Recent Advances in Tantalum Carbide MXenes: Synthesis, Structure, Properties, and Novel Applications
Abstract
:1. Introduction
2. Synthesis Procedures
2.1. Synthesis of Tantalum Aluminum Carbide MAX Phase
2.2. Synthesis of Tantalum Carbide MXene
2.2.1. Direct Hydrofluoric Acid (HF) Etching
2.2.2. In Situ HF Etching (Fluoride Salt)
2.2.3. Fluorine-Free Etching
Precursor | Etchant | Reaction Condition | Ref. |
---|---|---|---|
10 g Ta4AlC3 power | 40% HF | Stirred for 72 h at room temperature (RT) | [8] |
1 g Ta4AlC3 powder | 20 mL 20% HF | Stirred for 4 h | [29] |
2 g Ta4AlC3 powder | 50 mL HF | Stirred at 45 °C for 96 h | [9] |
1 g of Ta4AlC3 precursor | 20 mL 45% HF | Stirred for 120 h at 50 °C | [30] |
2 g of Ta4AlC3 | 50 mL 45% HF | Stirred at 45 °C for 120 h | [12] |
2 g Ta4AlC3 | 20 mL 9 M HCl + 2 g LiF | Stirred at 35 °C for 72 h | [31] |
1 g Ta4AlC3 | 50 wt% HF | Stirred at 40 °C for 96 h | [24] |
0.5 g Ta4AlC3 | 20 mL of 40% HF | Stirred for 96 h at RT | [22] |
1 g Ta4AlC3 powder | 40 mL 49 wt% HF | Stirred for 72 h at RT | [32] |
Ta4AlC3 | 40% HF | Stirred for 96 h at RT | [20] |
Ta4AlC3 | HF | Etched for 4 days at RT | [33] |
2 g Ta4AlC3 | 40 mL 40 v/v% HF | Stirred for 4 days | [34] |
1 g Ta4AlC3 | 12 mL 40 wt% HF | Stirred for 4 days | [14] |
Ta4AlC3 | 40% HF | Etched for 4 days | [18] |
1 g Ta2AlC | 5 mL 49 wt% HF | Stirred for 1 day at RT | [16] |
Ta2AlC | HF | Etching | [35] |
1 g Ta4AlC3 | 30 mL 40% HF | Stirred for 72 h at RT | [17] |
1 g Ta4AlC3 | 20 mL 50 wt% HF | Stirred at 40 °C for 96 h | [36] |
0.5 g Ta4AlC3 | 15 mL (36−38 wt%) + 0.6 g LiF | Hydrothermal reacted at 180 °C for 20 h | [13] |
0.5 g Ta4AlC3 | 15 mL~38 wt% HCl + 0.6 g LiF | Hydrothermal reacted at 180 °C for 20 h | [26] |
2 g Ta4AlC3 | 40 HCl + mL 3.2 g LiF | Reacted for 48 h | [37] |
Ta4AlC3 | 12 M HCl and 4 M NaF | Reacted at 60 °C for 48 h | [28] |
Ta4AlC3 | 6 M HCl, 6 M KOH | Shaking in HCl at 37 °C for 72 h, Freeze dried, treating in KOH at RT for 90 h | [11] |
1.5 g Ta2AlC | KOH | Hydrothermal reacted at 150 °C for 24 h | [10] |
2.3. Delamination of Tantalum Carbide MXene
3. Structure of Tantalum Carbide MXene
4. Properties of Tantalum Carbide MXene
5. Multifunctional Applications of Tantalum Carbide MXene
5.1. Energy Storage
5.1.1. Lithium-Sulfur Batteries
5.1.2. Zinc Ion Batteries
5.1.3. Sodium Ion Capacitors
5.2. Energy Conversion and Environmental Remediation
5.2.1. Hydrogen Production
5.2.2. Photo/Electrothermal Conversion
5.2.3. Pollutant Degradation
5.3. Detection and Sensing
5.3.1. SERS
5.3.2. Gas Sensors
5.3.3. Ion Detection
5.3.4. Humidity Sensing
5.3.5. Piezoresistive Sensing
5.4. Advantages over Ti-Based MXene
5.5. Other Applications
