A Novel Strategy for Comprehensive Estimation of Lattice Energy, Bulk Modulus, Chemical Hardness and Electronic Polarizability of ANB8-N Binary Inorganic Crystals
Abstract
1. Introduction
2. Theoretical Method
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, K.Y.; Wang, X.T.; Zhang, F.F.; Xue, D.F. Electronegativity identification of novel superhard materials. Phys. Rev. Lett. 2008, 100, 235504–235507. [Google Scholar] [CrossRef] [PubMed]
- Robert, G.P.; Yang, W.T. Density functional approach to the frontier-electron theory of chemical reactivity. J. Am. Chem. Soc. 1984, 106, 4049–4050. [Google Scholar]
- Carlos, C.; Paul, A.; Frank, D.; David, J.T.; Paul, G. Should negative electron affinities be used for evaluating the chemical hardness? Phys. Chem. Chem. Phys. 2011, 13, 2285–2293. [Google Scholar]
- Zhao, X.Y.; Wang, X.L.; Lin, H.; Wang, Z.Q. Electronic polarizability and optical basicity of lanthanide oxides. Phys. B 2007, 392, 132–136. [Google Scholar] [CrossRef]
- Komatsu, T.; Dimitrov, V.; Tasheva, T.; Honma, T. A review: A new insight for electronic polarizability and chemical bond strength in Bi2O3-based glasses. J. Non-Cryst. Solids 2020, 550, 120365–120380. [Google Scholar] [CrossRef]
- Xue, D.F.; Zuo, S.; Ratajczak, H. Electronegativity and structural characteristics of lanthanides. Phys. B 2004, 352, 99–104. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Wang, X.L. Physicochemical parameters of oxyfluoride glasses using the average electronegativity. Phys. Chem. Glasses Eur. J. Glass Sci. Technol. B 2009, 50, 332–334. [Google Scholar]
- Verma, A.S. An empirical model for bulk modulus and cohesive energy of rocksalt-, zincblende and chalcopyrite-structured solids. Phys. Status Solidi B 2009, 246, 345–353. [Google Scholar] [CrossRef]
- Komatsu, T.; Honma, T.; Tasheva, T.; Dimitrov, V. Structural role of Nb2O5 in glass-forming ability, electronic polarizability and nanocrystallization in glasses: A review. J. Non-Cryst. Solids 2022, 581, 121414–121433. [Google Scholar] [CrossRef]
- Kuleshova, L.N.; Hofmann, D.W.M.; Boese, R. Lattice energy calculation-a quick tool for screening of cocrystals and estimation of relative solubility. Case of flavonoids. Chem. Phys. Lett. 2013, 564, 26–32. [Google Scholar] [CrossRef]
- Zhang, P.; Song, Z.K.; Wang, Y.; Li, L.X. Effect of ion substitution for Nd3+ based on structural characteristic on the microwave dielectric properties of NdNbO4 ceramic system. J. Am. Ceram. Soc. 2014, 97, 976–981. [Google Scholar] [CrossRef]
- Liu, D.T.; Zhang, S.Y.; Wu, Z.J. Lattice energy estimation for inorganic ionic crystals. Inorg. Chem. 2003, 42, 2465–2469. [Google Scholar] [CrossRef]
