Influence of NaCl on Phase Development and Corrosion Resistance of Portland Cement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Analysis of Cement Crystallization
2.3. Electrochemical Behavior
3. Results
3.1. Crystallization of Cement
3.2. Electrochemical Behavior with NaCl Concentration
- (1)
- The disruption of the passive film: Cl− ions penetrate and break down the protective oxide layer, exposing the underlying material to active corrosion.
- (2)
- The activation of electrochemical reactions: The presence of Cl− enhances ionic conductivity within the cement matrix, thereby promoting corrosion kinetics.
3.3. Discussion
4. Conclusions
- FE-SEM and Gibbs free energy analyses confirmed that NaCl promotes crystal refinement, resulting in reduced porosity and fewer microcracks within the cement matrix from 150 ea/mm2 to 60 ea/mm2. The XRD and XPS results demonstrated the formation of Friedel’s salt, which chemically binds chloride ions and alters the cement phase composition. These findings indicate that NaCl influences both the microstructural development and chemical stability of cement, with potential implications for its durability.
- Electrochemical analyses using OCP, potentiodynamic polarization, and EIS demonstrated that the addition of NaCl negatively impacts corrosion resistance by increasing electrical conductivity and destabilizing passive films. The progressive shift in OCP toward more negative values from −0.1 V to −0.22 V, the increase in current density from 1 × 10−7 to 4 × 10−7 observed in polarization tests, and the reduction in impedance in EIS measurements collectively indicate that higher NaCl concentrations accelerate electrochemical degradation. These results highlight the potential risks associated with chloride-induced corrosion, particularly in environments where reinforced concrete structures are exposed to high NaCl concentrations.
- Overall, the findings emphasize the dual impact (the crystallization and corrosion behavior) of NaCl: while it enhances cement crystallization by refining the microstructure, it also compromises corrosion resistance. This necessitates strict control over NaCl exposure in cement-based applications. Future research should focus on corrosion mitigation strategies, such as the incorporation of protective coatings, supplementary cementitious materials, or chemical inhibitors, to optimize the performance of Portland cement in chloride-rich environments.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Douglas, B.D.; Merrill, D.T.; Catlin, J.O. Water Quality Deterioration from Corrosion of Cement–Mortar Linings. J. Am. Water Work. Assoc. 1996, 88, 99–107. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, Z.; Wang, Y.; Yang, J.; Han, S.; Zhao, T. 3D Neutron Tomography of Steel Reinforcement Corrosion in Cement-Based Composites. Constr. Build. Mater. 2018, 162, 561–565. [Google Scholar] [CrossRef]
- Chaimongkhol, C.; Medepalli, S.; Zheng, Y.; Matsuda, T.; Ishida, T.; Wang, T. Investigating the Effects of Cracks and Low-Calcium Supplementary Cementitious Materials on Steel Fiber Corrosion in Cement Paste. Constr. Build. Mater. 2023, 399, 132554. [Google Scholar] [CrossRef]