6. Summary and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, F.; Alhabeb, M.; Hatter, C.B.; Anasori, B.; Man Hong, S.; Koo, C.M.; Gogotsi, Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016, 353, 1137–1140. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Wen, Y.; Qi, Y.; Zhao, Q.; Qu, L.; Li, C. Pristine titanium carbide mxene films with environmentally stable conductivity and superior mechanical strength. Adv. Funct. Mater. 2020, 30, 1906996. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, X.; Liu, Y.; Xu, Y.; Chang, Z.; Wang, D.; Li, Q. Expanded Polytetrafluoroethylene/Mxene Nanosheet Composites with Hydrophilicity and Lipophilicity for Purification of Oil Spills and Wastewater. ACS Appl. Nano Mater. 2022, 5, 2483–2491. [Google Scholar] [CrossRef]
- Oh, T.; Lee, S.; Kim, H.; Ko, T.Y.; Kim, S.J.; Koo, C.M. Fast and high-yield anhydrous synthesis of Ti3C2T mxene with high electrical conductivity and exceptional mechanical strength. Small 2022, 18, 2203767. [Google Scholar] [CrossRef]
- Bagheri, S.; Abourahma, J.; Lu, H.; Vorobeva, N.S.; Luo, S.; Gruverman, A.; Sinitskii, A. High-yield fabrication of electromechanical devices based on suspended Ti3C2Tx MXene monolayers. Nanoscale 2023, 15, 1248–1259. [Google Scholar] [CrossRef]
- Zhang, W.; Li, S.; Fan, X.; Zhang, X.; Fan, S.; Bei, G. Two-dimensional carbonitride MXenes: From synthesis to properties and applications. Carbon. Energy 2024, 6, e609. [Google Scholar] [CrossRef]
- Liu, M.-C.; Zhang, Y.-S.; Zhang, B.-M.; Zhang, D.-T.; Tian, C.-Y.; Kong, L.-B.; Hu, Y.-X. Large interlayer spacing 2D Ta4C3 matrix supported 2D MoS2 nanosheets: A 3D heterostructure composite towards high-performance sodium ions storage. Renew. Energy 2021, 169, 573–581. [Google Scholar] [CrossRef]
- Liang, Q.; Wang, S.; Jia, X.; Yang, J.; Li, Y.; Shao, D.; Feng, L.; Liao, J.; Song, H. MXene derivative Ta4C3-Ta2O5 heterostructure as bi-functional barrier for Li-S batteries. J. Mater. Sci. Technol. 2023, 151, 89–98. [Google Scholar] [CrossRef]
- Vijayaprabhakaran, A.; Kathiresan, M. Fluorine-free synthesized tantalum carbide (Ta2C Mxene) as an efficient electrocatalyst for water reduction and nitro compound reduction. Mater. Adv. 2023, 4, 3593–3602. [Google Scholar] [CrossRef]
- Rafieerad, A.; Amiri, A.; Sequiera, G.L.; Yan, W.; Chen, Y.; Polycarpou, A.A.; Dhingra, S. Development of fluorine-free tantalum carbide Mxene hybrid structure as a biocompatible material for supercapacitor electrodes. Adv. Funct. Mater. 2021, 31, 2100015. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.; Huang, P.; Qin, F.; Liu, J.; Lin, J.; Lin, Y.; Huang, H.; Wang, W.; Han, C.; Zhang, S. Exploring monolayer Ta4C3Tx MXene for quick ammonia detection at room temperature. Mater. Lett. 2024, 363, 136250. [Google Scholar] [CrossRef]
- Liu, W.; Li, M.; Feng, X.; Yin, H.; Gong, S.; Yu, K.; Zhu, Z. Microgram-level Ta4C3 nanosheets decorated with NiWO4 nanoparticles as a high-performance humidity sensor. ACS Appl. Nano Mater. 2023, 6, 20970–20981. [Google Scholar] [CrossRef]