- Liu, X.; Wang, H.; Wang, W.M.; Fu, Z.Y. A simple bulk modulus model for crystal materials based on the bond valence model. Phys. Chem. Chem. Phys. 2017, 19, 22177–22189. [Google Scholar] [CrossRef]
- Kaya, S.; Kaya, C. A new equation for calculation of chemical hardness of groups and molecules. Mol. Phys. 2015, 113, 1311–1319. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Wang, X.L.; Lin, H.; Wang, Z.Q. Correlation among electronic polarizability, optical basicity and interaction parameter of Bi2O3–B2O3 glasses. Phys. B 2007, 390, 293–300. [Google Scholar] [CrossRef]
- Kumar, V.; Prasad, G.M.; Chandra, D. Lattice energy and electronic polarizability of binary tetrahedral semiconductors. J. Phys. Chem. Solids 1997, 58, 463–465. [Google Scholar] [CrossRef]
- Verma, A.S.; Sharma, D. Lattice energy of zinc blende (AIIIBV and AIIBVI) solids. Phys. Stat. Sol. 2008, 245, 678–680. [Google Scholar] [CrossRef]
- Kaya, S.; Kaya, C. A simple method for the calculation of lattice energies of inorganic ionic crystals based on the chemical hardness. Inorg. Chem. 2015, 54, 8207–8213. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Li, H.L.; Li, H.Y.; Zhou, S.H.; Cao, X.Q. Calculation of the bulk modulus of simple and complex crystals with the chemical bond method. J. Phys. Chem. B 2007, 111, 1304–1309. [Google Scholar] [CrossRef]
- Cohen, M.L. Calculation of bulk moduli of diamond and zinc-blende solids. Phys. Rev. B 1985, 32, 7988–7991. [Google Scholar] [CrossRef]
- Steinle-Neumann, G.; Stixrude, L.; Cohen, R.E.; Gulseren, O. Elasticity of iron at the temperature of the earth’s inner core. Nature 2001, 413, 57–60. [Google Scholar] [CrossRef] [PubMed]
- Laio, A.; Bernard, S.; Chiarotti, G.L.; Scandolo, S.; Tosatti, E. Physics of iron at earth’s core conditions. Science 2000, 287, 1027–1030. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.X. Elastic and electronic properties of TcB2 and superhard ReB2: First-principles calculations. Appl. Phys. Lett. 2007, 91, 101904–101906. [Google Scholar] [CrossRef]
- Li, K.Y.; Xue, D.F. Empirical calculations of elastic moduli of crystal materials. Phys. Scr. 2010, 139, 14072–14076. [Google Scholar] [CrossRef]
- Islam, N.; Ghosh, D.C. Spectroscopic evaluation of the global hardness of the atoms. Mol. Phys. 2011, 109, 1533–1544. [Google Scholar] [CrossRef]
- Islam, N.; Ghosh, D.C. A new algorithm for the evaluation of the global hardness of polyatomic molecules. Mol. Phys. 2011, 109, 917–931. [Google Scholar] [CrossRef]
- Datta, D. Geometric mean principle for hardness eualization: A corollary of Sanderson’s geometric mean principle of electronegativity equalization. J. Phys. Chem. 1986, 90, 4216–4217. [Google Scholar] [CrossRef]
