Beyond Theoretical Limits: Extra Capacity in Conversion Reaction of Transition Metal Oxide Anodes for Lithium-Ion Batteries
Abstract
1. Introduction
- Formation of electrode–electrolyte interphases, such as the solid electrolyte interphase (SEI) or polymeric/gel-like films, results from electrolyte decomposition and associated side reactions [32].
- Reversible reaction of LiOH with lithium takes place to form Li2O and LiH, as observed in RuO2-based electrodes [35].
- Lithium-rich phase formation: Under deep lithiation, some TMOs form amorphous or metastable lithium-rich phases that incorporate more Li than the stoichiometry of the conversion reaction products [36].
- Distinct structural architectures enable enhanced Li+ storage through features such as high specific surface areas, nanocavities, and interconnected meso- and/or nanoporous networks [37].
- The inherent lithium storage capability of conductive additives, which are often used in relatively large quantities (typically 15–50%) during cell fabrication, particularly for TMOs with low electronic conductivity such as Fe2O3 [38].
2. Conversion Reaction of Transition Metal Oxides
2.1. Overview of Conversion Reaction Mechanism
2.2. Challenges of Conversion-Type TMO Anodes
2.3. Solutions and Strategies
3. Lithium Storage Mechanisms of Extra Capacity
3.1. Reversible SEI Formation
3.2. Polymeric or Gel-like Film Formation
3.3. Interfacial Lithium Storage at Phase Boundaries
3.4. Lithium-Rich Phase Formation
3.5. Generation of LiOH and Its Subsequent Reversible Reaction
4. Future Perspectives
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chee, W.; Lim, H.; Harrison, I.; Chong, K.; Zainal, Z.; Ng, C.; Huang, N. Performance of Flexible and Binderless Polypyrrole/Graphene Oxide/Zinc Oxide Supercapacitor Electrode in a Symmetrical Two-Electrode Configuration. Electrochim. Acta 2015, 157, 88–94. [Google Scholar] [CrossRef]
- Li, M.; Lu, J.; Chen, Z.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561. [Google Scholar] [CrossRef]
- Wang, J.; Li, H.; Han, L.; Zhang, W.; Cai, J.; Zhong, M.; Zhao, Z. Electrochemical Performance of Bamboo Porous C@SiO2 Anode Composites. Int. J. Electrochem. Sci. 2022, 17, 22092. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, G.; Xu, S.; He, Y.; Liu, X. Thermal treatment process for the recovery of valuable metals from spent lithium-ion batteries. Hydrometallurgy 2016, 165, 390–396. [Google Scholar] [CrossRef]
- Manfo, T.A.; Şahin, M.E. Intercalation reaction in lithium-ion battery: Effect on cell characteristics. Int. J. Mater. Eng. Technol. 2023, 6, 70–78. [Google Scholar]
- Xiang, J.; Wei, Y.; Zhong, Y.; Yang, Y.; Cheng, H.; Yuan, L.; Xu, H.; Huang, Y. Building practical high-voltage cathode materials for lithium-ion batteries. Adv. Mater. 2022, 34, 2200912. [Google Scholar] [CrossRef]
- Whittingham, M.S. Lithium batteries and cathode materials. Chem. Rev. 2004, 104, 4271–4302. [Google Scholar] [CrossRef]
- Zhao, W.; Zhao, C.; Wu, H.; Li, L.; Zhang, C. Progress, challenge and perspective of graphite-based anode materials for lithium batteries: A review. J. Energy Storage 2024, 81, 110409. [Google Scholar] [CrossRef]
- Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243–3262. [Google Scholar] [CrossRef]
- Zhu, G.; Zhang, Q.; Behzadnia, M.; Yang, Z.; Liu, Y. Multinonmetal-Doped V2O5 Nanocomposites for Lithium-Ion Battery Cathodes. ACS Appl. Energy Mater. 2024, 7, 11031–11037. [Google Scholar] [CrossRef]