- Lan, L.; Ni, Z.; Zhao, C.; Gao, J.; Tang, X.; Qu, Z.; Zheng, L.; Fan, X.; Qiu, T. Photoinduced charge transfer empowers Ta4C3 and Nb4C3 MXenes with high SERS performance. Langmuir 2024, 40, 20945–20953. [Google Scholar] [CrossRef]
- Wang, T.; Zhu, C.; Dong, P. Preparation and application of two-dimensional Ta4C3 MXene/gold nanostar composite SERS substrates for thiram detection. Langmuir 2024, 40, 22015–22026. [Google Scholar] [CrossRef]
- Song, X.; Huang, Q.; Yang, Y.; Ma, L.; Liu, W.; Ou, C.; Chen, Q.; Zhao, T.; Xiao, Z.; Wang, M.; et al. Efficient therapy of inflammatory bowel disease (IBD) with highly specific and durable targeted Ta2C modified with chondroitin sulfate (TACS). Adv. Mater. 2023, 35, 2301585. [Google Scholar] [CrossRef]
- Wang, X.; Xuan, S.; Ding, K.; Jin, P.; Zheng, Y.; Wu, Z. Photothermal controlled antibacterial Ta4C3Tx-AgNPs/nanocellulose bioplastic food packaging. Food Chem. 2024, 448, 139126. [Google Scholar] [CrossRef]
- Dong, L.; Chu, H.; Li, Y.; Ma, X.; Pan, H.; Zhao, S.; Li, D. Surface functionalization of Ta4C3 MXene for broadband ultrafast photonics in the near-infrared region. Appl. Mater. Today 2022, 26, 101341. [Google Scholar] [CrossRef]
- Li, G.; Xu, Q.; Nie, H.; Wang, C.; Wang, R.; Yang, K.; He, J.; Zhang, B. Few-layer Ta2CTx nanosheets-based mode-locked fiber lasers. Opt. Mater. Express 2022, 12, 1731–1740. [Google Scholar] [CrossRef]
- Dai, C.; Chen, Y.; Jing, X.; Xiang, L.; Yang, D.; Lin, H.; Liu, Z.; Han, X.; Wu, R. Two-Dimensional Tantalum Carbide (MXenes) Composite Nanosheets for Multiple Imaging-Guided Photothermal Tumor Ablation. ACS Nano 2017, 11, 12696–12712. [Google Scholar] [CrossRef]
- Lin, Z.J.; Zhuo, M.J.; Zhou, Y.C.; Li, M.S.; Wang, J.Y. Structural characterization of a new layered-ternary Ta4AlC3 ceramic. J. Mater. Res. 2006, 21, 2587–2592. [Google Scholar] [CrossRef]
- Syamsai, R.; Vijay, V.; Easwaran, S.K.; Navaneethan, M. Evaluation of 2D Tantalum Carbide MXene for Room to Mid-temperature Thermoelectric Applications. ChemNanoMat 2024, 10, e202400391. [Google Scholar] [CrossRef]
- Yeh, C.L.; Shen, Y.G. Effects of Al content on formation of Ta2AlC by self-propagating high-temperature synthesis. J. Alloys Compd. 2009, 482, 219–223. [Google Scholar] [CrossRef]
- Liu, X.; Deng, J.; Mai, F.; Li, X.; Pu, G.; Deng, Z.; Ji, L.; Bai, X.; Zhang, Q.; Zhou, Y. Multifunctional Ta4C3Tx MXene/HTPP—PBS composites with multi cross-linking systems to cope with complex nuclear environments. J. Alloys Compd. 2024, 1004, 175734. [Google Scholar] [CrossRef]
- Lin, H.; Wang, Y.; Gao, S.; Chen, Y.; Shi, J. Theranostic 2D tantalum carbide (MXene). Adv. Mater. 2018, 30, 1703284. [Google Scholar] [CrossRef]