- Elkhoshkhany, N.; Marzouk, S.; El-Sherbiny, M.; Ibrahim, H.; Burtan-Gwizdala, B.; Alqahtani, M.S.; Hussien, K.I.; Reben, M.; Yousef, E.S. Investigation of structural, physical, and attenuation parameters of glass: TeO2-Bi2O3-B2O3-TiO2-RE2O3 (RE: La, Ce, Sm, Er, and Yb), and applications thereof. Materials 2022, 15, 5393. [Google Scholar] [CrossRef]
- Qi, J.; Ning, G.L.; Sun, T.Z. Relationships between molar polarizability, molar volume and density of binary silicate, borate and phosphate glasses. Phys. Chem. Glasses Eur. J. Glass Sci. Technol. B 2007, 48, 354–356. [Google Scholar]
- Qi, J.; Xue, D.F.; Ning, G.L. Relationship between the third order nonlinear optical susceptibility and the density of the binary borate glasses. Phys. Chem. Glasses 2004, 45, 361–362. [Google Scholar]
- Kumari, C.R.T.; Al Otaibi, A.; Kamaraj, T.; Nageshwari, M.; Mathubala, G.; Manikandan, A.; Caroline, M.L.; Sudha, S.; Kashmery, H.A.; Madhu, P.; et al. A brief study on optical and mechanical properties of an organic material: Urea glutaric acid (2/1)-a third order nonlinear optical single crystal. Crystals 2021, 11, 1239. [Google Scholar] [CrossRef]
- Dimitrov, V.; Sakka, S. Electronic oxide polarizability and optical basicity of simple oxides. J. Appl. Phys. 1996, 79, 1736–1740. [Google Scholar] [CrossRef]
- Li, K.Y.; Xue, D.F. Electronegativity estimation of electronic polarizabilities of semiconductors. Mater. Res. Bull. 2010, 45, 288–290. [Google Scholar] [CrossRef]
- Duffy, J.A. Lattice energies of crystalline silicates and electronic polarizability. Phys. Chem. Glasses 2005, 46, 257–261. [Google Scholar]
- Petrov, D.; Angelov, B. Lattice energies and polarizability volumes of lanthanide monoaluminates. Phys. B 2012, 407, 3394–3397. [Google Scholar] [CrossRef]
- Petrov, D. Lattice enthalpies of lanthanide orthoferrites LnFeO3. Acta Chim. Slov. 2015, 62, 716–720. [Google Scholar] [CrossRef]
- Petrov, D. Lattice enthalpies and magnetic loops in lanthanide iron garnets, Ln3Fe5O12. J. Chem. Thermodyn. 2015, 87, 136–140. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Wang, X.L.; Lin, H.; Wang, Z.Q. Relationships between lattice energy and electronic polarizability of ANB8-N crystals. Opt. Commun. 2010, 283, 1668–1673. [Google Scholar] [CrossRef]
- Zhang, Z.G.; Lu, M.C.; Zhu, L.; Zhu, L.L.; Li, Y.D.; Zhang, M.; Li, Q. Orthorhombic BN: A novel superhard sp3 boron nitride allotrope. Phys. Lett. A 2014, 378, 741–744. [Google Scholar] [CrossRef]
- Zon; Thainoi, S.; Kiravittaya, S.; Nuntawong, N.; Sopitpan, S.; Kanjanachuchai, S.; Ratanathammaphan, S.; Panyakeow, S. Direct growth of InSb nanowires on CdTe (001) substrates by molecular beam epitaxy. Mater. Sci. Eng. B 2022, 285, 115958–115964. [Google Scholar] [CrossRef]
