Lanthanide(III) Complexes with Thiodiacetato Ligand: Chemical Speciation, Synthesis, Crystal Structure, and Solid-State Luminescence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Equilibrium Studies
2.2. X-ray Data Collection and Structure Refinement
2.3. Synthesis of [Ln2(tda)3(H2O)5]·3H2O (Ln = Sm (1), Eu (2))
3. Results
3.1. Solution Studies
3.2. Synthesis and Characterization
3.3. Crystal Structures
3.4. Photophysical Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murugesu, M.; Schelter, E.J. Not Just Lewis Acids: Preface for the Forum on New Trends and Applications for Lanthanides. Inorg. Chem. 2016, 55, 9951–9953. [Google Scholar] [CrossRef] [PubMed]
- Cotton, S.A.; Raithby, P.R. Systematics and Surprises in Lanthanide Coordination Chemistry. Coord. Chem. Rev. 2017, 340, 220–231. [Google Scholar] [CrossRef]
- Chundawat, N.S.; Jadoun, S.; Zarrintaj, P.; Chauhan, N.P.S. Lanthanide Complexes as Anticancer Agents: A Review. Polyhedron 2021, 207, 115387. [Google Scholar] [CrossRef]
- Bao, G. Lanthanide Complexes for Drug Delivery and Therapeutics. J. Lumin. 2020, 228, 117622. [Google Scholar] [CrossRef]
- Zheng, Z.; Lu, H.; Wang, Y.; Bao, H.; Li, Z.-J.; Xiao, G.-P.; Lin, J.; Qian, Y.; Wang, J.-Q. Tuning of the Network Dimensionality and Photoluminescent Properties in Homo- and Heteroleptic Lanthanide Coordination Polymers. Inorg. Chem. 2021, 60, 1359–1366. [Google Scholar] [CrossRef]
- Zhang, P.; Guo, Y.-N.; Tang, J. Recent Advances in Dysprosium-Based Single Molecule Magnets: Structural Overview and Synthetic Strategies. Coord. Chem. Rev. 2013, 257, 1728–1763. [Google Scholar] [CrossRef]
- Jin, J.; Xue, J.; Liu, Y.; Yang, G.; Wang, Y.-Y. Recent Progresses in Luminescent Metal–Organic Frameworks (LMOFs) as Sensors for the Detection of Anions and Cations in Aqueous Solution. Dalton Trans. 2021, 50, 1950–1972. [Google Scholar] [CrossRef]
- Huangfu, M.; Wang, M.; Lin, C.; Wang, J.; Wu, P. Luminescent Metal–Organic Frameworks as Chemical Sensors Based on “Mechanism–Response”: A Review. Dalton Trans. 2021, 50, 3429–3449. [Google Scholar] [CrossRef]
- Kremer, C.; Torres, J.; Domínguez, S. Lanthanide Complexes with Oda, Ida, and Nta: From Discrete Coordination Compounds to Supramolecular Assemblies. J. Mol. Struct. 2008, 879, 130–149. [Google Scholar] [CrossRef]
- Wen, Y.-H.; Wu, X.-H.; Bi, S.; Zhang, S.-S. Synthesis and Structural Characterization of Lanthanide Oxalate–Oxydiacetate Mixed-Ligand Coordination Polymers {[Ln(Oda)(H2O)x]2(Ox)}n (x = 3 for Ln = La, Ce, Pr, Gd, Tb and x = 2 for Ln = Er). J. Coord. Chem. 2009, 62, 1249–1259. [Google Scholar] [CrossRef]
- Lennartson, A.; Håkansson, M. Total Spontaneous Resolution of Nine-Coordinate Complexes. CrystEngComm 2009, 11, 1979. [Google Scholar] [CrossRef]
- Zhou, Q.; Yang, F.; Liu, D.; Peng, Y.; Li, G.; Shi, Z.; Feng, S. Synthesis, Structures, and Magnetic Properties of Three Fluoride-Bridged Lanthanide Compounds: Effect of Bridging Fluoride Ions on Magnetic Behaviors. Inorg. Chem. 2012, 51, 7529–7536. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Ma, T.; Qian, R.; Zhou, L.; Guo, Q.; Yang, J.-H.; Yang, Q. Na–Ln Heterometallic Coordination Polymers: Structure Modulation by Na+ Concentration and Efficient Detection to Tetracycline Antibiotics and 4-(Phenylazo)Aniline. Inorg. Chem. 2021, 60, 7937–7951. [Google Scholar] [CrossRef]
