High-Performance and Flexible Metamaterial Wave Absorbers with Specific Bandwidths for the Microwave Device
Abstract
1. Introduction
2. Materials, Structure and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Veselago, V.G. The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ. Phys.-Uspekhi 1968, 10, 509–514. [Google Scholar] [CrossRef]
- Pendry, J.B. Negative Refraction Makes a Perfect Lens. Phys. Rev. Lett. 2000, 85, 3966–3969. [Google Scholar] [CrossRef] [PubMed]
- Shelby, R.A.; Smith, D.R.; Schultz, S. Experimental Verification of a Negative Index of Refraction. Science 2001, 292, 77–79. [Google Scholar] [CrossRef]
- Silalahi, H.M.; Chiang, W.-F.; Shih, Y.-H.; Wei, W.-Y.; Su, J.-Y.; Huang, C.-Y. Folding Metamaterials with Extremely Strong Electromagnetic Resonance. Photon. Res. 2022, 10, 2215. [Google Scholar] [CrossRef]
- Salim, A.; Lim, S. Recent Advances in the Metamaterial-Inspired Biosensors. Biosens. Bioelectron. 2018, 117, 398–402. [Google Scholar] [CrossRef]
- Ginel-Moreno, P.; Sánchez-Postigo, A.; de-Oliva-Rubio, J.; Hadij-ElHouati, A.; Ye, W.N.; Wangüemert-Pérez, J.G.; Molina-Fernández, Í.; Schmid, J.H.; Cheben, P.; Ortega-Moñux, A. Millimeter-Long Metamaterial Surface-Emitting Antenna in the Silicon Photonics Platform. Opt. Lett. 2021, 46, 3733–3736. [Google Scholar] [CrossRef]
- Dong, Y.; Itoh, T. Metamaterial-Based Antennas. Proc. IEEE 2012, 100, 2271–2285. [Google Scholar] [CrossRef]
- Aydin, K.; Bulu, I.; Ozbay, E. Subwavelength Resolution with a Negative-Index Metamaterial Superlens. Appl. Phys. Lett. 2007, 90, 254102. [Google Scholar] [CrossRef]
- Zhao, F.; Li, Z.; Li, S.; Dai, X.; Zhou, Y.; Liao, X.; Cao, J.C.; Liang, G.; Shang, Z.; Zhang, Z.; et al. Terahertz Metalens of Hyper-Dispersion. Photon. Res. 2022, 10, 886. [Google Scholar] [CrossRef]
- Liu, Y.; Ouyang, C.; Xu, Q.; Su, X.; Yang, Q.; Ma, J.; Li, Y.; Tian, Z.; Gu, J.; Liu, L.; et al. Moiré-Driven Electromagnetic Responses and Magic Angles in a Sandwiched Hyperbolic Metasurface. Photon. Res. 2022, 10, 2056–2065. [Google Scholar] [CrossRef]
- Wu, C.; Khanikaev, A.B.; Shvets, G. Broadband Slow Light Metamaterial Based on a Double-Continuum Fano Resonance. Phys. Rev. Lett. 2011, 106, 107403. [Google Scholar] [CrossRef] [PubMed]
- Omam, Z.R.; Ghobadi, A.; Khalichi, B.; Ozbay, E. Fano Resonance in a Dolomite Phase-Change Multilayer Design for Dynamically Tunable Omnidirectional Monochromatic Thermal Emission. Opt. Lett. 2022, 47, 5781–5784. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Xu, F.; Zhan, J.; Qiang, J.; Xie, Q.; Yang, L.; Deng, S.; Zhang, Y. Terahertz Liquid Crystal Programmable Metasurface Based on Resonance Switching. Opt. Lett. 2022, 47, 1891–1894. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Lan, F.; Zhang, Y.; Zeng, H.; Wang, L.; Song, T.; He, G.; Yang, Z. Dual-Band Multifunctional Coding Metasurface with a Mingled Anisotropic Aperture for Polarized Manipulation in Full Space. Photon. Res. 2022, 10, 416. [Google Scholar] [CrossRef]