- Xie, S.H.; Lin, S.; Yang, D.; Yang, X.T.; Lei, Y.S.; Zhang, J.Q.; Wu, L.L.; Yang, Y.Q. Preparation and performance optimization of CdTe-based betavoltaic transducer devices. Opt. Mater. 2022, 133, 113018–113026. [Google Scholar] [CrossRef]
- Kim, H.C.; Jo, H.G. The effect of Te-doping and heat treatment on the structural properties of CdTe absorber layer for CdS/CdTe solar cell. Opt. Mater. 2022, 134, 113061–113066. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, H.; Zhou, X.F.; Zhao, Y.Q.; Duan, J.A. Second harmonic generation in zinc sulfide by femtosecond laser irradiation. Opt. Laser Technol. 2020, 127, 106145–106150. [Google Scholar] [CrossRef]
- Li, H.L.; Zhou, S.H.; Zhang, S.Y. The relationship between the thermal expansions and structures of ABO4 oxides. J. Solid State Chem. 2007, 180, 589–595. [Google Scholar] [CrossRef]
- Verma, A.S.; Bhardwaj, S.R. Correlation between ionic charge and ground-state properties in rocksalt and zinc blende structured solids. J. Phys. Condens. Matter 2006, 18, 8603–8612. [Google Scholar] [CrossRef] [PubMed]
- Reddy, R.R.; Rama Gopal, K.; Narasimhulu, K.; Siva Sankara Reddy, L.; Raghavendra Kumar, K.; Balakrishnaiah, G.; Ravi Kumar, M. Interrelationship between structural, optical, electronic and elastic properties of materials. J. Alloys Compd. 2009, 473, 28–35. [Google Scholar] [CrossRef]
- Koh, A.K. Relationship between lattice energy and an ionic ratio in II-VI and III-V semiconductors. Phys. Stat. Sol. 1998, 209, 25–28. [Google Scholar] [CrossRef]
- Zhang, S.Y. Chemical Bond Theory of Complex Structure Crystals on Dielectric Description and Application; Science Press: Beijing, China, 2005. [Google Scholar]
- Iwadate, Y.; Fukushima, K. Electronic polarizability of a fluoride ion estimated by refractive indexes and molar volumes of molten eutectic LiF-NaF-KF. J. Chem. Phys. 1955, 14, 6300–6302. [Google Scholar] [CrossRef]
- Philips, J.C.; Vechten, J.A.V. Dielectric classification of crystal structures, ionization potentials, and band structures. Phys. Rev. Lett. 1969, 22, 705–708. [Google Scholar] [CrossRef]
- Philips, J.C. Ionicity of the chemical bond in crystals. Rev. Mod. Phys. 1970, 42, 317–356. [Google Scholar] [CrossRef]
Crystal | d (Å) | Vm (Å3) | U (kJ·mol−1) | Ucal (kJ·mol−1) | B (GPa) | Bcal (GPa) | η (eV) | ηcal (eV) | α (Å3) | αcal (Å3) |
---|---|---|---|---|---|---|---|---|---|---|
LiF | 2.01 | 16.2 | 1032 | 1038 | 76.4 | 76.4 | 6.85 | 6.91 | 0.855 | 0.956 |
LiCl | 2.57 | 34.0 | 854 | 846 | 32.9 | 32.8 | 5.99 | 6.00 | 3.026 | 3.016 |
LiBr | 2.75 | 41.6 | 809 | 800 | 26.0 | 26.0 | 5.82 | 5.76 | 4.184 | 4.150 |