- Torres, J.; Kremer, C.; Domínguez, S. Chemical Speciation of Polynuclear Complexes Containing [Ln2M3L6] Units. Pure Appl. Chem. 2008, 80, 1303–1316. [Google Scholar] [CrossRef]
- Cancino, P.; Santibañez, L.; Stevens, C.; Fuentealba, P.; Audebrand, N.; Aravena, D.; Torres, J.; Martinez, S.; Kremer, C.; Spodine, E. Influence of the Channel Size of Isostructural 3d–4f MOFs on the Catalytic Aerobic Oxidation of Cycloalkenes. New J. Chem. 2019, 43, 11057–11064. [Google Scholar] [CrossRef]
- Santibáñez, L.; Escalona, N.; Torres, J.; Kremer, C.; Cancino, P.; Spodine, E. CuII- and CoII-Based MOFs: {[La2Cu3(µ-H2O)(ODA)6(H2O)3]∙3H2O}n and {[La2Co3(ODA)6(H2O)6]∙12H2O}n. The Relevance of Physicochemical Properties on the Catalytic Aerobic Oxidation of Cyclohexene. Catalysts 2020, 10, 589. [Google Scholar] [CrossRef]
- Igoa, F.; Peinado, G.; Suescun, L.; Kremer, C.; Torres, J. Design of a White-Light Emitting Material Based on a Mixed-Lanthanide Metal Organic Framework. J. Solid State Chem. 2019, 279, 120925. [Google Scholar] [CrossRef]
- Igoa, F.; Romero, M.; Peinado, G.; Castiglioni, J.; Gonzalez-Platas, J.; Faccio, R.; Suescun, L.; Kremer, C.; Torres, J. Ln(III)–Ni(II) Heteropolynuclear Metal Organic Frameworks of Oxydiacetate with Promising Proton-Conductive Properties. CrystEngComm 2020, 22, 5638–5648. [Google Scholar] [CrossRef]
- Kremer, C.; Morales, P.; Torres, J.; Castiglioni, J.; González-Platas, J.; Hummert, M.; Schumann, H.; Domínguez, S. Novel Lanthanide–Iminodiacetate Frameworks with Hexagonal Pores. Inorg. Chem. Commun. 2008, 11, 862–864. [Google Scholar] [CrossRef]
- Bonomo, R.P.; Rizzarelli, E.; Bresciani-Pahor, N.; Nardin, G. Properties and X-Ray Crystal Structures of Copper( II ) Mixed Complexes with Thiodiacetate and 2,2′-Bipyridyl or 2,2′:6′2″-Terpyridyl. J. Chem. Soc. Dalton Trans. 1982, 681–685. [Google Scholar] [CrossRef]
- Alarcón-Payer, C.; Pivetta, T.; Choquesillo-Lazarte, D.; González-Pérez, J.M.; Crisponi, G.; Castiñeiras, A.; Niclós-Gutiérrez, J. Thiodiacetato-Copper(II) Chelates with or without N-Heterocyclic Donor Ligands: Molecular and/or Crystal Structures of [Cu(Tda)]n, [Cu(Tda)(Him)2(H2O)] and [Cu(Tda)(5Mphen)]·2H2O (Him=imidazole, 5Mphen=5-Methyl-1,10-Phenanthroline). Inorg. Chim. Acta 2005, 358, 1918–1926. [Google Scholar] [CrossRef]
- Abbaszadeh, A.; Safari, N.; Amani, V.; Notash, B.; Raei, F.; Eftekhar, F. Mononuclear and Dinuclear Copper(II) Complexes Containing N, O and S Donor Ligands: Synthesis, Characterization, Crystal Structure Determination and Antimicrobial Activity of [Cu(Phen)(Tda)].2H2O and [(Phen)2Cu(µ-Tda)Cu(Phen)](ClO4)2⋅1.5H2O. Iran. J. Chem. Chem. Eng. IJCCE 2014, 33, 1–33. [Google Scholar] [CrossRef]
- Patel, D.K.; Choquesillo-Lazarte, D.; Domínguez-Martín, A.; Brandi-Blanco, M.P.; González-Pérez, J.M.; Castiñeiras, A.; Niclós-Gutiérrez, J. Chelating Ligand Conformation Driving the Hypoxanthine Metal Binding Patterns. Inorg. Chem. 2011, 50, 10549–10551. [Google Scholar] [CrossRef] [PubMed]
- Kopel, P.; Trávníček, Z.; Marek, J.; Mrozinski, J. Syntheses and Study on Nickel(II) Complexes with Thiodiglycolic Acid and Nitrogen-Donor Ligands. X-Ray Structures of [Ni(Bpy)(Tdga)(H2O)]·4H2O and [(En)Ni(μ-Tdga)2Ni(En)]·4H2O (TdgaH2=thiodiglycolic Acid). Polyhedron 2004, 23, 1573–1578. [Google Scholar] [CrossRef]