- Dumont, A.; Patin, J.-B.; Floch, G.L. A Single Tool for Corrosion and Cement Evaluation. In Proceedings of the SPE Annual Technical Conference and Exhibition, Houston, TX, USA, 16–19 September 1984; p. SPE-13140. [Google Scholar]
- Shi, C.; Stegemann, J.A. Acid Corrosion Resistance of Different Cementing Materials. Cem. Concr. Res. 2000, 30, 803–808. [Google Scholar] [CrossRef]
- Shi, C. Corrosion Resistance of Alkali-Activated Slag Cement. Adv. Cem. Res. 2003, 15, 77–81. [Google Scholar] [CrossRef]
- Wittmann, F.H. Corrosion of Cement-Based Materials under the Influence of an Electric Field. In Materials Science Forum; Trans Tech Publications Ltd.: Zurich, Switzerland, 1997; Volume 247, pp. 107–126. [Google Scholar]
- Zhang, S.; Liu, J.; Liu, L.; Chen, Z.; Shi, C. A Review on Corrosion of Cement-Based Materials in CO2-Rich Karst Groundwater. Cem. Concr. Compos. 2024, 146, 105376. [Google Scholar] [CrossRef]
- Marcotte, T.D.; Hansson, C.M. Corrosion Products That Form on Steel within Cement Paste. Mater. Struct. 2007, 40, 325–340. [Google Scholar] [CrossRef]
- Szczerba, J. Chemical Corrosion of Basic Refractories by Cement Kiln Materials. Ceram. Int. 2010, 36, 1877–1885. [Google Scholar] [CrossRef]
- Hussain, S.E.; Al-Saadoun, S.S. Effect of Cement Composition on Chloride Binding and Corrosion of Reinforcing Steel in Concrete. Cem. Concr. Res. 1991, 21, 777–794. [Google Scholar]
- Allahverdi, A.; Škvára, F. Acidic Corrosion of Hydrated Cement Based Materials. Ceram. Silikáty 2000, 44, 152–160. [Google Scholar]
- Kurdowski, W. The Protective Layer and Decalcification of CSH in the Mechanism of Chloride Corrosion of Cement Paste. Cem. Concr. Res. 2004, 34, 1555–1559. [Google Scholar] [CrossRef]
- Pavlik, V. Corrosion of Hardened Cement Paste by Acetic and Nitric Acids Part I: Calculation of Corrosion Depth. Cem. Concr. Res. 1994, 24, 551–562. [Google Scholar] [CrossRef]
- Parrott, L.J. Some Effects of Cement and Curing upon Carbonation and Reinforcement Corrosion in Concrete. Mater. Struct. 1996, 29, 164–173. [Google Scholar] [CrossRef]
- Yuanhua, L.; Dajiang, Z.; Dezhi, Z.; Yuanguang, Y.; Taihe, S.; Kuanhai, D.; Chengqiang, R.; Deping, Z.; Feng, W. Experimental Studies on Corrosion of Cement in CO2 Injection Wells under Supercritical Conditions. Corros. Sci. 2013, 74, 13–21. [Google Scholar] [CrossRef]
- Manzano, H.; Durgun, E.; Abdolhosseine Qomi, M.J.; Ulm, F.-J.; Pellenq, R.J.M.; Grossman, J.C. Impact of Chemical Impurities on the Crystalline Cement Clinker Phases Determined by Atomistic Simulations. Cryst. Growth Des. 2011, 11, 2964–2972. [Google Scholar] [CrossRef]
- Kwon, S.-J.; Lee, H.-S.; Karthick, S.; Saraswathy, V.; Yang, H.-M. Long-Term Corrosion Performance of Blended Cement Concrete in the Marine Environment—A Real-Time Study. Constr. Build. Mater. 2017, 154, 349–360. [Google Scholar] [CrossRef]
- Zunino, F.; Boehm-Courjault, E.; Scrivener, K. The Impact of Calcite Impurities in Clays Containing Kaolinite on Their Reactivity in Cement after Calcination. Mater. Struct. 2020, 53, 44. [Google Scholar] [CrossRef]
- Gay, H.; Meynet, T.; Colombani, J. Local Study of the Corrosion Kinetics of Hardened Portland Cement under Acid Attack. Cem. Concr. Res. 2016, 90, 36–42. [Google Scholar] [CrossRef]