LiI | 3.02 | 55.1 | 750 | 741 | 19.3 | 18.8 | 5.58 | 5.45 | 6.461 | 6.440 |
NaF | 2.31 | 24.7 | 921 | 925 | 47.1 | 47.3 | 6.61 | 6.39 | 1.168 | 1.246 |
NaCl | 2.81 | 44.4 | 788 | 786 | 23.9 | 24.1 | 5.81 | 5.68 | 3.259 | 3.281 |
NaBr | 2.98 | 52.9 | 751 | 749 | 19.6 | 19.7 | 5.64 | 5.48 | 4.379 | 4.390 |
NaI | 3.23 | 67.4 | 702 | 700 | 14.9 | 15.0 | 5.42 | 5.23 | 6.481 | 6.530 |
KF | 2.67 | 38.1 | 818 | 820 | 28.7 | 28.8 | 5.76 | 5.86 | 1.762 | 1.954 |
KCl | 3.14 | 61.9 | 715 | 717 | 16.5 | 16.5 | 5.09 | 5.32 | 4.424 | 4.283 |
KBr | 3.29 | 71.2 | 687 | 690 | 13.9 | 14.0 | 4.96 | 5.17 | 5.280 | 5.366 |
KI | 3.53 | 88.0 | 647 | 651 | 11.1 | 11.0 | 4.78 | 4.96 | 7.520 | 7.536 |
RbF | 2.82 | 44.9 | 782 | 784 | 24.1 | 23.8 | 5.58 | 5.68 | 2.169 | 2.254 |
RbCl | 3.29 | 71.2 | 686 | 690 | 14.0 | 14.0 | 4.93 | 5.17 | 4.890 | 4.948 |
RbBr | 3.43 | 80.7 | 662 | 666 | 12.0 | 12.2 | 4.81 | 5.05 | 6.046 | 6.116 |
RbI | 3.66 | 98.1 | 626 | 631 | 9.6 | 9.7 | 4.64 | 4.86 | 8.383 | 8.506 |
Crystal | d (Å) | Vm (Å3) | U (kJ·mol−1) | Ucal (kJ·mol−1) | B (GPa) | Bcal (GPa) | η (eV) | ηcal (eV) | α (Å3) | αcal (Å3) |
---|---|---|---|---|---|---|---|---|---|---|
MgO | 2.105 | 18.7 | 3883 | 3901 | 193.6 | 193.1 | 8.88 | 8.87 | 1.876 | 1.941 |
MgS | 2.602 | 35.2 | 3281 | 3285 | 85.9 | 86.9 | 7.57 | 7.43 | 4.857 | 4.816 |
MgSe | 2.731 | 40.5 | 3155 | 3158 | 71.4 | 72.4 | 7.36 | 7.11 | 5.932 | 5.951 |
CaO | 2.405 | 27.8 | 3510 | 3501 | 116.6 | 116.9 | 7.84 | 7.93 | 2.833 | 2.957 |
CaS | 2.846 | 46.1 | 3062 | 3055 | 61.5 | 62.0 | 6.81 | 6.92 | 6.076 | 6.019 |
CaSe | 2.962 | 51.6 | 2960 | 2957 | 52.5 | 53.3 | 6.65 | 6.65 | 7.164 | 7.177 |
CaTe | 3.179 | 63.9 | 2789 | 2792 | 40.5 | 40.8 | 6.43 | 6.29 | 9.642 | 9.659 |
SrO | 2.580 | 34.4 | 3319 | 3308 | 89.7 | 89.7 | 7.44 | 7.51 | 3.550 | 4.416 |
SrS | 3.010 | 54.5 | 2922 | 2919 | 53.9 | 50.2 | 6.48 | 6.60 | 7.131 | 6.986 |
SrSe | 3.122 | 60.5 | 2833 | 2834 | 43.0 | 43.7 | 6.33 | 6.38 | 8.305 | 7.824 |
SrTe | 3.331 | 67.7 | 2681 | 2689 | 37.2 | 34.2 | 6.12 | 5.57 | 10.05 | 10.288 |
BaO | 2.770 | 42.1 | 3132 | 3122 | 68.5 | 68.6 | 6.93 | 7.00 | 4.333 | 4.549 |
BaS | 3.194 | 65.2 | 2780 | 2782 | 40.0 | 40.1 | 6.04 | 6.30 | 8.379 | 8.274 |
BaSe | 3.302 | 71.9 | 2702 | 2708 | 34.4 | 35.4 | 5.90 | 6.12 | 9.657 | 9.556 |
BaTe | 3.500 | 85.2 | 2570 | 2583 | 27.8 | 28.4 | 5.71 | 5.81 | 12.313 | 12.316 |
Crystal | d (Å) | Vm (Å3) | U (kJ·mol−1) | Ucal (kJ·mol−1) | B (GPa) | Bcal (GPa) | η (eV) | ηcal (eV) | α (Å3) | αcal (Å3) |
---|---|---|---|---|---|---|---|---|---|---|
BeS | 2.105 | 28.5 | 3846 | 3849 | 93.2 | 93.6 | 8.70 | 8.81 | 3.526 | 3.452 |
BeSe | 2.225 | 32.6 | 3686 | 3685 | 81.7 | 80.0 | 8.45 | 8.48 | 4.353 | 4.422 |