- Feng, K.; Li, M.; Liu, W.; Kashkooli, A.G.; Xiao, X.; Cai, M.; Chen, Z. Silicon-based anodes for lithium-ion batteries: From fundamentals to practical applications. Small 2018, 14, 1702737. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Huang, X.; Chen, L.; Wu, Z.; Liang, Y. A high capacity nano Si composite anode material for lithium rechargeable batteries. Electrochem. Solid-State Lett. 1999, 2, 547. [Google Scholar] [CrossRef]
- Chan, C.K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X.F.; Huggins, R.A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Zhou, X.; Liu, Y.; Zhu, L. Crack-free silicon monoxide as anodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 57141–57145. [Google Scholar] [CrossRef]
- Cao, K.; Jin, T.; Yang, L.; Jiao, L. Recent progress in conversion reaction metal oxide anodes for Li-ion batteries. Mater. Chem. Front. 2017, 1, 2213–2242. [Google Scholar] [CrossRef]
- Wu, H.B.; Chen, J.S.; Hng, H.H.; Lou, X.W. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 2012, 4, 2526–2542. [Google Scholar] [CrossRef]
- Reddy, M.V.; Yu, T.; Sow, C.H.; Shen, Z.X.; Lim, C.T.; Rao, G.V.S.; Chowdari, B.V.R. Alpha-Fe2O3 nanoflakes as an anode material for Li-ion batteries. Adv. Funct. Mater. 2007, 17, 2792–2799. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, H.B.; Lou, X.W. Iron-Oxide-Based Advanced Anode Materials for LithiumIon Batteries. Adv. Energy Mater. 2014, 4, 1300958. [Google Scholar] [CrossRef]
- Kraytsberg, A.; Ein-Eli, Y. A critical review-promises and barriers of conversion electrodes for Li-ion batteries. J. Solid State Electrochem. 2017, 21, 1907–1923. [Google Scholar] [CrossRef]
- Fang, S.; Bresser, D.; Passerini, S. Transition Metal Oxide Anodes for Electrochemical Energy Storage in Lithium- and Sodium-Ion Batteries. Adv. Energy Mater. 2020, 10, 1902485. [Google Scholar] [CrossRef]
- Lu, Y.; Yu, L.; Lou, X.W. Nanostructured Conversion-type Anode Materials for Advanced Lithium-Ion Batteries. Chem 2018, 4, 972–996. [Google Scholar] [CrossRef]
- Jia, C.; Cao, B.; Zhang, W. Electrochemical properties of anatase TiO2 nanotubes as an anode material for lithium-ion batteries. Electrochim. Acta 2007, 52, 8044–8047. [Google Scholar]
- Paul, S.; Rahman, M.A.; Sharif, S.B.; Kim, J.-H.; Siddiqui, S.-E.-T.; Hossain, M.A.M. TiO2 as an Anode of high-performance lithium-ion batteries: A Comprehensive Review towards Practical Application. Nanomaterials 2022, 12, 2034. [Google Scholar]
- Das, S.; Bhowmik, K.C.; Rahman, A.; Barua, S. Anatase TiO2 as Anode of Lithium-Ion Batteries: A Comprehensive Review on Sustainable Synthesis and Electrochemical Properties. Adv. Energy Sustain. Res. 2025, 2500190. [Google Scholar] [CrossRef]
- Laruelle, S.; Grugeon, S.; Poizot, P.; Dollé, M.; Dupont, L.; Tarascon, J.-M. On the Origin of the Extra Electrochemical Capacity Displayed by MO/Li Cells at Low Potential. J. Electrochem. Soc. 2002, 149, A627. [Google Scholar] [CrossRef]
- Zheng, X.; Li, J. A review of research on hematite as anode material for lithium-ion batteries. Ionics 2014, 20, 1651–1663. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, D.; Li, Y.; Yuan, T.; Bahlawane, N.; Liang, C.; Sun, W.; Lu, Y.; Yan, M. Amorphous Fe2O3 as a high-rate and long-life anode material for lithium ion batteries. Nano Energy 2014, 4, 23–30. [Google Scholar] [CrossRef]
- Sun, Y.; Hu, X.; Luo, W.; Huang, Y. Self-assembled hierarchical MoO2/graphene nanoarchitectures and their application as a high-performance anode material for lithium-ion batteries. ACS Nano 2011, 5, 7100–7107. [Google Scholar] [CrossRef]
- Wang, H.; Li, T.; Hashem, A.M.; Abdel-Ghany, A.E.; El-Tawil, R.S.; Abuzeid, H.M.; Coughlin, A.; Chang, K.; Zhang, S.; El-Mounayri, H.; et al. Nanostructured molybdenum-oxide anodes for lithium-ion batteries: An outstanding increase in capacity. Nanomaterials 2021, 12, 13. [Google Scholar] [CrossRef]
