals 15, no. 9: 759. https://doi.org/10.3390/cryst15090759
APA StyleHulka, I., Pascu, A., & Cuculea, D.-C. (2025). Effect of Laser Power on the Microstructure and Corrosion Resistance of NiCrBSi(Nb) Laser Clad Coatings. Crystals, 15(9), 759. https://doi.org/10.3390/cryst15090759