- Silalahi, H.M.; Shih, Y.-H.; Lin, S.-H.; Chen, Y.-T.; Wei, W.-Y.; Chao, P.-L.; Huang, C.-Y. Electrically Controllable Terahertz Metamaterials with Large Tunabilities and Low Operating Electric Fields Using Electrowetting-on-Dielectric Cells. Opt. Lett. 2021, 46, 5962–5965. [Google Scholar] [CrossRef]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect Metamaterial Absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef]
- Maier, T.; Brückl, H. Wavelength-Tunable Microbolometers with Metamaterial Absorbers. Opt. Lett. 2009, 34, 3012–3014. [Google Scholar] [CrossRef]
- Yu, P.; Besteiro, L.V.; Huang, Y.; Wu, J.; Fu, L.; Tan, H.H.; Jagadish, C.; Wiederrecht, G.P.; Govorov, A.O.; Wang, Z. Broadband Metamaterial Absorbers. Adv. Opt. Mater. 2019, 7, 1800995. [Google Scholar] [CrossRef]
- Park, J.W.; Tuong, P.V.; Rhee, J.Y.; Kim, K.W.; Jang, W.H.; Choi, E.H.; Chen, L.Y.; Lee, Y. Multi-Band Metamaterial Absorber Based on the Arrangement of Donut-Type Resonators. Opt. Express 2013, 21, 9691–9702. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, W.-Z.; Wu, Y.-C.; Meng, D.; Cheng, Y.-Y.; Chen, Y.-S.; Liu, J.; Gu, Y. Multi-Peak Narrow-Band Metamaterial Absorber for Visible to near-Infrared Wavelengths. Results Phys. 2023, 47, 106374. [Google Scholar] [CrossRef]
- Shen, X.; Cui, T.J.; Zhao, J.; Ma, H.F.; Jiang, W.X.; Li, H. Polarization-Independent Wide-Angle Triple-Band Metamaterial Absorber. Opt. Express 2011, 19, 9401–9407. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Koschny, T.; Soukoulis, C.M. Wide-Angle and Polarization-Independent Chiral Metamaterial Absorber. Phys. Rev. B 2009, 80, 033108. [Google Scholar] [CrossRef]
- Amiri, M.; Tofigh, F.; Shariati, N.; Lipman, J.; Abolhasan, M. Wide-Angle Metamaterial Absorber with Highly Insensitive Absorption for TE and TM Modes. Sci. Rep. 2020, 10, 13638. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.; Lim, S. Wide Incidence Angle-Insensitive Metamaterial Absorber for Both TE and TM Polarization Using Eight-Circular-Sector. Sci. Rep. 2017, 7, 3204. [Google Scholar] [CrossRef]
- Dao, R.; Kong, X.; Zhang, H.-F.; Tian, X. A Tunable Ultra-Broadband Metamaterial Absorber with Multilayered Structure. Plasmonics 2020, 15, 169–175. [Google Scholar] [CrossRef]
- Rahmanzadeh, M.; Rajabalipanah, H.; Abdolali, A. Multilayer Graphene-Based Metasurfaces: Robust Design Method for Extremely Broadband, Wide-Angle, and Polarization-Insensitive Terahertz Absorbers. Appl. Opt. 2018, 57, 959–968. [Google Scholar] [CrossRef]
- Chen, H.; Yang, X.; Wu, S.; Zhang, D.; Xiao, H.; Huang, K.; Zhu, Z.; Yuan, J. Flexible and Conformable Broadband Metamaterial Absorber with Wide-Angle and Polarization Stability for Radar Application. Mater. Res. Express 2018, 5, 015804. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Lim, S. Design of Metamaterial Absorber Using Eight-Resistive-Arm Cell for Simultaneous Broadband and Wide-Incidence-Angle Absorption. Sci. Rep. 2018, 8, 6633. [Google Scholar] [CrossRef]
- Amer, A.A.G.; Sapuan, S.Z.; Alzahrani, A.; Nasimuddin, N.; Salem, A.A.; Ghoneim, S.S.M. Design and Analysis of Polarization-Independent, Wide-Angle, Broadband Metasurface Absorber Using Resistor-Loaded Split-Ring Resonators. Electronics 2022, 11, 1986. [Google Scholar] [CrossRef]