- Keppeler, M.; Srinivasan, M. Interfacial Phenomena/Capacities Beyond Conversion Reaction Occurring in Nano-sized Transition-Metal-Oxide-Based Negative Electrodes in Lithium-Ion Batteries: A Review. ChemElectroChem 2017, 4, 2727–2754. [Google Scholar] [CrossRef]
- Kim, H.; Choi, W.; Yoon, J.; Um, J.H.; Lee, W.; Kim, J.; Cabana, J.; Yoon, W.-S. Exploring anomalous charge storage in anode materials for next-generation Li rechargeable batteries. Chem. Rev. 2020, 120, 6934–6976. [Google Scholar] [CrossRef] [PubMed]
- Su, D.; Kim, H.-S.; Kim, W.-S.; Wang, G. Synthesis of tuneable porous hematites (α-Fe2O3) for gas sensing and lithium storage in lithium ion batteries. Microporous Mesoporous Mater. 2012, 149, 36–45. [Google Scholar] [CrossRef]
- Jamnik, J.; Maier, J. Nanocrystallinity effects in lithium battery materials Aspects of nano-ionics. Part IV. Phys. Chem. Chem. Phys. 2003, 5, 5215–5220. [Google Scholar] [CrossRef]
- Zhukovskii, Y.F.; Balaya, P.; Dolle, M.; Kotomin, E.A.; Maier, J. Enhanced lithium storage and chemical diffusion in metal-LiF nanocomposites: Experimental and theoretical results. Phys. Rev. B 2007, 76, 235414. [Google Scholar] [CrossRef]
- Hu, Y.-Y.; Liu, Z.; Nam, K.-W.; Borkiewicz, O.J.; Cheng, J.; Hua, X.; Dunstan, M.T.; Yu, X.; Wiaderek, K.M.; Du, L.-S.; et al. Origin of additional capacities in metal oxide lithium-ion battery electrodes. Nat. Mater. 2013, 12, 1130–1136. [Google Scholar] [CrossRef]
- Shon, J.K.; Lee, H.S.; Park, G.O.; Yoon, J.; Park, E.; Park, G.S.; Kong, S.S.; Jin, M.; Choi, J.-M.; Chang, H.; et al. Discovery of abnormal lithium-storage sites in molybdenum dioxide electrodes. Nat. Commun. 2016, 7, 11049. [Google Scholar] [CrossRef]
- Chen, S.Q.; Wang, Y. Microwave-assisted synthesis of a Co3O4–graphene sheet-on-sheet nanocomposite as a superior anode material for Li-ion batteries. J. Mater. Chem. 2010, 20, 9735–9739. [Google Scholar] [CrossRef]
- Zhai, Y.; Ma, X.; Mao, H.; Shao, W.; Xu, L.; He, Y.; Qian, Y. Mn-Doped α-FeOOH Nanorods and α-Fe2O3 Mesoporous Nanorods: Facile Synthesis and Applications as High Performance Anodes for LIBs. Adv. Electron. Mater. 2015, 1, 1400057. [Google Scholar] [CrossRef]
- Armand, M.; Tarascon, J.-M. Building better batteries. Nature 2008, 451, 652–657. [Google Scholar] [CrossRef]
- Cao, K.; Jiao, L.; Xu, H.; Liu, H.; Kang, H.; Zhao, Y.; Liu, Y.; Wang, Y.; Yuan, H. Reconstruction of mini-hollow polyhedron Mn2O3 derived from MOFs as a high-performance lithium anode material. Adv. Sci. 2016, 3, 1500185. [Google Scholar] [CrossRef]
- Deng, Y.; Wan, L.; Xie, Y.; Qin, X.; Chen, G. Recent advances in Mn-based oxides as anode materials for lithium ion batteries. RSC Adv. 2014, 4, 23914–23935. [Google Scholar] [CrossRef]
- Liu, X.; Chen, C.; Zhao, Y.; Jia, B.; Yu, B. A review on the synthesis of manganese oxide nanomaterials and their applications on lithium-ion batteries. J. Nanomater. 2013, 2013, 736375. [Google Scholar] [CrossRef]
- Koo, B.; Xiong, H.; Slater, M.D.; Prakapenka, V.B.; Balasubramanian, M.; Podsiadlo, P.; Johnson, C.S.; Rajh, T.; Shevchenko, E.V. Hollow iron oxide nanoparticles for application in lithium ion batteries. Nano Lett. 2012, 12, 2429–2435. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Chen, Y.; Konstantinov, K.; Yao, J.; Ahn, J.-H.; Liu, H.; Dou, S. Nanosize cobalt oxides as anode materials for lithium-ion batteries. J. Alloys Compd. 2002, 340, L5–L10. [Google Scholar] [CrossRef]
- Wu, J.; Lau, W.-M.; Geng, D.-S. Recent progress in cobalt-based compounds as high-performance anode materials for lithium ion batteries. Rare Met. 2017, 36, 307–320. [Google Scholar] [CrossRef]
