Synthesis, Characterization, DFT, and Thermogravimetric Analysis of Neutral Co(II)/Pyrazole Complex, Catalytic Activity toward Catecholase and Phenoxazinone Oxidation
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Tridentate Pyrazole Ligand
2.3. DFT Calculations
2.4. Synthesis of Co(II)/Pyrazole Complex
2.5. Catecholase Studies
3. Results
3.1. Synthesis, EDX, PXRD and DFT-Optimization
3.2. IR Analysis
3.3. Thermal Analysis
3.4. MEP
3.5. HOMO/LUMO, DFT and TD-DFT
3.6. Catalytic Activity toward Catecholase and Phenoxazinone
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- La, M.G.; Ardizzoia, G.A. The Role of the Pyrazolate Ligand in Building Polynuclear Transition Metal Systems. Prog. Inorg. Chem. 1997, 46, 151–238. [Google Scholar]
- Trofimenko, S. Recent Advances in Poly (Pyrazolyl) Borate (Scorpionate) Chemistry. Chem. Rev. 1993, 93, 943–980. [Google Scholar] [CrossRef]
- Shin, S.; Ahn, S.H.; Choi, S.; Choi, S.-I.; Nayab, S.; Lee, H. Synthesis and Structural Characterization of 5-Coordinate Cobalt(II), Copper(II) and 4-Coordinate Zinc(II) Complexes Containing N′-Cyclopentyl Substituted N, N-Bispyrazolylmethylamine. Polyhedron 2016, 110, 149–156. [Google Scholar] [CrossRef]
- Shin, S.; Ahn, S.H.; Jung, M.J.; Nayab, S.; Lee, H. Synthesis, Structure and Methyl Methacrylate Polymerization of Cobalt (II), Zinc (II) and Cadmium (II) Complexes with N, N′, N-Bidentate versus N, N′, N-Tridentate N, N′, N-Bis ((1H-Pyrazol-1-Yl) Methyl) Amines. J. Coord. Chem. 2016, 69, 2391–2402. [Google Scholar] [CrossRef]
- Kim, D.; Kim, S.; Woo, H.Y.; Lee, H.; Lee, H. X-ray Crystal Structures and MMA Polymerization of Cadmium (II) Complexes with Bidentate Pyrazole Ligands: The Formation of Monomers or Dimers as a Function of a Methyl Substituent on the Pyrazole and Aniline Rings. Appl. Organomet. Chem. 2014, 28, 445–453. [Google Scholar] [CrossRef]
- Yang, G. Synthesis and Crystal Structure of a Cobalt(II) Complex with Tris (1-Pyrazolylmethyl) Amine. J. Chem. Crystallogr. 2004, 34, 269–274. [Google Scholar] [CrossRef]
- Pañella, A.; Pons, J.; García-Antón, J.; Solans, X.; Font-Bardia, M.; Ros, J. Synthesis of New Palladium (II) Compounds with Several Bidentate Nitrogen-Donor Ligands: Structural Analyses by 1H and 13C {1H} NMR Spectroscopy and Crystal Structures. Inorganica Chim. Acta 2006, 359, 2343–2349. [Google Scholar] [CrossRef]
- Lima, M.J.; Tavares, P.B.; Silva, A.M.T.; Silva, C.G.; Faria, J.L. Selective Photocatalytic Oxidation of Benzyl Alcohol to Benzaldehyde by Using Metal-Loaded g-C3N4 Photocatalysts. Catal. Today 2017, 287, 70–77. [Google Scholar] [CrossRef]