- Qu, S.; Hou, Y.; Sheng, P. Conceptual-Based Design of an Ultrabroadband Microwave Metamaterial Absorber. Proc. Natl. Acad. Sci. USA 2021, 118, e2110490118. [Google Scholar] [CrossRef]
- Wang, W.; Wang, A.; Liang, J.; Wang, Z.; Jiang, J.; Xu, C.; Li, Y.; Wang, J.; Qu, S. Design and Analysis of a Wideband and Wide Angle 3D Metamaterial Absorber. J. Phys. D Appl. Phys. 2022, 55, 325302. [Google Scholar] [CrossRef]
- Khuyen, B.X.; Hanh, V.T.H.; Tung, B.S.; Lam, V.D.; Kim, Y.J.; Lee, Y.; Tu, H.-T.; Chen, L.Y. Narrow/Broad-Band Absorption Based on Water-Hybrid Metamaterial. Crystals 2020, 10, 415. [Google Scholar] [CrossRef]
- Yao, X.; Huang, Y.; Li, G.; He, Q.; Chen, H.; Weng, X.; Liang, D.; Xie, J.; Deng, L. Design of an Ultra-Broadband Microwave Metamaterial Absorber Based on Multilayer Structures. Int. J. RF Microw. Comput.-Aided Eng. 2022, 32, e23222. [Google Scholar] [CrossRef]
- Jacobsen, R.E.; Arslanagić, S.; Lavrinenko, A.V. Water-Based Devices for Advanced Control of Electromagnetic Waves. Appl. Phys. Rev. 2021, 8, 041304. [Google Scholar] [CrossRef]
- Li, H.; Yuan, H.; Costa, F.; Cao, Q.; Wu, W.; Monorchio, A. Optically Transparent Water-Based Wideband Switchable Radar Absorber/Reflector with Low Infrared Radiation Characteristics. Opt. Express 2021, 29, 42863–42875. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, Y.; Zhu, B.; Zhao, J.; Jiang, T. Graphene Based Tunable Metamaterial Absorber and Polarization Modulation in Terahertz Frequency. Opt. Express 2014, 22, 22743–22752. [Google Scholar] [CrossRef]
- Long, L.V.; Khiem, N.S.; Tung, B.S.; Tung, N.T.; Giang, T.T.; Son, P.T.; Khuyen, B.X.; Lam, V.D.; Chen, L.; Zheng, H.; et al. Flexible Broadband Metamaterial Perfect Absorber Based on Graphene-Conductive Inks. Photonics 2021, 8, 440. [Google Scholar] [CrossRef]
- Kim, Y.J.; Hwang, J.S.; Khuyen, B.X.; Tung, B.S.; Kim, K.W.; Rhee, J.Y.; Chen, L.-Y.; Lee, Y. Flexible Ultrathin Metamaterial Absorber for Wide Frequency Band, Based on Conductive Fibers. Sci. Technol. Adv. Mater. 2018, 19, 711–717. [Google Scholar] [CrossRef]
- Sheokand, H.; Ghosh, S.; Singh, G.; Saikia, M.; Srivastava, K.V.; Ramkumar, J.; Anantha Ramakrishna, S. Transparent Broadband Metamaterial Absorber Based on Resistive Films. J. Appl. Phys. 2017, 122, 105105. [Google Scholar] [CrossRef]
- Kim, Y.J.; Yoo, Y.J.; Hwang, J.S.; Lee, Y.P. Ultra-Broadband Microwave Metamaterial Absorber Based on Resistive Sheets. J. Opt. 2016, 19, 015103. [Google Scholar] [CrossRef]
- Ebbesen, T.W.; Lezec, H.J.; Ghaemi, H.F.; Thio, T.; Wolff, P.A. Extraordinary Optical Transmission through Sub-Wavelength Hole Arrays. Nature 1998, 391, 667–669. [Google Scholar] [CrossRef]