- Hou, C.; Wang, B.; Murugadoss, V.; Vupputuri, S.; Chao, Y.; Guo, Z.; Wang, C.; Du, W. Recent advances in Co3O4 as anode materials for high-performance lithium-ion batteries. Eng. Sci. 2020, 11, 19–30. [Google Scholar] [CrossRef]
- Wang, G.; Chen, Y.; Konstantinov, K.; Lindsay, M.; Liu, H.; Dou, S. Investigation of cobalt oxides as anode materials for Li-ion batteries. J. Power Sources 2002, 109, 142–147. [Google Scholar] [CrossRef]
- Cao, K.; Jiao, L.; Liu, Y.; Liu, H.; Wang, Y.; Yuan, H. Ultra-high capacity lithium-ion batteries with hierarchical CoO nanowire clusters as binder free electrodes. Adv. Funct. Mater. 2015, 25, 1082–1089. [Google Scholar]
- Ortiz, M.G.; Visintin, A.; Real, S.G. Synthesis and electrochemical properties of nickel oxide as anodes for lithium-ion batteries. J. Electroanal. Chem. 2021, 883, 114875. [Google Scholar] [CrossRef]
- Zhou, G.; Ding, W.; Guan, Y.; Wang, T.; Liu, C.; Zhang, L.; Yin, J.; Fu, Y. Progress of NiO-Based Anodes for High-Performance Li-Ion Batteries. Chem. Rec. 2022, 22, e202200111. [Google Scholar]
- Delmer, O.; Balaya, P.; Kienle, L.; Maier, J. Enhanced potential of amorphous electrode materials: Case study of RuO2. Adv. Mater. 2008, 20, 501–505. [Google Scholar] [CrossRef]
- Gregorczyk, K.E.; Liu, Y.; Sullivan, J.P.; Rubloff, G.W. In situ transmission electron microscopy study of electrochemical lithiation and delithiation cycling of the conversion anode RuO2. Acs Nano 2013, 7, 6354–6360. [Google Scholar] [CrossRef]
- Wang, H.; Hao, W.; Li, T.; Li, X.; Chang, K.; Zhou, X.; Hou, D.; Hashem, A.M.; Hwang, G.S.; Liu, Y.; et al. Elucidating the Mechanism Underlying the Augmented Capacity of MoO2 as an Anode Material in Li-Ion Batteries. J. Mater. Chem. A 2023, 11, 23012–23025. [Google Scholar] [CrossRef]
- Gao, L.; Wang, X.; Xie, Z.; Song, W.; Wang, L.; Wu, X.; Qu, F.; Chen, D.; Shen, G. High-performance energy-storage devices based on WO3 nanowire arrays/carbon cloth integrated electrodes. J. Mater. Chem. A 2013, 1, 7167–7173. [Google Scholar] [CrossRef]
- Zheng, M.; Tang, H.; Hu, Q.; Zheng, S.; Li, L.; Xu, J.; Pang, H. Tungsten-based materials for lithium-ion batteries. Adv. Funct. Mater. 2018, 28, 1707500. [Google Scholar] [CrossRef]
- Shinde, P.A.; Jun, S.C. Review on recent progress in the development of tungsten oxide based electrodes for electrochemical energy storage. ChemSusChem 2020, 13, 11–38. [Google Scholar] [CrossRef]
- Xiao, Y.; Jiang, M.; Cao, M. Developing WO3 as high-performance anode material for lithium-ion batteries. Mater. Lett. 2021, 285, 129129. [Google Scholar] [CrossRef]
- Yu, S.; Lee, S.H.; Lee, D.J.; Sung, Y.; Hyeon, T. Conversion reaction-based oxide nanomaterials for lithium ion battery anodes. Small 2016, 12, 2146–2172. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, L.; Lou, X.W. Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 2012, 24, 1903–1911. [Google Scholar] [CrossRef]
- Xu, S.; Hessel, C.M.; Ren, H.; Yu, R.; Jin, Q.; Yang, M.; Zhao, H.; Wang, D. α-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention. Energy Environ. Sci. 2014, 7, 632–637. [Google Scholar] [CrossRef]
- Huang, G.; Xu, S.; Lu, S.; Li, L.; Sun, H. Micro-/Nanostructured Co3O4 Anode with Enhanced Rate Capability for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2014, 6, 7236–7243. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, L.P.; Sougrati, M.T.; Feng, Z.; Leconte, Y.; Fisher, A.; Srinivasan, M.; Xu, Z. A review on design strategies for carbon based metal oxides and sulfides nanocomposites for high performance Li and Na ion battery anodes. Adv. Energy Mater. 2017, 7, 1601424. [Google Scholar] [CrossRef]