- Liu, W.; Zong, H.; Li, M.; Zeng, Z.; Gong, S.; Yu, K.; Zhu, Z. Ta4C3-modulated MOF-DErived 3D crosslinking network of VO2(B)@Ta4C3 for high-performance aqueous zinc ion batteries. ACS Appl. Mater. Interfaces 2023, 15, 13554–13564. [Google Scholar] [CrossRef]
- Khazaei, M.; Ranjbar, A.; Esfarjani, K.; Bogdanovski, D.; Dronskowski, R.; Yunoki, S. Insights into exfoliation possibility of MAX phases to MXenes. Phys. Chem. Chem. Phys. 2018, 20, 8579–8592. [Google Scholar] [CrossRef]
- Rafieerad, A.; Yan, W.; Alagarsamy, K.N.; Srivastava, A.; Sareen, N.; Arora, R.C.; Dhingra, S. Fabrication of Smart Tantalum Carbide MXene Quantum Dots with Intrinsic Immunomodulatory Properties for Treatment of Allograft Vasculopathy. Adv. Funct. Mater. 2021, 31, 2106786. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, J.; Ma, Y.; Liu, J.; Wang, P.; Luo, J.; Rui, Y.; Wu, Y. Ta4C3 Nanosheets as a novel therapeutic platform for photothermal-driven ros scavenging and immune activation against antibiotic-resistant infections in diabetic wounds. Small 2024, 20, 2400741. [Google Scholar] [CrossRef]
- Wu, F.; Meng, X.; Liu, Z.; Lv, T.; Yu, L.; Zhang, J.; Zhao, Y.; Zhao, C.; Xing, G. Ta4C3 Nanosheet/Melamine Sponges with High Sensitivity and Long-Term Stability for Wearable Piezoresistive Sensors. ACS Appl. Nano Mater. 2024, 7, 695–704. [Google Scholar] [CrossRef]
- He, S.; Lv, Y.; Qiu, J.; Cui, S.; Gao, Z.; Peng, L. Ta4C3 MXene Slows Progression of Fatty Liver Disease through Its Anti-Inflammatory and ROS-Scavenging Effects. ACS Appl. Mater. Interfaces. 2025, 17, 17217. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Chen, H.; Liu, W.; Wu, Z.; Shang, C.; Wang, S.; Kang, Z.; Yue, H.; Wang, D.; Wei, C.; et al. Single-Frequency Pulsed Fiber Laser Enabled by Tantalum Carbide Featuring 2.8 μm Wavelength Tunability. J. Light. Technol. 2025, 43, 2277–2283. [Google Scholar] [CrossRef]
- Syamsai, R.; Grace, A.N. Ta4C3 MXene as supercapacitor electrodes. J. Alloys Compd. 2019, 792, 1230–1238. [Google Scholar] [CrossRef]
- Maldonado-Lopez, D.; Rodriguez, J.R.; Pol, V.G.; Syamsai, R.; Andrews, N.G.; Gutiérrez-Ojeda, S.J.; Ponce-Pérez, R.; Moreno-Armenta, M.G.; Guerrero-Sánchez, J. Atomic-scale understanding of li storage processes in the Ti4C3 and chemically ordered Ti2Ta2C3 MXenes: A theoretical and experimental assessment. ACS Appl. Energy Mater. 2022, 5, 1801–1809. [Google Scholar] [CrossRef]
- Guo, J.; Liu, Z.; Wageh, S.; Al-Hartomy, O.A.; Al-Sehemi, A.G.; Ge, Y.; He, W.; Wei, S.; Bao, W.; Zhang, H. Ta2C MXene: Nonlinear optical properties and application in femtosecond fiber laser. Opt. Laser Technol. 2023, 161, 109178. [Google Scholar] [CrossRef]
- Liu, X.; Deng, J.; Lu, Y.; Huang, R.; Mai, F.; Li, X.; Deng, Z.; Ji, L.; Bai, X. Multi-crosslinked Ta4C3TX MXene composites with “interlocked structure” for efficient gamma-ray shielding, behavioural detection and thermal management in nuclear environments. Compos. Part A Appl. Sci. Manuf. 2025, 189, 108597. [Google Scholar] [CrossRef]
