Effect of Pyrolysis Temperature on Microwave Heating Properties of Oxidation-Cured Polycarbosilane Powder
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eom, J.H.; Kim, Y.W.; Raju, S. Processing and properties of macroporous silicon carbide ceramics: A review. J. Asian Ceram. Soc. 2013, 1, 220–242. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, S.; Li, X.; Hong, C.; Zhang, X. Synthesis, properties, and multifarious applications of SiC nanoparticles: A review. Ceram. Int. 2022, 48, 8882–8913. [Google Scholar] [CrossRef]
- He, R.; Zhou, N.; Zhang, K.; Zhang, X.; Zhang, L.; Wang, W.; Fang, D. Progress and challenges towards additive manufacturing of SiC ceramic. J. Adv. Ceram. 2012, 10, 637–674. [Google Scholar] [CrossRef]
- An, Q.; Chen, J.; Ming, W.; Chen, M. Machining of SiC ceramic matrix composites: A review. Chin. J. Aeronaut. 2021, 34, 540–567. [Google Scholar] [CrossRef]
- Krenkel, W. Carbon fibre reinforced silicon carbide composites (C/SiC, C/C-SiC). In Handbook of Ceramic Composites; Springer: Boston, MA, USA, 2005; pp. 117–148. [Google Scholar]
- Sauder, C. Ceramic matrix composites: Nuclear applications. In Ceramic Matrix Composites: Materials, Modeling and Technology; Wiley: New York, NY, USA, 2014; pp. 609–646. [Google Scholar]
- Prasad, N.; Wanhill, R. Aerospace Materials and Material Technologies; Springer: Singapore, 2017; p. 343. [Google Scholar]
- Jones, D.A.; Lelyveld, T.P.; Mavrofidis, S.D.; Kingman, S.W.; Miles, N.J. Microwave heating applications in environmental engineering—A review. Resour. Conserv. Recycl. 2002, 34, 75–90. [Google Scholar] [CrossRef]
- Oliver Kappe, C. Controlled Microwave Heating in Modern Organic Synthesis. Angew. Chem. Int. Ed. 2004, 43, 6250–6284. [Google Scholar] [CrossRef] [PubMed]
- Olevsky, E.; Dudina, D.V. Chapter 7. Microwave Sintering. In Field-Assisted Sintering: Science and Applications; Springer: Cham, Switzerland, 2018; pp. 237–274. [Google Scholar]
- Yun, S.Y.; Woo, H.Y.; Jin, H.W.; Lee, J.G. Comparison and Analysis of Sintering Techniques for Lunar Construction Materials: A Review. J. Korea Concr. Inst. 2023, 35, 645–655. [Google Scholar] [CrossRef]
- Bhattacharya, M.; Basak, T. A review on the susceptor assisted microwave processing of materials. Energy 2016, 97, 306–338. [Google Scholar] [CrossRef]
- Borrell, A.; Salvador, M.D. Advanced ceramic materials sintered by microwave technology. In Sintering Technology—Method and Application; Liu, M., Ed.; InTech: Vienna, Austria, 2018; Volume 10, pp. 3–24. [Google Scholar]
- Joo, Y.J.; Cho, K.Y. Microwave-assisted heating behavior of amorphous SiC fibers derived from polycarbosilane. Mater. Res. Express 2021, 8, 035603. [Google Scholar] [CrossRef]
- Ke, C.; Liu, T.; Zhang, Y.; Xiong, Q. Energy absorption performances of silicon carbide particles during microwave heating process. Chem. Eng. Process. 2022, 172, 108796. [Google Scholar] [CrossRef]