- Titi, A.; Shiga, T.; Oshio, H.; Touzani, R.; Hammouti, B.; Mouslim, M.; Warad, I. Synthesis of Novel Cl2Co4L6 Clusterusing 1-Hydroxymethyl-3, 5-Dimethylpyrazole (LH) Ligand: Crystal Structure, Spectral, Thermal, Hirschfeld Surface Analysis and Catalytic Oxidation Evaluation. J. Mol. Struct. 2020, 1199, 126995. [Google Scholar] [CrossRef]
- Bouroumane, N.; El Boutaybi, M.; Chetioui, S.; Bougueria, H.; Djedouani, A.; Bahari, Z.; Oussaid, A. Five Naphthalene Azo Benzene Ligands Complexed with Copper Metals: An Excellent in-Situ Catecholase Catalyst. Mater. Today Proc. 2021, 45, 7603–7607. [Google Scholar] [CrossRef]
- Ayad, M.I. Synthesis, Characterization and Catechol Oxidase Biomimetic Catalytic Activity of Cobalt(II) and Copper(II) Complexes Containing N2O2 Donor Sets of Imine Ligands. Arab. J. Chem. 2016, 9, S1297–S1306. [Google Scholar] [CrossRef]
- Mouadili, A.; El Ouafi, A.; Attayibat, A.; Radi, S.; Touzani, R. Catecholase and Tyrosinase Biomimetic Activities for Heteroatom Donor Ligands: Influence of Five Parameters. J. Mater. Environ. Sci. 2015, 6, 2166–2173. [Google Scholar]
- Yang, L.; Lee, Y.-A.; Jung, O.-S. Unprecedented Coordination Solvate Effects of Bimetallic Copper (II) Cages on Catechol Oxidation Catalysis. Inorg. Chem. Commun. 2019, 104, 48–53. [Google Scholar] [CrossRef]
- Ngo, K.T.; Varner, E.L.; Michael, A.C.; Weber, S.G. Monitoring Dopamine Responses to Potassium Ion and Nomifensine by In Vivo Microdialysis with Online Liquid Chromatography at One-Minute Resolution. ACS Chem. Neurosci. 2017, 8, 329–338. [Google Scholar] [CrossRef]
- Lee, H.N.F. Scherer, and PB Messersmith. Single-molecule Mech. mussel Adhes. Proc. Natl. Acad. Sci. USA 2006, 103, 12999–13003. [Google Scholar] [CrossRef]
- Citek, C.; Lin, B.-L.; Phelps, T.E.; Wasinger, E.C.; Stack, T.D.P. Primary Amine Stabilization of a Dicopper (III) Bis (μ-Oxo) Species: Modeling the Ligation in PMMO. J. Am. Chem. Soc. 2014, 136, 14405–14408. [Google Scholar] [CrossRef]
- Olmedo, P.; Moreno, A.A.; Sanhueza, D.; Balic, I.; Silva-Sanzana, C.; Zepeda, B.; Verdonk, J.C.; Arriagada, C.; Meneses, C.; Campos-Vargas, R. A Catechol Oxidase AcPPO from Cherimoya (Annona Cherimola Mill.) is Localized to the Golgi Apparatus. Plant Sci. 2018, 266, 46–54. [Google Scholar] [CrossRef]
- Mason, H.S. The Chemistry of Melanin: Vi. Mechanism of the Oxidation of Catechol by Tyrosinase. J. Biol. Chem. 1949, 181, 803–812. [Google Scholar] [CrossRef]
- Petrik, I.D.; Davydov, R.; Ross, M.; Zhao, X.; Hoffman, B.; Lu, Y. Spectroscopic and Crystallographic Evidence for the Role of a Water-Containing H-Bond Network in Oxidase Activity of an Engineered Myoglobin. J. Am. Chem. Soc. 2016, 138, 1134–1137. [Google Scholar] [CrossRef]
- Marion, R.; Muthusamy, G.; Geneste, F. Continuous Flow Catalysis with a Biomimetic Copper(II) Complex Covalently Immobilized on Graphite Felt. J. Catal. 2012, 286, 266–272. [Google Scholar] [CrossRef]