- Chen, L.; Qu, Y.; Ma, Y. Carbon-assisted conversion reaction-based oxide nanomaterials for lithium-ion batteries. Sustain. Energy Fuels 2018, 2, 1124–1140. [Google Scholar]
- Deng, X.; Chen, Z.; Cao, Y. Transition metal oxides based on conversion reaction for sodium-ion battery anodes. Mater. Today Chem. 2018, 9, 114–132. [Google Scholar] [CrossRef]
- Wei, X.; Wang, X.; Tan, X.; An, Q.; Mai, L. Nanostructured conversion-type negative electrode materials for low-cost and high-performance sodium-ion batteries. Adv. Funct. Mater. 2018, 28, 1804458. [Google Scholar] [CrossRef]
- Dou, S.X.; Yu, Y. The state and challenges of anode materials based on conversion reactions for sodium storage. Small 2018, 14, 1703671. [Google Scholar] [CrossRef]
- Xu, K. Electrolytes and Interphases in Li-Ion Batteries and Beyond. Chem. Rev. 2014, 114, 11503–11618. [Google Scholar] [CrossRef]
- Leung, K. Two-electron reduction of ethylene carbonate: A quantum chemistry re-examination of mechanisms. Chem. Phys. Lett. 2013, 568–569, 1–8. [Google Scholar] [CrossRef]
- Horstmann, B.; Single, F.; Latz, A. Review on multi-scale models of solid-electrolyte interphase formation. Curr. Opin. Electrochem. 2019, 13, 61–69. [Google Scholar] [CrossRef]
- Yan, C.; Cheng, X.-B.; Zhao, C.-Z.; Huang, J.-Q.; Yang, S.-T.; Zhang, Q. Lithium metal protection through in-situ formed solid electrolyte interphase in lithium-sulfur batteries: The role of polysulfides on lithium anode. J. Power Sources 2016, 327, 212–220. [Google Scholar] [CrossRef]
- Peled, E.; Menkin, S. Review—SEI: Past, Present and Future. J. Electrochem. Soc. 2017, 164, A1703. [Google Scholar] [CrossRef]
- Cheng, M.-Y.; Ye, Y.-S.; Chiu, T.-M.; Pan, C.-J.; Hwang, B.-J. Size effect of nickel oxide for lithium ion battery anode. J. Power Sources 2014, 253, 27–34. [Google Scholar] [CrossRef]
- Qian, J.; Henderson, W.A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J.-G. High rate and stable cycling of lithium metal anode. Nat. Commun. 2015, 6, 6362. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, S.; Stavrinadis, A.; Gupta, S.; Christodoulou, S.; Konstantatos, G. Breaking the Open-Circuit Voltage Deficit Floor in PbS Quantum Dot Solar Cells through Synergistic Ligand and Architecture Engineering. ACS Energy Lett. 2017, 2, 1444–1449. [Google Scholar] [CrossRef]
- McDowell, M.T.; Lee, S.W.; Nix, W.D.; Cui, Y. 25th Anniversary Article: Understanding the Lithiation of Silicon and Other Alloying Anodes for Lithium-Ion Batteries. Adv. Mater. 2013, 25, 4966–4985. [Google Scholar] [CrossRef]
- Lin, F.; Markus, I.M.; Nordlund, D.; Weng, T.-C.; Asta, M.D.; Xin, H.L.; Doeff, M.M. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat. Commun. 2014, 5, 3529. [Google Scholar] [CrossRef]
- Javad, R.S.; Roberto, G.; Agnieszka, W.; Franziska, M.; Marta, P.; Francesco, N.; Stefano, P.; Di, C.A. Is the Solid Electrolyte Interphase an Extra-Charge Reservoir in Li-Ion Batteries? ACS Appl. Mater. Interfaces 2017, 9, 4570–4576. [Google Scholar]
- Sun, H.; Xin, G.; Hu, T.; Yu, M.; Shao, D.; Sun, X.; Lian, J. High-rate lithiation-induced reactivation of mesoporous hollow spheres for long-lived lithium-ion batteries. Nat. Commun. 2014, 5, 4526. [Google Scholar] [CrossRef]
- Li, X.; Ma, Y.; Qin, L.; Zhang, Z.; Zhang, Z.; Zheng, Y.-Z.; Qu, Y. A bottom-up synthesis of α-Fe2O3 nanoaggregates and their composites with graphene as high performance anodes in lithium-ion batteries. J. Mater. Chem. A 2015, 3, 2158–2165. [Google Scholar] [CrossRef]