- Du, B.; Zhao, Z.; Ren, Z.; Liu, Q.; Zhang, F. 2D Ta4AlC3 and Ta4C3 nanosheets with excellent ultraviolet optical limiting behavior for laser protection. J. Mater. Chem. C 2024, 12, 7748–7758. [Google Scholar] [CrossRef]
- Sahu, S.; Purkayastha, D.D. 2D Titanium Carbide MXene-Interfaced Zinc Oxide/Tungstite Architectures Adorned Mixed Matrix Polymer Membranes for Oily Wastewater Treatment. ACS Appl. Mater. Interfaces 2025, 17, 5278–5289. [Google Scholar] [CrossRef]
- Wang, S.; Guan, C.; Zhao, Z.; Wang, R.; Tian, Y.; Du, Y. Density functional theory analysis of electronic and optical properties of two-dimensional tantalum carbides Tn+1Cn (n = 1, 2, 3). Phys. Status Solidi (b) 2019, 256, 1800457. [Google Scholar] [CrossRef]
- Wang, T.; Chen, S.; Pang, H.; Xue, H.; Yu, Y. MoS2-based nanocomposites for electrochemical energy storage. Adv. Sci. 2017, 4, 1600289. [Google Scholar] [CrossRef]
- Wu, T.; Pang, X.; Zhao, S.; Xu, S.; Liu, Z.; Li, Y.; Huang, F. One-Step Construction of Ordered Sulfur-Terminated Tantalum Carbide MXene for Efficient Overall Water Splitting. Small Struct. 2022, 3, 2100206. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, J.; Zhao, Y.; Wu, F.; Lv, T.; Yu, L.; Yu, C.; Zhao, C.; Xing, G. Ta4C3TX/graphene aerogels with combined photo/electro-thermal conversion performances for multifunctional applications. Chem. Eng. J. 2024, 489, 151196. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, L.; Zhao, Y.; Zhao, T.; Yang, Y.; Yu, C.; Zhao, C.; Xing, G. Synergistic NH2-MIL-88B/Ta4C3TX/graphene aerogels for sustainable wastewater treatment and thermal energy storage. Carbon 2025, 232, 119823. [Google Scholar] [CrossRef]
- Li, S.; Ma, J.; Zhao, X.; Zhu, P.; Xu, M.; Niu, Y.; Luo, D.; Xu, Q. Highly fluorescence Ta4C3 MXene quantum dots as fluorescent nanoprobe for heavy ion detection and stress monitoring of fluorescent hydrogels. Chin. Chem. Lett. 2022, 33, 1850–1854. [Google Scholar] [CrossRef]
- Stavrou, M.; Chacon, B.; Farsari, M.; Pappa, A.; Delogu, L.; Gogotsi, Y.; Gray, D. Emerging Ta4C3 and Mo2Ti2C3 MXene Nanosheets for Ultrafast Photonics. Adv. Optical Mater. 2025, 13, 2403277. [Google Scholar] [CrossRef]
- Guo, J.; Hu, D.; Bai, C.; Xu, L.; Xiao, H.; Shi, Q.; Li, X.; Chen, X.; Ma, Y.; Fang, G. Structural and electrochemical properties of Tan+1Cn MXene anode materials for metal-ion batteries. Inorg. Chem. Front. 2024, 11, 2945–2956. [Google Scholar] [CrossRef]
- Pan, X.; Siewerdsen, J.; La Riviere, P.J.; Kalender, W.A. Anniversary Paper: Development of X-ray computed tomography: The role of Medical Physics and AAPM from the 1970s to present. Med. Phys. 2008, 35, 3728–3739. [Google Scholar] [CrossRef]