- El Boutaybi, M.; Bouroumane, N.; Azzouzi, M.; Bacroume, S.; Touzani, R.; Catecholase, Z. Phenoxazinone Synthase and Copper (CuII) Complex Based on Pyrazolic Ligand: Preparation and Characterization. Mater. Today Proc. 2023, 1–7. [Google Scholar] [CrossRef]
- Misawa-Suzuki, T.; Ikeda, R.; Komatsu, R.; Toriba, R.; Miyamoto, R.; Nagao, H. Geometry and Electronic Structures of Cobalt(II) and Iron(III) Complexes Bearing Bis(2-pyridylmethyl)ether or Alkylbis(2-pyridylmethyl)amine. Polyhedron 2022, 218, 115735–115743. [Google Scholar] [CrossRef]
- Titi, A.; Almutairi, S.; Touzani, R.; Messali, M.; Tillardd, M.; Hammouti, B.; El Kodadi, M.; Eddikee, D.; Zarrouk, A.; Warad, I. A new mixed pyrazole-diamine/Ni(II) complex, Crystal Structure, Physicochemical, Thermal and Antibacterial Investigation. J. Mol. Struct. 2021, 1236, 130304. [Google Scholar] [CrossRef]
- Haoyu, S.Y.; He, X.; Li, S.L.; Truhlar, D.G. MN15: A Kohn–Sham global-hybrid exchange–correlation density functional with broad accuracy for multi-reference and single-reference systems and noncovalent interactions. Chem. Sci. 2016, 7, 5032–5051. [Google Scholar]
- Badran, I.; Tighadouini, S.; Radi, S.; Zarrouk, A.; Warad, I. Experimental and first-principles study of a new hydrazine derivative for DSSC applications. J. Mol. Struct. 2020, 1229, 129799. [Google Scholar] [CrossRef]
- Mardirossian, N.; Head-Gordon, M. Thirty years of density functional theory in computational chemistry: An overview and extensive assessment of 200 density functionals. Mol. Phys. 2017, 115, 2315–2372. [Google Scholar] [CrossRef]
- Peverati, R.; Truhlar, D.G. Truhlar, Quest for a universal density functional: The accuracy of density functionals across a broad spectrum of databases in chemistry and physics. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2014, 372, 20120476. [Google Scholar] [CrossRef]
- Goerigk, L.; Hansen, A.; Bauer, C.; Ehrlich, S.; Najibi, A.; Grimme, S. A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions. PCCP 2017, 19, 32184–32215. [Google Scholar] [CrossRef] [PubMed]
- Badran, I.; Rauk, A.; Shi, Y. New Orbital Symmetry-Allowed Route for Cycloreversion of Silacyclobutane and Its Methyl Derivatives. J. Phys. Chem. A 2019, 123, 1749–1757. [Google Scholar] [CrossRef]
- Badran, I.; Rauk, A.; Shi, Y.J. Theoretical Study on the Ring-Opening of 1,3-Disilacyclobutane and H2 Elimination. J. Phys. Chem. A 2012, 116, 11806–11816. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Rev. C.01; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Dennington, R.; Keith, T.; Millam, J. GaussView, Version 5; Semichem Inc.: Shawnee, KA, USA, 2009. [Google Scholar]