- Shen, Z.; Chen, J.; Li, B.; Li, G.; Zhang, Z.; Hou, X. Recent progress in SiC nanowires as electromagnetic microwaves absorbing materials. J. Alloys Compd. 2020, 815, 15238. [Google Scholar] [CrossRef]
- Sugawara, H.; Kashimura, K.; Hayashi, M.; Ishihara, S.; Mitani, T.; Shinohara, N. Behavior of microwave-heated silicon carbide particles at frequencies of 2.0–13.5 GHz. Appl. Phys. Lett. 2014, 105, 034103. [Google Scholar] [CrossRef]
- Li, H.; Zhang, L.; Cheng, L.; Wang, Y.; Yu, Z.; Huang, M.; Xia, H. Effect of the polycarbosilane structure on its final ceramic yield. J. Eur. Ceram. Soc. 2008, 28, 887–891. [Google Scholar] [CrossRef]
- Taki, T.; Ohamura, K.; Sato, M. A study of the oxidation curing mechanism of polycarbosilane fibre by solid-state high-resolution nuclear magnetic resonance. J. Mater. Sci. 1989, 24, 1263–1267. [Google Scholar] [CrossRef]
- Narisawa, M.; Shimoda, M.; Okamura, K.; Sugimoto, M.; Seguchi, T. Reaction Mechanism of the Pyrolysis of Polycarbosilane and Polycarbosilazane as Ceramic Precursors. Bull. Chem. Soc. Jpn. 1995, 68, 1098–1104. [Google Scholar] [CrossRef]
- Joo, Y.J.; Joo, S.H.; Cho, K.Y. Effect of pyrolysis temperature and pressing load on the densification of amorphous silicon carbide block. J. Korean Cryst. Growth Cryst. Technol. 2020, 30, 271–276. [Google Scholar]
- Hong, J.; Cho, K.Y.; Shin, D.G.; Kim, J.I.; Riu, D.H. Iodine diffusion during iodine-vapor curing and its effects on the morphology of polycarbosilane/silicon carbide fibers. J. Appl. Polym. Sci. 2015, 132, 42687. [Google Scholar] [CrossRef]
- Ly, H.Q.; Taylor, R.; Day, R.J.; Heatley, F. Conversion of polycarbosilane (PCS) to SiC-based ceramic Part 1. Characterisation of PCS and curing products. J. Mater. Sci. 2001, 36, 4037–4043. [Google Scholar] [CrossRef]
- Xie, Z.; Gou, Y. Polyaluminocarbosilane as precursor for aluminum-containing SiC fiber from oxygen-free sources. Ceram. Int. 2016, 42, 10439–10443. [Google Scholar] [CrossRef]
- Yu, Y.; Guo, Y.; Cheng, X.; Zhang, Y. Pyrolysis behavior of titanium-containing polycarbosilane in air. J. Inorg. Organomet. Polym. Mater. 2010, 20, 714–719. [Google Scholar] [CrossRef]
- Song, Y.; Joo, Y.J.; Shin, D.G.; Cho, K.Y.; Lee, D. Thermal and rheological characterizations of polycarbosilane precursor by solvent treatment. Compos. Res. 2022, 35, 23–30. [Google Scholar]
- Hasegawa, Y.; Okamura, K. Synthesis of continuous silicon carbide fibre: Part 3 Pyrolysis process of polycarbosilane and structure of the products. J. Mater. Sci. 1983, 18, 3633–3648. [Google Scholar] [CrossRef]
- Li, X.; Xu, Z.; Chen, L.; Hong, L.; Li, Y. Thermal oxidation curing polycarbosilane fibers by alternating air and vacuum process. RSC Adv. 2020, 10, 26052–26058. [Google Scholar] [CrossRef]
- Usukawa, R.; Oda, H.; Ishikawa, T.; Usukawa, R.; Oda, H.; Ishikawa, T. Conversion process of amorphous Si-Al-CO fiber into nearly stoichiometric SiC polycrystalline fiber. J. Korean Ceram. Soc. 2016, 53, 610–614. [Google Scholar] [CrossRef]