- Lee, N.; Choi, S.H.; Hyeon, T. Nano-Sized CT Contrast Agents. Adv. Mater. 2013, 25, 2641–2660. [Google Scholar] [CrossRef]
Precursor | Intercalating Agents | Intercalation and Delamination Method | Product | Ref. |
---|---|---|---|---|
Ta4C3Tx | TMAOH | Stirred for 24 h | 2D Ta4C3Tx | [12] |
Ta4C3Tx | TPAOH | Stirring overnight | Ta4C3Tx nanosheet | [29] |
Ta4C3Tx | TPAOH | Stirred for 2 days | 2D Ta4C3Tx | [14] |
Ta4C3Tx | TBAOH | Sonicating | few-layered or mono-layered Ta4C3Tx | [32] |
Ta4C3Tx | TBAOH | Stirred for 4 h | 2D Ta4C3Tx | [26] |
Material | Properties of Ta-MXene | Ta-MXene’s Function | Application | Ref. |
---|---|---|---|---|
Ta4C3Tx-Ta2O5 | Superior electrical conductivity, good mechanical properties | Formation of a robust shielding layer on the Li metal surface to inhibit the growth of Li dendrites | Li-S batteries | [9] |
VO2(B)@Ta4C3 | A high specific surface area, high electrical conductivity | Increases the number of active sites, improve the conductivity and ion diffusion efficiency | ZIBs | [26] |
2D Ta4C3 supported 2D MoS2 | A larger interlayer spacing | An ideal matrix for constructing a 3D heterostructure | Sodium ion capacitors | [8] |
Exfoliated Ta2CS2 | Excellent conductivity, high specific surface area and the exposed activity | Decreases overpotential | Electrocatalytic HER an OER | [41] |
Ta4C3 MXene/gold nanostar | High specific surface area, excellent conductivity | Strong adsorption capacity for detection molecules, improved photoelectron transfer | SERS | [15] |
Monolayer Ta4C3Tx | High adsorption energy for ammonia | Strong reactions to ammonia | Ammonia detection | [12] |
Ta4C3 nanosheet/melamine | Layered nanostructure, impressive mechanical properties, and excellent metallic conductivity | Prolonged sensor lifespan and improved suitability | Piezoresistive Sensors | [30] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Xu, L.; Guo, M.; Shang, H.; Luo, X.; Ma, Y. Recent Advances in Tantalum Carbide MXenes: Synthesis, Structure, Properties, and Novel Applications. Crystals 2025, 15, 558. https://doi.org/10.3390/cryst15060558
Li M, Xu L, Guo M, Shang H, Luo X, Ma Y. Recent Advances in Tantalum Carbide MXenes: Synthesis, Structure, Properties, and Novel Applications. Crystals. 2025; 15(6):558. https://doi.org/10.3390/cryst15060558
Chicago/Turabian StyleLi, Mingfeng, Li Xu, Mengdi Guo, Hao Shang, Xiao Luo, and Yanan Ma. 2025. "Recent Advances in Tantalum Carbide MXenes: Synthesis, Structure, Properties, and Novel Applications" Crystals 15, no. 6: 558. https://doi.org/10.3390/cryst15060558
APA StyleLi, M., Xu, L., Guo, M., Shang, H., Luo, X., & Ma, Y. (2025). Recent Advances in Tantalum Carbide MXenes: Synthesis, Structure, Properties, and Novel Applications. Crystals, 15(6), 558. https://doi.org/10.3390/cryst15060558