- Hosny, N.M. Solvothermal Synthesis, Thermal and Adsorption Properties of Metal-Organic Frameworks Zn and CoZn (DPB). J. Therm. Anal. Calorim. 2015, 122, 89–95. [Google Scholar] [CrossRef]
- Scrocco, E.; Tomasi, J. Electronic Molecular Structure, Reactivity and Intermolecular Forces: An Euristic Interpretation by Means of Electrostatic Molecular Potentials. In Advances in Quantum Chemistry; Elsevier: Amsterdam, The Netherlands, 1978; Volume 11, pp. 115–193. [Google Scholar]
- Munoz-Caro, C.; Nino, A.; Senent, M.L.; Leal, J.M.; Ibeas, S. Modeling of Protonation Processes in Acetohydroxamic Acid. J. Org. Chem. 2000, 65, 405–410. [Google Scholar] [CrossRef] [PubMed]
- El Ati, R.; Takfaoui, A.; El Kodadi, M.; Touzani, R.; Yousfi, E.B.; Almalki, F.A.; Hadda, T.B. Catechol Oxidase and Copper (I/II) Complexes Derived from Bipyrazol Ligand: Synthesis, Molecular Structure Investigation of New Biomimetic Functional Model and Mechanistic Study. Mater. Today Proc. 2019, 13, 1229–1237. [Google Scholar] [CrossRef]
- Adam, F.; Batagarawa, M.S. Tetramethylguanidine–Silica Nanoparticles as an Efficient and Reusable Catalyst for the Synthesis of Cyclic Propylene Carbonate from Carbon Dioxide and Propylene Oxide. Appl. Catal. A Gen. 2013, 454, 164–171. [Google Scholar] [CrossRef]
- Boyaala, R.; El Ati, R.; Khoutoul, M.; El Kodadi, M.; Touzani, R.; Hammouti, B. Biomimetic Oxidation of Catechol Employing Complexes Formed in Situ with Heterocyclic Ligands and Different Copper(II) Salts. J. Iran. Chem. Soc. 2018, 15, 85–92. [Google Scholar] [CrossRef]
- Mouadili, A.; Abrigach, F.; Khoutoul, M.; Zarrouk, A.; Benchat, N.; Touzani, R. Biomimetic Oxidation of Catechol Employing Complexes Formed In-Situ with NH-Pyrazole Ligands and Transition Metallic Salts. J. Chem. Pharm. Res. 2015, 7, 968–979. [Google Scholar]
- Mouadili, A.; Attayibat, A.; Radi, S.; Touzani, R. Catecholase Activity Studies of Two Multidendate Ligands Based on Pyrazole. Arab. J. Chem. Environ. Res. 2014, 1, 24–32. [Google Scholar]
- Bedoya, J.C.; Valdez, R.; Cota, L.; Alvarez-Amparán, M.A.; Olivas, A. Performance of Al-MCM-41 Nanospheres as Catalysts for Dimethyl Ether Production. Catal. Today 2022, 388, 55–62. [Google Scholar] [CrossRef]
- Muley, A.; Karumban, K.S.; Kumbhakar, S.; Giri, B.; Maji, S. High Phenoxazinone Synthase Activity of Two Mononuclear Cis-Dichloro Cobalt(II) Complexes with a Rigid Pyridyl Scaffold. New J. Chem. 2022, 46, 521–532. [Google Scholar] [CrossRef]
- Kumbhakar, S.; Giri, B.; Muley, A.; Karumban, K.S.; Maji, S. Design, Synthesis, Structural, Spectral, and Redox Properties and Phenoxazinone Synthase Activity of Tripodal Pentacoordinate Mn (II) Complexes with Impressive Turnover Numbers. Dalt. Trans. 2021, 50, 16601–16612. [Google Scholar] [CrossRef]