BeTe | 2.436 | 42.5 | 3433 | 3434 | 63.1 | 61.8 | 8.10 | 8.35 | 6.343 | 6.331 |
ZnS | 2.340 | 39.6 | 3544 | 3543 | 67.0 | 69.3 | 9.21 | 8.81 | 5.558 | 5.570 |
ZnSe | 2.450 | 45.5 | 3417 | 3418 | 60.3 | 60.8 | 8.96 | 8.78 | 6.744 | 6.733 |
ZnTe | 2.630 | 56.4 | 3225 | 3234 | 49.3 | 49.7 | 8.61 | 8.73 | 9.015 | 9.018 |
CdS | 2.530 | 49.2 | 3341 | 3334 | 55.6 | 55.5 | 8.86 | 8.59 | 7.104 | 7.197 |
CdSe | 2.630 | 56.2 | 3240 | 3234 | 49.8 | 49.7 | 8.61 | 8.70 | 8.486 | 8.377 |
CdTe | 2.800 | 68.0 | 3077 | 3080 | 42.1 | 41.6 | 8.28 | 8.67 | 10.957 | 10.971 |
Crystal | d (Å) | Vm (Å3) | U (kJ·mol−1) | Ucal (kJ·mol−1) | B (GPa) | Bcal (GPa) | η (eV) | ηcal (eV) | α (Å3) | αcal (Å3) |
---|---|---|---|---|---|---|---|---|---|---|
BN | 1.568 | 11.8 | 9560 | 9449 | 367.0 | 366.9 | 10.40 | 10.51 | 1.388 | 1.387 |
BP | 1.966 | 21.0 | 7758 | 8076 | 165.0 | 165.8 | 8.76 | 7.83 | 3.321 | 3.319 |
AlP | 2.365 | 40.5 | 7212 | 7104 | 86.0 | 86.7 | 7.08 | 7.42 | 6.957 | 6.951 |
AlAs | 2.442 | 44.4 | 7082 | 6948 | 77.0 | 77.4 | 6.84 | 7.19 | 8.051 | 8.051 |
AlSb | 2.646 | 57.7 | 6634 | 6572 | 58.2 | 58.4 | 6.36 | 6.86 | 11.274 | 11.269 |
GaP | 2.359 | 40.5 | 7132 | 7117 | 88.7 | 87.4 | 7.09 | 7.49 | 6.952 | 6.907 |
GaAs | 2.456 | 45.2 | 6915 | 6920 | 74.8 | 75.9 | 6.85 | 7.16 | 8.213 | 8.247 |
GaSb | 2.650 | 57.3 | 6444 | 6565 | 57.0 | 58.1 | 6.37 | 6.77 | 11.200 | 11.184 |
InP | 2.542 | 51.3 | 6850 | 6757 | 71.0 | 67.3 | 6.98 | 7.12 | 9.067 | 8.977 |
InAs | 2.619 | 55.0 | 6627 | 6619 | 60.0 | 60.6 | 6.76 | 6.80 | 10.212 | 10.306 |
InSb | 2.806 | 68.0 | 6237 | 6309 | 47.4 | 47.5 | 6.29 | 6.45 | 13.488 | 13.471 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Wang, X. A Novel Strategy for Comprehensive Estimation of Lattice Energy, Bulk Modulus, Chemical Hardness and Electronic Polarizability of ANB8-N Binary Inorganic Crystals. Crystals 2023, 13, 668. https://doi.org/10.3390/cryst13040668
Zhao X, Wang X. A Novel Strategy for Comprehensive Estimation of Lattice Energy, Bulk Modulus, Chemical Hardness and Electronic Polarizability of ANB8-N Binary Inorganic Crystals. Crystals. 2023; 13(4):668. https://doi.org/10.3390/cryst13040668
Chicago/Turabian StyleZhao, Xinyu, and Xiaoli Wang. 2023. "A Novel Strategy for Comprehensive Estimation of Lattice Energy, Bulk Modulus, Chemical Hardness and Electronic Polarizability of ANB8-N Binary Inorganic Crystals" Crystals 13, no. 4: 668. https://doi.org/10.3390/cryst13040668
APA StyleZhao, X., & Wang, X. (2023). A Novel Strategy for Comprehensive Estimation of Lattice Energy, Bulk Modulus, Chemical Hardness and Electronic Polarizability of ANB8-N Binary Inorganic Crystals. Crystals, 13(4), 668. https://doi.org/10.3390/cryst13040668