Photoluminescence and Temperature Sensing Properties of Bi3+/Sm3+ Co-Doped La2MgSnO6 Phosphor for Optical Thermometer
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhong, L.; Jiang, S.; Wang, X.; Li, Y.; Wang, Y.; Xie, J.; Ling, F.; Wang, Y.; Xiang, G.; Li, L.; et al. Dual-mode optical thermometry based on intervalence charge transfer excitations in Tb3+/Pr3+ co-doped CaNb2O6 phosphors. Ceram. Int. 2022, 48, 30005–30011. [Google Scholar] [CrossRef]
- Su, Y.; Yuan, L.; Liu, H.; Xiong, G.; Wu, H.; Hu, Y.; Cheng, X.; Jin, Y. Multi-site occupation of Cr3+ toward developing broadband near-infrared phosphors. Ceram. Int. 2021, 47, 23558–23563. [Google Scholar] [CrossRef]
- Guo, J.; Guo, J.; Gao, J.; Chen, J.; Yang, Y.; Yang, Y.; Zheng, L.; Li, Y.; Zhao, L.; Deng, B.; et al. A novel broadband-excited LaNb2VO9: Sm3+ orange-red-emitting phosphor with zero-thermal-quenching behavior for WLEDs and personal identification. Ceram. Int. 2022, 48, 26992–27002. [Google Scholar]
- Wang, C.; Jin, Y.; Yuan, L.; Wu, H.; Ju, G.; Li, Z.; Liu, D.; Lv, Y.; Chen, L.; Hu, Y. A spatial/temporal dual-mode optical thermometry platform based on synergetic luminescence of Ti4+-Eu3+ embedded flexible 3D micro-rod arrays: High-sensitive temperature sensing and multi-dimensional high-level secure anti-counterfeiting. Chem. Eng. J. 2019, 374, 992–1004. [Google Scholar] [CrossRef]
- Sinha, S.; Mahata, M.K.; Swart, H.C.; Kumar, A.; Kumar, K. Enhancement of upconversion, temperature sensing and cathodoluminescence in the K+/Na+ compensated CaMoO4: Er3+/Yb3+ nanophosphor. New J. Chem. 2017, 41, 5362–5372. [Google Scholar] [CrossRef]
- Wei, R.; Guo, J.; Li, K.; Yang, L.; Tian, X.; Li, X.; Hu, F.; Guo, H. Dual-emitting SrY2O4: Bi3+, Eu3+ phosphor for ratiometric temperature sensing. J. Lumin. 2019, 216, 116737. [Google Scholar] [CrossRef]
- Pankratov, V.; Popov, A.I.; Chernov, S.A.; Zharkouskaya, A.; Feldmann, C. Mechanism for energy transfer processes between Ce3+ and Tb3+ in LaPO4: Ce, Tb nanocrystals by time-resolved luminescence spectroscopy. Phys. Status Solidi B 2010, 247, 2252–2257. [Google Scholar] [CrossRef]
- Van Wijngaarden, J.; Scheidelaar, S.; Vlugt, T.; Reid, M.; Meijerink, A. Energy transfer mechanism for downconversion in the (Pr3+, Yb3+) couple. Phys. Rev. B 2010, 81, 155112. [Google Scholar] [CrossRef] [Green Version]
- Su, B.; Xie, H.; Tan, Y.; Zhao, Y.; Yang, Q.; Zhang, S. Luminescent properties, energy transfer, and thermal stability of double perovskites La2MgTiO6: Sm3+, Eu3+. J. Lumin. 2018, 204, 457–463. [Google Scholar] [CrossRef]
- Gao, P.; Dong, P.; Zhou, Z.; Li, Q.; Li, H.; Zhou, Z.; Xia, M.; Zhang, P. Enhanced luminescence and energy transfer performance of double perovskite structure Gd2MgTiO6: Bi3+, Mn4+ phosphor for indoor plant growth LED lighting. Ceram. Int. 2021, 47, 16588–16596. [Google Scholar] [CrossRef]
- Ji, C.; Huang, Z.; Wen, J.; Zhang, J.; Tian, X.; He, H.; Zhang, L.; Huang, T.-H.; Xie, W.; Peng, Y. Blue-emitting Bi-doped double perovskite Gd2ZnTiO6 phosphor with near-ultraviolet excitation for warm white light-emitting diodes. J. Alloys Compd. 2019, 788, 1127–1136. [Google Scholar] [CrossRef]