- Dhara, A.K.; Maity, S.; Dhar, B.B. Visible-Light-Mediated Synthesis of Substituted Phenazine and Phenoxazinone Using Eosin Y as a Photoredox Catalyst. Org. Lett. 2021, 23, 3269–3273. [Google Scholar] [CrossRef] [PubMed]
- Khairy, M.; Mahmoud, A.H.; Khalil, K.M.S. Synthesis of Highly Crystalline LaFeO 3 Nanospheres for Phenoxazinone Synthase Mimicking Activity. RSC Adv. 2021, 11, 17746–17754. [Google Scholar] [CrossRef] [PubMed]
- Chirinos, J.; Ibarra, D.; Morillo, Á.; Llovera, L.; González, T.; Zárraga, J.; Larreal, O.; Guerra, M. Synthesis, Characterization and Catecholase Biomimetic Activity of Novel Cobalt(II), Copper(II), and Iron(II) Complexes Bearing Phenylene-Bis-Benzimidazole Ligand. Polyhedron 2021, 203, 115232. [Google Scholar] [CrossRef]
- Nehar, O.K.; Mahboub, R.; Louhibi, S.; Roisnel, T.; Aissaoui, M. New Thiosemicarbazone Schiff Base Ligands: Synthesis, Characterization, Catecholase Study and Hemolytic Activity. J. Mol. Struct. 2020, 1204, 127566–127576. [Google Scholar] [CrossRef]
No. | Bond | Å | No. | Angle | (°) | No. | Angle | (°) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | C1 | C2 | 1.3985 | 1 | C2 | C1 | C6 | 120.7 | 23 | N7 | N11 | C10 | 109.57 |
2 | C1 | C6 | 1.3967 | 2 | C2 | C1 | Cl16 | 118.76 | 24 | N7 | N11 | C13 | 114.48 |
3 | C1 | Cl16 | 1.7782 | 3 | C6 | C1 | Cl16 | 120.54 | 25 | C10 | N11 | C13 | 134.35 |
4 | C2 | N3 | 1.3432 | 4 | C1 | C2 | N3 | 117.93 | 26 | C4 | N12 | C13 | 120.26 |
5 | N3 | C4 | 1.3579 | 5 | C2 | N3 | C4 | 121.96 | 27 | C4 | N12 | Co17 | 89.11 |
6 | N3 | Co17 | 1.9101 | 6 | C2 | N3 | Co17 | 141.77 | 28 | C13 | N12 | Co17 | 105.77 |
7 | C4 | C5 | 1.3717 | 7 | C4 | N3 | Co17 | 96.24 | 29 | N11 | C13 | N12 | 103.1 |
8 | C4 | N12 | 1.4737 | 8 | N3 | C4 | C5 | 122.93 | 30 | N3 | Co17 | N7 | 141.71 |
9 | C5 | C6 | 1.4084 | 9 | N3 | C4 | N12 | 104.6 | 31 | N3 | Co17 | N12 | 70.04 |
10 | N7 | C8 | 1.3819 | 10 | C5 | C4 | N12 | 132.46 | 32 | N3 | Co17 | Cl19 | 89.87 |
11 | N7 | N11 | 1.4364 | 11 | C4 | C5 | C6 | 116.5 | 33 | N3 | Co17 | Cl20 | 108.4 |
12 | N7 | Co17 | 1.8122 | 12 | C1 | C6 | C5 | 119.98 | 34 | N7 | Co17 | N12 | 85.79 |
13 | C8 | C9 | 1.3949 | 13 | C8 | N7 | N11 | 106.46 | 35 | N7 | Co17 | Cl19 | 93.17 |
14 | C8 | C15 | 1.4899 | 14 | C8 | N7 | Co17 | 139.58 | 36 | N7 | Co17 | Cl20 | 105.99 |
15 | C9 | C10 | 1.4108 | 15 | N11 | N7 | Co17 | 113.06 | 37 | N12 | Co17 | Cl19 | 143.67 |
16 | C10 | N11 | 1.3608 | 16 | N7 | C8 | C9 | 108.13 | 38 | N12 | Co17 | Cl20 | 104.09 |
17 | C10 | C14 | 1.49 | 17 | N7 | C8 | C15 | 123.31 | 39 | Cl19 | Co17 | Cl20 | 111.03 |
18 | N11 | C13 | 1.4638 | 18 | C9 | C8 | C15 | 128.51 | |||||
19 | N12 | C13 | 1.5166 | 19 | C8 | C9 | C10 | 109.06 | |||||