- Ishikawa, T.; Oda, H.; Ishikawa, T.; Oda, H. Structural control aiming for high-performance SiC polycrystalline fiber. J. Korean Ceram. Soc. 2016, 53, 615–621. [Google Scholar] [CrossRef]
- Mishra, R.R.; Sharma, A.K. Microwave–material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing. Compos. Part A-Appl. 2016, 81, 78–97. [Google Scholar] [CrossRef]
- Perry, M.; Lentz, R. Susceptors in microwave packaging. In Development of Packaging and Products for Use in Microwave Ovens; Elsevier: Amsterdam, The Netherlands, 2009; pp. 207–236. [Google Scholar]
- Petersen, E.M.; Rao, R.G.; Vance, B.C.; Tessonnier, J.P. SiO2/SiC supports with tailored thermal conductivity to reveal the effect of surface temperature on Ru-catalyzed CO2 methanation. Appl. Catal. B-Environ. Energy. 2021, 286, 119904. [Google Scholar] [CrossRef]
- Sanghera, J.; Kim, W.; Villalobos, G.; Baker, C.; Frantz, J.; Shaw, B.; Aggarwal, I. Transparent ceramics for high power solid state lasers. Proc. SPIE—Int. Soc. Opt. Eng. 2011, 8039, 803–903. [Google Scholar]
- Burzo, M.G.; Komarov, P.L.; Raad, P.E. Thermal transport properties of gold-covered thin-film silicon dioxide. IEEE Trans. Compon. Packag. Technol. 2003, 26, 80–88. [Google Scholar] [CrossRef]
- Jacobson, N.S.; Myers, D.L. Active oxidation of SiC. Oxid. Met. 2011, 75, 1–25. [Google Scholar] [CrossRef]
- Varadachari, C.; Bhowmick, R.; Ghosh, K. Thermodynamics and oxidation behaviour of crystalline silicon carbide (3C) with atomic oxygen and ozone. Int. Sch. Res. Not. 2012, 1, 108781. [Google Scholar] [CrossRef]
- Ly, H.Q.; Taylor, R.; Day, R.J.; Heatley, F. Conversion of polycarbosilane (PCS) to SiC-based ceramic Part II Pyrolysis and characterisation. J. Mater. Sci. 2001, 36, 4045–4057. [Google Scholar] [CrossRef]
Element (wt.%) | ||||
---|---|---|---|---|
Pyrolysis Temperature (°C) | Si | C | O | C/Si (at%) |
1200 | 48.96 | 36.52 | 19.52 | 1.94 |
1300 | 48.67 | 41.09 | 10.24 | 1.97 |
1400 | 46.70 | 39.69 | 13.61 | 1.99 |
1500 | 48.80 | 44.47 | 6.73 | 2.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, C.-H.; Beak, J.-H.; Kim, S.-I.; Kim, S.-Y. Effect of Pyrolysis Temperature on Microwave Heating Properties of Oxidation-Cured Polycarbosilane Powder. Crystals 2024, 14, 1080. https://doi.org/10.3390/cryst14121080
Hwang C-H, Beak J-H, Kim S-I, Kim S-Y. Effect of Pyrolysis Temperature on Microwave Heating Properties of Oxidation-Cured Polycarbosilane Powder. Crystals. 2024; 14(12):1080. https://doi.org/10.3390/cryst14121080
Chicago/Turabian StyleHwang, Chang-Hun, Jong-Ha Beak, Sang-In Kim, and Se-Yun Kim. 2024. "Effect of Pyrolysis Temperature on Microwave Heating Properties of Oxidation-Cured Polycarbosilane Powder" Crystals 14, no. 12: 1080. https://doi.org/10.3390/cryst14121080
APA StyleHwang, C.-H., Beak, J.-H., Kim, S.-I., & Kim, S.-Y. (2024). Effect of Pyrolysis Temperature on Microwave Heating Properties of Oxidation-Cured Polycarbosilane Powder. Crystals, 14(12), 1080. https://doi.org/10.3390/cryst14121080