- Velez, K.; Maximilien, S.; Damidot, D.; Fantozzi, G.; Sorrentino, F. Determination by Nanoindentation of Elastic Modulus and Hardness of Pure Constituents of Portland Cement Clinker. Cem. Concr. Res. 2001, 31, 555–561. [Google Scholar] [CrossRef]
- Lu, D.; Zhong, J. Carbon-Based Nanomaterials Engineered Cement Composites: A Review. J. Infrastruct. Preserv. Resil. 2022, 3, 2. [Google Scholar] [CrossRef]
- Pesin, L.A. Review Structure and Properties of Glass-like Carbon. J. Mater. Sci. 2002, 37, 1–28. [Google Scholar] [CrossRef]
- Li, W.; Dong, W.; Guo, Y.; Wang, K.; Shah, S.P. Advances in Multifunctional Cementitious Composites with Conductive Carbon Nanomaterials for Smart Infrastructure. Cem. Concr. Compos. 2022, 128, 104454. [Google Scholar] [CrossRef]
- Acharyya, S.G.; Khandelwal, A.; Kain, V.; Kumar, A.; Samajdar, I. Surface Working of 304L Stainless Steel: Impact on Microstructure, Electrochemical Behavior and SCC Resistance. Mater. Charact. 2012, 72, 68–76. [Google Scholar] [CrossRef]
- Skrotzki, W.; Pukenas, A.; Odor, E.; Joni, B.; Ungar, T.; Völker, B.; Hohenwarter, A.; Pippan, R.; George, E.P. Microstructure, Texture, and Strength Development during High-Pressure Torsion of CrMnFeCoNi High-Entropy Alloy. Crystals 2020, 10, 336. [Google Scholar] [CrossRef]
- Rajesh, D.; Sunandana, C.S. Briefly Brominated Ag Thin Films: XRD, FESEM, and Optical Studies of Surface Modification. Appl. Surf. Sci. 2012, 259, 276–282. [Google Scholar] [CrossRef]
- Sen, S.K.; Paul, T.C.; Dutta, S.; Hossain, M.N.; Mia, M.N.H. XRD Peak Profile and Optical Properties Analysis of Ag-Doped h-MoO3 Nanorods Synthesized via Hydrothermal Method. J. Mater. Sci. Mater. Electron. 2020, 31, 1768–1786. [Google Scholar] [CrossRef]
- Fredriksson, W.; Edström, K. XPS Study of Duplex Stainless Steel as a Possible Current Collector in a Li-Ion Battery. Electrochim. Acta 2012, 79, 82–94. [Google Scholar] [CrossRef]
- Makhdoom, M.A.; Ahmad, A.; Kamran, M.; Abid, K.; Haider, W. Microstructural and Electrochemical Behavior of 2205 Duplex Stainless Steel Weldments. Surf. Interfaces 2017, 9, 189–195. [Google Scholar] [CrossRef]
- Rybalka, K.V.; Beketaeva, L.A.; Davydov, A.D. Electrochemical Behavior of Stainless Steel in Aerated NaCl Solutions by Electrochemical Impedance and Rotating Disk Electrode Methods. Russ. J. Electrochem. 2006, 42, 370–374. [Google Scholar] [CrossRef]
- Friel, J.J. ASTM Standards in Microscopy and Microanalysis. In Proceedings of the Conference Series-Institute of Physics, Philadelphia, PA, USA, 14–18 September 1999; Volume 165, pp. 399–400. [Google Scholar]
- YY/T0695-2008; Standard Test Method for Conducting Cyclic Potentiodynamic Polarization Measurements to Determine the Corrosion Susceptibility of Small Implant Devices. ASTM International: West Conshohocken, PA, USA, 2019.
- Medeiros, M.H.F.; Rocha, F.C.; Medeiros-Junior, R.A.; Helene, P. Corrosion Potential: Influence of Moisture, Water-Cement Ratio, Chloride Content and Concrete Cover. Rev. IBRACON Estrut. Mater. 2017, 10, 864–885. [Google Scholar] [CrossRef]
- Isaacs, H.S.; Ishikawa, Y. Current and Potential Transients during Localized Corrosion of Stainless Steel. J. Electrochem. Soc. 1985, 132, 1288. [Google Scholar] [CrossRef]
- Soria, L.; Herrera, E.J. A Reliable Technique to Determine Pitting Potentials of Austenitic Stainless Steels by Potentiodynamic Methods. Weld. Int. 1992, 6, 959–964. [Google Scholar] [CrossRef]