- Aydin, K.; Cakmak, A.O.; Sahin, L.; Li, Z.; Bilotti, F.; Vegni, L.; Ozbay, E. Split-Ring-Resonator-Coupled Enhanced Transmission through a Single Subwavelength Aperture. Phys. Rev. Lett. 2009, 102, 013904. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.R.; Vier, D.C.; Koschny, T.; Soukoulis, C.M. Electromagnetic Parameter Retrieval from Inhomogeneous Metamaterials. Phys. Rev. E 2005, 71, 036617. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Li, S.; Jiang, Y.; Gu, C.; Liu, L.; Li, Z. An Ultra-Wideband and Wide-Angle Optically Transparent Flexible Microwave Metamaterial Absorber. J. Phys. D Appl. Phys. 2021, 54, 275101. [Google Scholar] [CrossRef]
- Nguyen, T.Q.H.; Nguyen, T.K.T.; Cao, T.N.; Nguyen, H.; Bach, L.G. Numerical Study of a Broadband Metamaterial Absorber Using a Single Split Circle Ring and Lumped Resistors for X-Band Applications. AIP Adv. 2020, 10, 035326. [Google Scholar] [CrossRef]
- Xiong, H.; Tang, M.-C.; Li, M.; Li, D.; Jiang, Y.-N. Equivalent Circuit Method Analysis of Graphene-Metamaterial (GM) Absorber. Plasmonics 2018, 13, 857–862. [Google Scholar] [CrossRef]
- Luo, Z.; Ji, S.; Zhao, J.; Dai, H.; Jiang, C. Design and Analysis of an Ultra-Thin Dual-Band Wide-Angle Polarization-Insensitive Metamaterial Absorber for C-Band Application. Optik 2021, 243, 166785. [Google Scholar] [CrossRef]
- Xu, J.; Fan, Y.; Su, X.; Guo, J.; Zhu, J.; Fu, Q.; Zhang, F. Broadband and Wide Angle Microwave Absorption with Optically Transparent Metamaterial. Opt. Mater. 2021, 113, 110852. [Google Scholar] [CrossRef]
- Liang, C.; Kong, X.; Wang, F.; Xu, R.; Fu, Y.; Pang, X.; Zhang, S.; Shen, X.; Zhao, L. A Broadband Perfect Metamaterial Absorber with Angle-Insensitive Characteristics. J. Electromagn. Waves Appl. 2022, 37, 401–410. [Google Scholar] [CrossRef]
h1 | h2 | w | t1 | t2 | m |
---|---|---|---|---|---|
0.4 | 0.5 | 0.2 | 0.035 | 0.1 | 0.2 |
Reference | Year | Flexible | Bandwidth (≥90%) (GHz) | FBW (%) | ERF (GHz) |
---|---|---|---|---|---|
[24] | 2017 | No | 9.2–9.3 | 1 | 0 |
[23] | 2020 | No | 5.12–5.22 | 2 | 5.15–5.17 (0–40°) |
[44] | 2021 | Yes | 5.61–29.17 | 135 | 0 |
[47] | 2021 | Yes | 4.47–4.44 | 1.6 | 0 |
7.91–7.78 | 1.6 | 0 | |||
[48] | 2021 | Yes | 8–20 | 85.71 | 0 |
[49] | 2022 | No | 4.3–24.5 | 140.3 | 13.8–15.77 (0–50°) |
[37] | 2022 | Yes | 8.5–10.3 | 69 | 10.11–10.2 (0–40°) |
this work | 2023 | Yes | 21.15–40.35 | 62 | 26.86–29 |
61.2–104.7 | 52 | 75.9–80.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, H.; Chen, L.; Lee, Y. High-Performance and Flexible Metamaterial Wave Absorbers with Specific Bandwidths for the Microwave Device. Crystals 2023, 13, 868. https://doi.org/10.3390/cryst13060868
Zheng H, Chen L, Lee Y. High-Performance and Flexible Metamaterial Wave Absorbers with Specific Bandwidths for the Microwave Device. Crystals. 2023; 13(6):868. https://doi.org/10.3390/cryst13060868
Chicago/Turabian StyleZheng, Haiyu, Liangyao Chen, and YoungPak Lee. 2023. "High-Performance and Flexible Metamaterial Wave Absorbers with Specific Bandwidths for the Microwave Device" Crystals 13, no. 6: 868. https://doi.org/10.3390/cryst13060868
APA StyleZheng, H., Chen, L., & Lee, Y. (2023). High-Performance and Flexible Metamaterial Wave Absorbers with Specific Bandwidths for the Microwave Device. Crystals, 13(6), 868. https://doi.org/10.3390/cryst13060868