20 | N12 | Co17 | 1.994 | 20 | C9 | C10 | N11 | 106.71 | |||||
21 | Co17 | Cl19 | 2.2143 | 21 | C9 | C10 | C14 | 128.81 | |||||
22 | Co17 | Cl20 | 2.2204 | 22 | N11 | C10 | C14 | 124.45 |
No. | λnm | f | Major Contributions |
---|---|---|---|
1 | 685.1 | 0.024 | HOMO(A)- > LUMO(A) (97%) |
2 | 597.9 | 0.004 | HOMO(B)- > LUMO(B) (71%) |
3 | 562.11 | 0.016 | H-2(A)- > LUMO(A) (25%), H-2(B)- > L + 1(B) (38%), H-1(B)- > L + 1(B) (23%) |
4 | 501.7 | 0.014 | H-1(B)- > LUMO(B) (74%) |
5 | 482.2 | 0.013 | H-2(B)- > LUMO(B) (51%), HOMO(B)- > L + 2(B) (13%), HOMO(B)- > L + 3(B) (22%) |
6 | 472.1 | 0.012 | H-2(B)- > LUMO(B) (32%), HOMO(B)- > L + 2(B) (13%), HOMO(B)- > L + 3(B) (39%) |
7 | 448.3 | 0.011 | H-1(A)- > LUMO(A) (24%), HOMO(A)- > L + 1(A) (10%), HOMO(B)- > L + 2(B) (13%), HOMO(B)- > L + 3(B) (30%) |
8 | 432.7 | 0.016 | HOMO(A)- > L + 1(A) (26%), H-2(B)- > L + 2(B) (39%), H-1(B)- > L + 1(B) (14%) |
9 | 417.7 | 0.014 | H-3(A)- > LUMO(A) (25%), H-2(B)- > L + 1(B) (26%), H-1(B)- > L + 1(B) (11%), H-1(B)- > L + 2(B) (20%) |
10 | 365.9 | 0.0411 | H-2(A)- > L + 1(A) (83%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boutaybi, M.E.; Bouroumane, N.; Azzouzi, M.; Aaddouz, M.; Bacroume, S.; El Miz, M.; Touzani, R.; Bahari, Z.; Zarrouk, A.; El-Marghany, A.; et al. Synthesis, Characterization, DFT, and Thermogravimetric Analysis of Neutral Co(II)/Pyrazole Complex, Catalytic Activity toward Catecholase and Phenoxazinone Oxidation. Crystals 2023, 13, 155. https://doi.org/10.3390/cryst13020155
Boutaybi ME, Bouroumane N, Azzouzi M, Aaddouz M, Bacroume S, El Miz M, Touzani R, Bahari Z, Zarrouk A, El-Marghany A, et al. Synthesis, Characterization, DFT, and Thermogravimetric Analysis of Neutral Co(II)/Pyrazole Complex, Catalytic Activity toward Catecholase and Phenoxazinone Oxidation. Crystals. 2023; 13(2):155. https://doi.org/10.3390/cryst13020155
Chicago/Turabian StyleBoutaybi, Mohamed El, Nadia Bouroumane, Mohamed Azzouzi, Mohamed Aaddouz, Said Bacroume, Mohamed El Miz, Rachid Touzani, Zahra Bahari, Abdelkader Zarrouk, Adel El-Marghany, and et al. 2023. "Synthesis, Characterization, DFT, and Thermogravimetric Analysis of Neutral Co(II)/Pyrazole Complex, Catalytic Activity toward Catecholase and Phenoxazinone Oxidation" Crystals 13, no. 2: 155. https://doi.org/10.3390/cryst13020155
APA StyleBoutaybi, M. E., Bouroumane, N., Azzouzi, M., Aaddouz, M., Bacroume, S., El Miz, M., Touzani, R., Bahari, Z., Zarrouk, A., El-Marghany, A., Jama, C., Abu-Rayyan, A., & Warad, I. (2023). Synthesis, Characterization, DFT, and Thermogravimetric Analysis of Neutral Co(II)/Pyrazole Complex, Catalytic Activity toward Catecholase and Phenoxazinone Oxidation. Crystals, 13(2), 155. https://doi.org/10.3390/cryst13020155