- Cai, P.; Qin, L.; Chen, C.; Wang, J.; Bi, S.; Kim, S.I.; Huang, Y.; Seo, H.J. Optical thermometry based on vibration sidebands in Y2MgTiO6: Mn4+ double perovskite. Inorg. Chem. 2018, 57, 3073–3081. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Mu, Z.; Zhang, S.; Du, Q.; Qian, Y.; Zhu, D.; Wu, F. Bi3+ and Sm3+ co-doped La2MgGeO6: A novel color-temperature indicator based on different heat quenching behavior from different luminescent centers. J. Lumin. 2019, 206, 462–468. [Google Scholar] [CrossRef]
- Lu, Z.; Sun, D.; Lyu, Z.; Shen, S.; Wang, J.; Zhao, H.; Wang, L.; You, H. Double Perovskite Mn4+-Doped La2CaSnO6/La2MgSnO6 Phosphor for Near-Ultraviolet Light Excited W-LEDs and Plant Growth. Molecules 2022, 27, 7697. [Google Scholar] [CrossRef]
- Wu, Q.; Li, P.; Ye, Z.; Huo, X.; Yang, H.; Wang, Y.; Wang, D.; Zhao, J.; Yang, Z.; Wang, Z. Near-infrared emitting phosphor LaMg0.5(SnGe)0.5O3: Cr3+ for plant growth applications: Crystal structure, luminescence, and thermal stability. Inorg. Chem. 2021, 60, 16593–16603. [Google Scholar] [CrossRef] [PubMed]
- Fu, A.; Guan, A.; Yu, D.; Xia, S.; Gao, F.; Zhang, X.; Zhou, L.; Li, Y.; Li, R. Synthesis, structure, and luminescence properties of a novel double-perovskite Sr2LaNbO6: Mn4+ phosphor. Mater. Res. Bull. 2017, 88, 258–265. [Google Scholar] [CrossRef]
- Bragg, W.H.; Bragg, W.L. The reflection of X-rays by crystals. Proc. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 1913, 88, 428–438. [Google Scholar] [CrossRef]
- Jaffar, B.M.; Swart, H.C.; Seed Ahmed, H.A.A.; Yousif, A.; Kroon, R.E. Luminescence properties of Bi doped La2O3 powder phosphor. J. Lumin. 2019, 209, 217–224. [Google Scholar] [CrossRef]
- Maughan, A.E.; Ganose, A.M.; Almaker, M.A.; Scanlon, D.O.; Neilson, J.R. Tolerance factor and cooperative tilting effects in vacancy-ordered double perovskite halides. Chem. Mater. 2018, 30, 3909–3919. [Google Scholar] [CrossRef]
- Bartel, C.J.; Sutton, C.; Goldsmith, B.R.; Ouyang, R.; Musgrave, C.B.; Ghiringhelli, L.M.; Scheffler, M. New tolerance factor to predict the stability of perovskite oxides and halides. Sci. Adv. 2019, 5, eaav0693. [Google Scholar] [CrossRef] [Green Version]
- Hanif, A.; Aldaghfag, S.; Aziz, A.; Yaseen, M.; Murtaza, A. Theoretical investigation of physical properties of Sr2XNbO6 (X = La, Lu) double perovskite oxides for optoelectronic and thermoelectric applications. Int. J. Energy Res. 2022, 46, 10633–10643. [Google Scholar] [CrossRef]
- Shi, C.; Yu, C.H.; Zhang, W. Predicting and screening dielectric transitions in a series of hybrid organic–inorganic double perovskites via an extended tolerance factor approach. Angew. Chem. 2016, 128, 5892–5896. [Google Scholar] [CrossRef]
- Yun, X.; Zhou, J.; Zhu, Y.; Li, X.; Liu, S.; Xu, D. A Potentially Multifunctional Double-Perovskite Sr2ScTaO6: Mn4+, Eu3+ Phosphor for Optical Temperature Sensing and Indoor Plant Growth Lighting. J. Lumin. 2022, 244, 118724. [Google Scholar] [CrossRef]
- Dexter, D.L.; Schulman, J.H. Theory of concentration quenching in inorganic phosphors. J. Chem. Phys. 1954, 22, 1063–1070. [Google Scholar] [CrossRef]
- Tang, H.; Zhang, X.; Cheng, L.; Mi, X.; Liu, Q. Crystal Structure, Luminescence Properties and Thermal Stability of Lu3+ Ion-Substituted BaY2Si3O10: Dy3+ Phosphors. J. Alloys Compd. 2022, 898, 162758. [Google Scholar] [CrossRef]