- Zhang, S.S. A review on electrolyte additives for lithium-ion batteries. J. Power Sources 2006, 162, 1379–1394. [Google Scholar] [CrossRef]
- Aurbach, D.; Ein-Eli, Y.; Markovsky, B.; Zaban, A.; Luski, S.; Carmeli, Y.; Yamin, H. The Study of Electrolyte Solutions Based on Ethylene and Diethyl Carbonates for Rechargeable Li Batteries: II. Graphite Electrodes. J. Electrochem. Soc. 1995, 142, 2882. [Google Scholar] [CrossRef]
- Yao, X.; Tang, C.; Yuan, G.; Cui, P.; Xu, X.; Liu, Z. Porous hematite (α-Fe2O3) nanorods as an anode material with enhanced rate capability in lithium-ion batteries. Electrochem. Commun. 2011, 13, 1439–1442. [Google Scholar] [CrossRef]
- Chen, D.; Quan, H.; Liang, J.; Guo, L. One-pot synthesis of hematite@graphene core@shell nanostructures for superior lithium storage. Nanoscale 2013, 5, 9684–9689. [Google Scholar] [CrossRef] [PubMed]
- Deshmukh, A.B.; Dwivedi, P.K.; Nalawade, A.C.; Qureshi, M.S.; Shelke, M.V. Highly durable Li-ion battery anode from Fe3O4 nanoparticles embedded in nitrogen-doped porous carbon with improved rate capabilities. J. Mater. Sci. 2020, 55, 15667–15680. [Google Scholar] [CrossRef]
- Tripathy, D.; Sampath, S. Understanding the high capacity contributions of Cu3PS4 towards lithium storage. J. Power Sources 2020, 478, 229066. [Google Scholar] [CrossRef]
- Hu, L.; Huang, Y.; Zhang, F.; Chen, Q. CuO/Cu2O composite hollow polyhedrons fabricated from metal–organic framework templates for lithium-ion battery anodes with a long cycling life. Nanoscale 2013, 5, 4186–4190. [Google Scholar] [CrossRef]
- Chu, L.; Shi, Y.; Li, Z.; Sun, C.; Yan, H.; Ma, J.; Li, X.; Liu, C.; Gu, J.; Liu, K.; et al. Solid electrolyte interphase on anodes in rechargeable lithium batteries. Nano Res. 2023, 16, 11589–11603. [Google Scholar] [CrossRef]
- Huang, J.; Hu, L.; Xu, H.; Yang, Z.; Li, J.; Wang, P. Flexible g-C3N4 Enhancing Superior Cycling Stability of ZnFe2O4-Fe2O3 Nanosheet Composites as High-Capacity Anode Materials for Lithium-Ion Batteries. ChemElectroChem 2023, 10, e202300248. [Google Scholar] [CrossRef]
- Guo, D.; Zhang, M.; Chen, Z.; Liu, X.-X. The construction of a sandwich structured Co3O4@C@PPy electrode for improving pseudocapacitive storage. RSC Adv. 2018, 8, 33374–33382. [Google Scholar] [CrossRef]
- Balaya, P.; Li, H.; Duppel, V.; Kienle, L.; Maier, J. High capacity and coulombic efficiency of RuO2 as electrode material for rechargeable lithium batteries. J. Electrochem. Soc. 2001, 148, A1266–A1270. [Google Scholar]
- Zhou, X.; Wen, J.; Shen, D.; He, H.; Liao, M.; Wang, Y.; Li, Y.; Shi, H.; Qiu, S.; Jiang, C.; et al. Nucleation-density-regulated dimensional evolution of growth unit from 2D nanosheets to 1D nanoneedles in self-assembled hierarchical NiCo2O4 for enhanced lithium storage. J. Mater. Chem. A 2025, 13, 11834–11847. [Google Scholar] [CrossRef]
- Xue, C.; Zhang, Y.; Wang, L.; Du, C.; Chang, Z.; Geng, Q.; Li, Q.; Du, C.; Zhang, J. Research advances of amorphous metal oxides with the feature of Pseudocapacitance behavior in Lithium ion battery. J. Colloid Interface Sci. 2025, 700, 138331. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wu, Y.; Li, Q. Space Charge Storage Mechanism in Conversion-Type Electrode Materials. ChemSusChem 2025, 18, e2501139. [Google Scholar] [CrossRef]
- Li, H.; Balaya, P.; Maier, J. Li-Storage via Heterogeneous Reaction in Selected Binary Metal Fluorides and Oxides. J. Electrochem. Soc. 2004, 151, A1878. [Google Scholar] [CrossRef]
- Maier, J. Mass storage in space charge regions of nano-sized systems (Nano-ionics. Part V). Faraday Discuss. 2007, 134, 51–66. [Google Scholar] [CrossRef]