- Guerrini, E.; Cristiani, P.; Grattieri, M.; Santoro, C.; Li, B.; Trasatti, S. Electrochemical Behavior of Stainless Steel Anodes in Membraneless Microbial Fuel Cells. J. Electrochem. Soc. 2013, 161, H62. [Google Scholar] [CrossRef]
- Lim, J.; Shin, B.-H.; Kim, D.-I.; Bae, J.-S.; Ok, J.-W.; Kim, S.; Park, J.; Lee, J.I.; Yoon, J.-H. Effect of Annealing after Casting and Cold Rolling on Microstructure and Electrochemical Behavior of High-Entropy Alloy, Cantor. Metals 2024, 14, 846. [Google Scholar] [CrossRef]
- Garcia, D.C.S.; de Soares, M.M.N.S.; da Bezerra, A.C.S.; Aguilar, M.T.P.; Figueiredo, R.B. Microstructure and Hardness of Cement Pastes with Mineral Admixture. Matéria 2017, 22, e11813. [Google Scholar] [CrossRef]
- Batis, G.; Pantazopoulou, P.; Tsivilis, S.; Badogiannis, E. The Effect of Metakaolin on the Corrosion Behavior of Cement Mortars. Cem. Concr. Compos. 2005, 27, 125–130. [Google Scholar] [CrossRef]
- Suryavanshi, A.K.; Scantlebury, J.D.; Lyon, S.B. Corrosion of Reinforcement Steel Embedded in High Water-Cement Ratio Concrete Contaminated with Chloride. Cem. Concr. Compos. 1998, 20, 263–281. [Google Scholar] [CrossRef]
- Lüttge, A. Crystal Dissolution Kinetics and Gibbs Free Energy. J. Electron Spectrosc. Relat. Phenom. 2006, 150, 248–259. [Google Scholar] [CrossRef]
- Pedersen, U.R.; Hummel, F.; Kresse, G.; Kahl, G.; Dellago, C. Computing Gibbs Free Energy Differences by Interface Pinning. Phys. Rev. B—Condens. Matter Mater. Phys. 2013, 88, 094101. [Google Scholar] [CrossRef]
- Shapiro, N.Z.; Shapley, L.S. Mass Action Laws and the Gibbs Free Energy Function. J. Soc. Ind. Appl. Math. 1965, 13, 353–375. [Google Scholar] [CrossRef]
- Gildemyn, S.; Rozendal, R.A.; Rabaey, K. A Gibbs Free Energy-Based Assessment of Microbial Electrocatalysis. Trends Biotechnol. 2017, 35, 393–406. [Google Scholar] [CrossRef] [PubMed]
- Teh, Y.S.; Rangaiah, G.P. A Study of Equation-Solving and Gibbs Free Energy Minimization Methods for Phase Equilibrium Calculations. Chem. Eng. Res. Des. 2002, 80, 745–759. [Google Scholar] [CrossRef]
- Kamenskih, S.; Ulyasheva, N.; Buslaev, G.; Voronik, A.; Rudnitskiy, N. Research and Development of the Lightweight Corrosion-Resistant Cement Blend for Well Cementing in Complex Geological Conditions. In Proceedings of the SPE Russian Petroleum Technology Conference, Moscow, Russia, 15–17 October 2018; p. D023S010R009. [Google Scholar]
- Haiyan, Y.; Cuina, Q.; Lintong, H.; Qing, X. Research on Expansion and Stability of Friedel’s Salt. Ferroelectrics 2022, 596, 39–55. [Google Scholar] [CrossRef]
- Hussain, Z.; Ansari, W.S.; Akbar, M.; Azam, A.; Lin, Z.; Yosri, A.M.; Shaaban, W.M. Microstructural and Mechanical Assessment of Sulfate-Resisting Cement Concrete over Portland Cement Incorporating Sea Water and Sea Sand. Case Stud. Constr. Mater. 2024, 21, e03689. [Google Scholar] [CrossRef]
- Ma, J.; Li, Z.; Jiang, Y.; Yang, X. Synthesis, Characterization and Formation Mechanism of Friedel’s Salt (FS: 3CaO·Al2O3·CaCl2·10H2O) by the Reaction of Calcium Chloride with Sodium Aluminate. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2015, 30, 76–83. [Google Scholar] [CrossRef]