- Sun, J.F.; Lian, Z.P.; Shen, G.Q.; Shen, D.Z. Blue–white–orange color-tunable luminescence of Ce3+/Mn2+-codoped NaCaBO3 via energy transfer: Potential single-phase white-light-emitting phosphors. RSC Adv. 2013, 3, 18395–18405. [Google Scholar] [CrossRef]
- Ding, X.; Zhu, G.; Geng, W.; Mikami, M.; Wang, Y. Novel blue and green phosphors obtained from K2ZrSi3O9: Eu2+ compounds with different charge compensation ions for LEDs under near-UV excitation. J. Mater. Chem. C 2015, 3, 6676–6685. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, Q.; Jin, Y. Temperature dependence of energy transfer in tunable white light-emitting phosphor BaY2Si3O10: Bi3+, Eu3+ for near UV LEDs. J. Mater. Chem. C 2015, 3, 11151–11162. [Google Scholar] [CrossRef]
- Van Uitert, L.G. An empirical relation fitting the position in energy of the lower d-band edge for Eu2+ or Ce3+ in various compounds. J. Lumin. 1984, 29, 1–9. [Google Scholar] [CrossRef]
- Tang, T.P.; Lee, C.M.; Yen, F.C. The photoluminescence of SrAl2O4: Sm phosphors. Ceram. Int. 2006, 32, 665–671. [Google Scholar] [CrossRef]
- Walfort, B.; Gartmann, N.; Afshani, J.; Rosspeintner, A.; Hagemann, H. Effect of excitation wavelength (blue vs near UV) and dopant concentrations on afterglow and fast decay of persistent phosphor SrAl2O4: Eu2+, Dy3+. J. Rare Earths 2022, 40, 1022–1028. [Google Scholar] [CrossRef]
- Adachi, S. Temperature Dependence of Luminescence Intensity and Decay Time in Mn4+-Activated Oxide Phosphors. ECS J. Solid State Sci. Technol. 2022, 11, 056003. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Y. Sr2LiScB4O10: Ce3+/Tb3+: A green-emitting phosphor with high energy transfer efficiency and stability for LEDs and FEDs. Inorg. Chem. 2019, 58, 7440–7452. [Google Scholar] [CrossRef] [PubMed]
- Fartode, S.A.; Fartode, A.P.; Dhoble, S.J. A review: Thermoluminescence dosimeteric application for phosphor. AIP Conf. Proc. 2019, 2104, 020043. [Google Scholar]
- Souadi, G.; Kaynar, U.H.; Oglakci, M.; Sonsuz, M.; Ayvacikli, M.; Topaksu, M.; Canimoglu, A.; Can, N. Thermoluminescence characteristics of a novel Li2MoO4 phosphor: Heating rate, dose response and kinetic parameters. Radiat. Phys. Chem. 2022, 194, 110025. [Google Scholar] [CrossRef]
- Fu, J.; Zhou, L.; Chen, Y.; Lin, j.; Ye, R.; Deng, D.; Chen, L.; Xu, S. Dual-mode optical thermometry based on Bi3+/Sm3+ co-activated BaGd2O4 phosphor with tunable sensitivity. J. Alloys Compd. 2022, 897, 163034. [Google Scholar] [CrossRef]
- Tian, X.; Dou, H.; Wu, L. Non-contact thermometry with dual-activator luminescence of Bi3+/Sm3+: YNbO4 phosphor. Ceram. Int. 2020, 46, 10641–10646. [Google Scholar] [CrossRef]
- Ran, W.; Sun, G.; Ma, X.; Zhang, L.; Yu, J.S.; Noh, H.M.; Choi, B.C.; Jeong, J.H.; Yan, T. Bifunctional application of La3BWO9: Bi3+, Sm3+ phosphors with strong orange-red emission and sensitive temperature sensing properties. Dalton Trans. 2021, 50, 15187–15197. [Google Scholar] [CrossRef]
- Song, M.; Zhao, W.; Xue, J.; Wang, L.; Wang, J. Color-tunable luminescence and temperature sensing properties of a single-phase dual-emitting La2LiSbO6: Bi3+, Sm3+ phosphor. J. Lumin. 2021, 235, 118014. [Google Scholar] [CrossRef]
- Song, Y.; Guo, N.; Li, J.; Ouyang, R.; Miao, Y.; Shao, B. Photoluminescence and temperature sensing of lanthanide Eu3+ and transition metal Mn4+ dual-doped antimoniate phosphor through site-beneficial occupation. Ceram. Int. 2020, 46, 22164–22170. [Google Scholar] [CrossRef]