- Zhukovskii, Y.F.; Balaya, P.; Kotomin, E.A.; Maier, J. Evidence for Interfacial-Storage Anomaly in Nanocomposites for Lithium Batteries from First-Principles Simulations. Phys. Rev. Lett. 2006, 96, 058302. [Google Scholar] [CrossRef]
- Cherian, C.T.; Sundaramurthy, J.; Kalaivani, M.; Ragupathy, P.; Kumar, P.S.; Thavasi, V.; Reddy, M.V.; Sow, C.H.; Mhaisalkar, S.G.; Ramakrishna, S.; et al. Electrospun α-Fe2O3 nanorods as a stable, high capacity anode material for Li-ion batteries. J. Mater. Chem. 2012, 22, 12198–12204. [Google Scholar] [CrossRef]
- Chaudhari, S.; Srinivasan, M. 1D hollow α-Fe2O3 electrospun nanofibers as high performance anode material for lithium ion batteries. J. Mater. Chem. 2012, 22, 23049–23056. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, Y.; Wei, C.; Huang, X.; Zhang, X.; Wen, G. MoS2-based anode materials for lithium-ion batteries: Developments and perspectives. Particuology 2024, 87, 240–270. [Google Scholar] [CrossRef]
- Ahn, J.; Sasikala, S.P.; Jeong, Y.; Kim, J.G.; Ha, J.-H.; Hwang, S.H.; Jeon, S.; Choi, J.; Kang, B.-H.; Ahn, J.; et al. High-Energy–Density Fiber Supercapacitors Based on Transition Metal Oxide Nanoribbon Yarns for Comprehensive Wearable Electronics. Adv. Fiber Mater. 2024, 6, 1927–1941. [Google Scholar] [CrossRef]
- Li, K.; Xue, S.; Hu, Y.; Zheng, J.; Zhang, M.; Shen, Z. Size effect on interfacial pseudocapacitive contributions to lithium-ion storage in microscale carbon/TiO2 nanosheet composite. Mater. Today Sustain. 2022, 18, 100112. [Google Scholar] [CrossRef]
- Zeng, H.; Yu, K.; Li, J.; Yuan, M.; Wang, J.; Wang, Q.; Lai, A.; Jiang, Y.; Yan, X.; Zhang, G.; et al. Beyond LiF: Tailoring Li2O-Dominated Solid Electrolyte Interphase for Stable Lithium Metal Batteries. ACS Nano 2024, 18, 1969–1981. [Google Scholar] [CrossRef]
- Sun, J.-X.; Liu, S.-H.; Chen, L.-Y.; Zhu, D.-D.; Yu, H.-X.; Niu, Y.-Z.; Zhang, L.-Q.; Li, Q.-H.; He, Y.; Miao, G.-X.; et al. Accelerating charging and elevating capacity of TiO2 by interface space charge storage. Rare Met. 2025, 44, 5404–5411. [Google Scholar] [CrossRef]
- Li, H.; Xia, Q.; Hu, Z.; Zhu, Y.; Yan, S.; Ge, C.; Zhang, Q.; Wang, X.; Shang, X.; Fan, S.; et al. Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry. Nat. Mater. 2021, 20, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Xia, Q.; Zhang, H.; Li, Z.; Wang, H.; Li, X.; Zuo, F.; Zhang, F.; Wang, X.; Ye, W.; et al. Operando Magnetometry Probing the Charge Storage Mechanism of CoO Lithium-Ion Batteries. Adv. Mater. 2021, 33, 2006629. [Google Scholar] [CrossRef]
- Bock, D.C.; Pelliccione, C.J.; Zhang, W.; Timoshenko, J.; Knehr, K.W.; West, A.C.; Wang, F.; Li, Y.; Frenkel, A.I.; Takeuchi, E.S.; et al. Size dependent behavior of Fe3O4 crystals during electrochemical (de)lithiation: An in situ X-ray diffraction, ex situ X-ray absorption spectroscopy, transmission electron microscopy and theoretical investigation. Phys. Chem. Chem. Phys. 2017, 19, 20867–20880. [Google Scholar] [CrossRef]
- Xia, H.; Hu, Y.; Li, Z.; Lan, H.; Zhang, J. Electron Spin Polarization in Rechargeable Batteries: Theoretical Foundation and Practical Applications. Adv. Funct. Mater. 2024, 35, 2413491. [Google Scholar] [CrossRef]
- Zuo, F.; Zhang, H.; Ding, Y.; Liu, Y.; Li, Y.; Liu, H.; Gu, F.; Li, Q.; Wang, Y.; Zhu, Y.; et al. Electrochemical interfacial catalysis in Co-based battery electrodes involving spin-polarized electron transfer. Proc. Natl. Acad. Sci. USA 2023, 120, e2314362120. [Google Scholar] [CrossRef]
- Kang, S.K.; Kim, M.; Shin, H.H.; Yoon, W.; Lee, S.; Jang, D.; Choi, J.; Park, G.H.; Park, J.; Kim, W.B. Exceeding Theoretical Capacity in Exfoliated Ultrathin Manganese Ferrite Nanosheets via Galvanic Replacement-Derived Self-Hybridization for Fast Rechargeable Lithium-Ion Batteries. Adv. Funct. Mater. 2023, 33, 2300143. [Google Scholar] [CrossRef]