- Balonis, M.; Lothenbach, B.; Le Saout, G.; Glasser, F.P. Impact of Chloride on the Mineralogy of Hydrated Portland Cement Systems. Cem. Concr. Res. 2010, 40, 1009–1022. [Google Scholar] [CrossRef]
- Cherif, R.; Hamami, A.E.A.; Aït-Mokhtar, A.; Bosschaerts, W. Thermodynamic Equilibria-Based Modelling of Reactive Chloride Transport in Blended Cementitious Materials. Cem. Concr. Res. 2022, 156, 106770. [Google Scholar] [CrossRef]
- Birnin-Yauri, U.A.; Glasser, F.P. Friedel’s Salt, Ca2Al(OH)6(Cl, OH)·2H2O: Its Solid Solutions and Their Role in Chloride Binding. Cem. Concr. Res. 1998, 28, 1713–1723. [Google Scholar] [CrossRef]
- Florea, M.V.A.; Brouwers, H.J.H. Chloride Binding Related to Hydration Products: Part I: Ordinary Portland Cement. Cem. Concr. Res. 2012, 42, 282–290. [Google Scholar] [CrossRef]
- Urry, D.W. The Change in Gibbs Free Energy for Hydrophobic Association: Derivation and Evaluation by Means of Inverse Temperature Transitions. Chem. Phys. Lett. 2004, 399, 177–183. [Google Scholar]
- Shin, B.-H.; Park, J.; Kim, S.; Ok, J.-W.; Kim, D.-I.; Yoon, J.-H. Study of Electroless Nickel Plating on Super Duplex Stainless Steel for Lithium-Ion Battery Cases: Electrochemical Behaviour and Effects of Plating Time. Metals 2024, 14, 307. [Google Scholar] [CrossRef]
- Sung, C.; Kim, K.; Chung, W.; Shin, B.-H. Electrochemical Properties of UNS S 32750 and UNS S 32760 Annealed Super Duplex Stainless Steels. Int. J. Electrochem. Sci. 2022, 17, 220526. [Google Scholar] [CrossRef]
Unit: wt.% | (a) | (b) | (c) | (d) |
---|---|---|---|---|
Na | 0.1 | 0.5 | 0.9 | 1.1 |
Cl | 0.1 | 0.7 | 1.3 | 2.1 |
O | 45.3 | 45.1 | 44.9 | 44.6 |
Si | 5.2 | 5.1 | 5.1 | 5.0 |
Ca | 47.9 | 47.6 | 46.8 | 46.3 |
Al | 1.1 | 1.0 | 1.0 | 0.9 |
(a) | (b) | (c) | (d) | |
---|---|---|---|---|
Number of pores, per mm2 | 150 ± 21 | 110 ± 16 | 85 ± 7 | 60 ± 4 |
Ecorr, V | Icorr, A/cm2 | Epit, V | |
---|---|---|---|
(a) | −0.20 | 1 × 10−7 | 0.73 |
(b) | −0.22 | 3 × 10−7 | 0.66 |
(c) | −0.27 | 3 × 10−7 | 0.65 |
(d) | −0.28 | 4 × 10−7 | 0.61 |
Rs, ohms | n of CPE | p of CPE | Rp, ohms | |
---|---|---|---|---|
(a) | 6.2 | 9120 | 0.8 | 7300 |
(b) | 6.1 | 5200 | 0.5 | 2600 |
(c) | 6.2 | 3625 | 0.4 | 1450 |
(d) | 6.2 | 2525 | 0.4 | 1010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, B.-H.; You, M.; Park, J.; Cho, J.; Kim, S.; Ok, J.-W.; Hong, J.; Lee, T.; Bae, J.-S.; Song, P.; et al. Influence of NaCl on Phase Development and Corrosion Resistance of Portland Cement. Crystals 2025, 15, 579. https://doi.org/10.3390/cryst15060579
Shin B-H, You M, Park J, Cho J, Kim S, Ok J-W, Hong J, Lee T, Bae J-S, Song P, et al. Influence of NaCl on Phase Development and Corrosion Resistance of Portland Cement. Crystals. 2025; 15(6):579. https://doi.org/10.3390/cryst15060579
Chicago/Turabian StyleShin, Byung-Hyun, Miyoung You, Jinyong Park, Junghyun Cho, Seongjun Kim, Jung-Woo Ok, Jonggi Hong, Taekyu Lee, Jong-Seong Bae, Pungkeun Song, and et al. 2025. "Influence of NaCl on Phase Development and Corrosion Resistance of Portland Cement" Crystals 15, no. 6: 579. https://doi.org/10.3390/cryst15060579
APA StyleShin, B.-H., You, M., Park, J., Cho, J., Kim, S., Ok, J.-W., Hong, J., Lee, T., Bae, J.-S., Song, P., & Yoon, J.-H. (2025). Influence of NaCl on Phase Development and Corrosion Resistance of Portland Cement. Crystals, 15(6), 579. https://doi.org/10.3390/cryst15060579