- Swart, H.C.; Kumar, A.; Nair, G.B. BaY2F8: Yb3+, Ho3+/Tm3+ Upconversion Phosphor for Optical Thermometer. In Proceedings of the 5th International Conference on Sensors and Electronic Instrumentation Advances SEIA’ 2019, Tenerife (Canary Islands), Spain, 25–27 September 2019. [Google Scholar]
- Peng, L.; Meng, Q.; Sun, W. Size dependent optical temperature sensing properties of Y2O3: Tb3+, Eu3+ nanophosphors. RSC Adv. 2019, 9, 2581–2590. [Google Scholar] [CrossRef] [Green Version]
- Li, J.-Y.; Hou, D.; Zhang, Y.; Li, H.; Lin, H.; Lin, Z.; Zhou, W.; Huang, R. Luminescence, energy transfer and temperature sensing property of Ce3+, Dy3+ doped LiY9(SiO4)6O2 phosphors. J. Lumin. 2019, 213, 184–190. [Google Scholar] [CrossRef]
- Wang, J.; Lei, R.; Zhao, S.; Huang, F.; Deng, D.; Xu, S.; Wang, H. Color tunable Bi3+/Eu3+ co-doped La2ZnTiO6 double perovskite phosphor for dual-mode ratiometric optical thermometry. J. Alloys Compd. 2021, 881, 160601. [Google Scholar] [CrossRef]
- Wang, Y.; Zuo, C.; Ma, C.; Ye, W.; Zhao, C.; Feng, Z.; Li, Y.; Wen, Z.; Wang, C.; Shen, X.; et al. Effects of Sc3+ ions on local crystal structure and up-conversion luminescence of layered perovskite NaYTiO4: Yb3+/Er3+. J. Alloys Compd. 2021, 876, 160166. [Google Scholar] [CrossRef]
- Jiang, Y.; Tong, Y.; Chen, S.; Zhang, W.; Hu, F.; Wei, R.; Guo, H. A three-mode self-referenced optical thermometry based on up-conversion luminescence of Ca2MgWO6: Er3+, Yb3+ phosphors. Chem. Eng. J. 2021, 413, 127470. [Google Scholar] [CrossRef]
Formula | LMS |
---|---|
Space group | P21/n |
Cell parameter (Å) | a = 5.6362, b = 5.7228, c = 8.01927 |
Volume (Å3) | 258.66 |
Structure type | Double perovskite |
Rwp (%) | 9.67 |
Rp (%) | 6.02 |
χ2 (%) | 2.48 |
Compounds | Temperature Range (K) | Sa-max (K−1) | Sr-max (%K−1) | Ref |
---|---|---|---|---|
BaY2F8:Yb3+/Ho3+ | 330–425 | 0.0057 | 0.6051 | [41] |
Y2O3: Tb3+/Eu3+ | 313–513 | 0.0261 | 0.683 | [42] |
LiY9(SiO4)6O2: Ce3+/Dy3+ | 300–400 | — | 0.43 | [43] |
La2ZnTiO6: Bi3+/Eu3+ | 293–573 | 0.0032 | 1.23 | [44] |
NaYTiO4: Yb3+/Er3+ | 308–618 | 0.0045 | — | [45] |
Ca2MgWO6: Er3+/Yb3+ | 303–573 | 0.126 | 0.11 | [46] |
La2MgSnO6: Bi3+/Sm3+ | 303–503 | 0.0055 | 0.88 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Q.; Qian, W.; Muhammad, R.; Chen, X.; Yu, X.; Song, K. Photoluminescence and Temperature Sensing Properties of Bi3+/Sm3+ Co-Doped La2MgSnO6 Phosphor for Optical Thermometer. Crystals 2023, 13, 991. https://doi.org/10.3390/cryst13070991
Xu Q, Qian W, Muhammad R, Chen X, Yu X, Song K. Photoluminescence and Temperature Sensing Properties of Bi3+/Sm3+ Co-Doped La2MgSnO6 Phosphor for Optical Thermometer. Crystals. 2023; 13(7):991. https://doi.org/10.3390/cryst13070991
Chicago/Turabian StyleXu, Qingliang, Wanqing Qian, Raz Muhammad, Xinhua Chen, Xueqing Yu, and Kaixin Song. 2023. "Photoluminescence and Temperature Sensing Properties of Bi3+/Sm3+ Co-Doped La2MgSnO6 Phosphor for Optical Thermometer" Crystals 13, no. 7: 991. https://doi.org/10.3390/cryst13070991
APA StyleXu, Q., Qian, W., Muhammad, R., Chen, X., Yu, X., & Song, K. (2023). Photoluminescence and Temperature Sensing Properties of Bi3+/Sm3+ Co-Doped La2MgSnO6 Phosphor for Optical Thermometer. Crystals, 13(7), 991. https://doi.org/10.3390/cryst13070991