- Wang, F.; Wen, X.; Mittal, U.; Nekouei, R.K.; Foller, T.; Shang, Y.; Bhadra, A.; Chu, D.; Sharma, N.; Kundu, D.; et al. Structure-dependent lithium storage characteristics of Fe3O4/rGO aerogels. Carbon 2024, 222, 119003. [Google Scholar] [CrossRef]
- Teng, X.; Li, X.; Yang, H.; Guan, L.; Li, Y.; Yun, H.; Li, Z.; Li, Q.; Hu, H.; Wang, Z.; et al. Uncovering the origin of the anomalously high capacity of a 3d anode via in situ magnetometry. Chem. Sci. 2023, 14, 2455–2460. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Jiang, M.; Du, X.; Gao, X.; Feng, K.; Liu, Y.; Yang, X.; Sun, R.; Luo, D.; Chen, Z. Li2O-Enhanced Solid Electrolyte Interphase Surpassing LiF-Only SEI for High-Performance All-Solid-State Li Batteries. Adv. Energy Mater. 2025, 15, 2502589. [Google Scholar] [CrossRef]
- Ren, Y.-J.; Guan, H.-B.; Hou, Y.-L.; Zhang, B.-H.; Tian, K.-K.; Xiong, B.-Q.; Chen, J.-Z.; Zhao, D.-L. Enhancing Rapid Li+/Na+ Storage Performance via Interface Engineering of Reduced Graphene Oxide-Wrapped Bimetallic Sulfide Nanocages. ACS Appl. Mater. Interfaces 2024, 16, 45619–45631. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Han, M.; Yu, P.; Yu, J. Spin-Polarized Surface Capacitance Effects Enable Fe3O4 Anode Superior Wide Operation-Temperature Sodium Storage. Adv. Sci. 2024, 11, 2306992. [Google Scholar] [CrossRef]
- Zheng, K.; Mu, Y.; Han, M.; Liu, J.; Zou, Z.; Hu, H.; Chu, Y.; Yu, F.; Li, W.; Wei, L.; et al. Investigations of Mechanisms Leading to Capacity Differences in Li/Na/K-Ion Batteries with Conversion-Type Transition-Metal Sulfides Anodes. Adv. Sci. 2024, 11, 2410653. [Google Scholar] [CrossRef]
- Xia, C.; Zhou, Y.; Velusamy, D.B.; Farah, A.A.; Li, P.; Jiang, Q.; Odeh, I.N.; Wang, Z.; Zhang, X.; Alshareef, H.N. Anomalous Li Storage Capability in Atomically Thin Two-Dimensional Sheets of Nonlayered MoO2. Nano Lett. 2018, 18, 1506–1515. [Google Scholar] [CrossRef]
- Li, X.; Hao, W.; Wang, H.; Li, T.; Trikkaliotis, D.; Zhou, X.; Hou, D.; Chang, K.; Hashem, A.M.; Liu, Y. Lithium storage mechanisms and electrochemical behavior of a molybdenum disulfide nanoparticle anode. Energy Environ. Mater. 2025, 8, e12855. [Google Scholar] [CrossRef]
- Su, L.; Hei, J.; Wu, X.; Wang, L.; Zhou, Z. Ultrathin Layered Hydroxide Cobalt Acetate Nanoplates Face-to-Face Anchored to Graphene Nanosheets for High-Efficiency Lithium Storage. Adv. Funct. Mater. 2017, 27, 1605544. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Behzadnia, M.; Ramadan, R.; Jiao, X.; Hashem, A.M.; Zhu, L. Beyond Theoretical Limits: Extra Capacity in Conversion Reaction of Transition Metal Oxide Anodes for Lithium-Ion Batteries. Crystals 2025, 15, 832. https://doi.org/10.3390/cryst15100832
Behzadnia M, Ramadan R, Jiao X, Hashem AM, Zhu L. Beyond Theoretical Limits: Extra Capacity in Conversion Reaction of Transition Metal Oxide Anodes for Lithium-Ion Batteries. Crystals. 2025; 15(10):832. https://doi.org/10.3390/cryst15100832
Chicago/Turabian StyleBehzadnia, Mohammad, Rania Ramadan, Xuefeng Jiao, Ahmed M. Hashem, and Likun Zhu. 2025. "Beyond Theoretical Limits: Extra Capacity in Conversion Reaction of Transition Metal Oxide Anodes for Lithium-Ion Batteries" Crystals 15, no. 10: 832. https://doi.org/10.3390/cryst15100832
APA StyleBehzadnia, M., Ramadan, R., Jiao, X., Hashem, A. M., & Zhu, L. (2025). Beyond Theoretical Limits: Extra Capacity in Conversion Reaction of Transition Metal Oxide Anodes for Lithium-Ion Batteries. Crystals, 15(10), 832. https://doi.org/10.3390/cryst15100832