- Wang, Y.-L.; Chang, G.-J.; Liu, B.-X. Aqua(2,2′-Diamino-4,4′-Bi-1,3-Thiazole-κ2 N3,N3′)(Thiodiacetato-κ3 O,S,O′)Nickel(II) Monohydrate. Acta Crystallogr. Sect. E Struct. Rep. Online 2011, 67, m681. [Google Scholar] [CrossRef] [Green Version]
- Pan, T.-T.; Su, J.-R.; Xu, D.-J. Hexaaquanickelate(II) Bis(Thiodiacetato-κ3 O,S,O′)Nickel(II) Tetrahydrate. Acta Crystallogr. Sect. E Struct. Rep. Online 2005, 61, m1376–m1378. [Google Scholar] [CrossRef] [Green Version]
- Alarcón-Payer, C.; Pivetta, T.; Choquesillo-Lazarte, D.; González-Pérez, J.M.; Crisponi, G.; Castiñeiras, A.; Niclós-Gutiérrez, J. Structural Correlations in Nickel(II)–Thiodiacetato Complexes: Molecular and Crystal Structures and Properties of [Ni(Tda)(H2O)3]. Inorg. Chem. Commun. 2004, 7, 1277–1280. [Google Scholar] [CrossRef]
- Pan, T.-T.; Su, J.-R.; Xu, D.-J. Tris(1 H -Imidazole-κ N3)(Thiodiacetato-κ3 O,S,O′)Nickel(II) Monohydrate. Acta Crystallogr. Sect. E Struct. Rep. Online 2005, 61, m1576–m1578. [Google Scholar] [CrossRef]
- Delaunay, J.; Kappenstein, C.; Hugel, R. Structure Cristalline et Moléculaire Du Bis-Thio(Diacétato)Nickelate(II) de Potassium Trihydraté. Acta Crystallogr. B 1976, 32, 2341–2345. [Google Scholar] [CrossRef]
- Cao, L.; Liu, J.-G.; Xu, D.-J. Tris(1 H -Benzimidazole-κ N3 )(Thiodiacetato-κ3 O,S,O′)Cobalt(II) Dihydrate. Acta Crystallogr. Sect. E Struct. Rep. Online 2006, 62, m579–m581. [Google Scholar] [CrossRef]
- Liu, B.-X.; Yu, J.-Y.; Xu, D.-J. Aqua(2,2′-Diamino-4,4′-Bi-1,3-Thiazole-κ2 N, N ′)(Thiodiacetato-κ3 O,S,O′)Cobalt(II) Dihydrate. Acta Crystallogr. Sect. E Struct. Rep. Online 2005, 61, m1978–m1980. [Google Scholar] [CrossRef] [Green Version]
- Korchagin, D.V.; Gureev, Y.E.; Yureva, E.A.; Shilov, G.V.; Akimov, A.V.; Misochko, E.Y.; Morgunov, R.B.; Zakharov, K.V.; Vasiliev, A.N.; Palii, A.V.; et al. Field-Induced Single-Ion Magnet Based on a Quasi-Octahedral Co(II) Complex with Mixed Sulfur–Oxygen Coordination Environment. Dalton Trans. 2021, 50, 13815–13822. [Google Scholar] [CrossRef] [PubMed]
- Grirrane, A.; Pastor, A.; Álvarez, E.; Mealli, C.; Ienco, A.; Masi, D.; Galindo, A. Thiodiacetate Cobalt(II) Complexes: Synthesis, Structure and Properties. Inorg. Chem. Commun. 2005, 8, 463–466. [Google Scholar] [CrossRef]
- Grirrane, A.; Pastor, A.; Álvarez, E.; Mealli, C.; Ienco, A.; Rosa, P.; Galindo, A. Thiodiacetate and Oxydiacetate Cobalt Complexes: Synthesis, Structure and Stereochemical Features. Eur. J. Inorg. Chem. 2007, 2007, 3543–3552. [Google Scholar] [CrossRef]
- Wang, H.; Gao, S.; Ng, S.W. Hexaaquacobalt(II) Bis(2,2′-Sulfanediyldiacetato-κ3 O,S,O′)Cobaltate(II) Tetrahydrate. Acta Crystallogr. Sect. E Struct. Rep. Online 2011, 67, m1521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.-Y.; Xie, L.-M.; He, H.-Y.; Zhou, X.; Zhu, L.-G. Aqua(1,10-Phenanthroline)(Thiodiglycolato)Cobalt(II). Acta Crystallogr. Sect. E Struct. Rep. Online 2005, 61, m568–m570. [Google Scholar] [CrossRef] [Green Version]
- Grirrane, A.; Pastor, A.; Galindo, A.; Álvarez, E.; Mealli, C.; Ienco, A.; Orlandini, A.; Rosa, P.; Caneschi, A.; Barra, A.; et al. Thiodiacetate–Manganese Chemistry with N Ligands: Unique Control of the Supramolecular Arrangement over the Metal Coordination Mode. Chem. Eur. J. 2011, 17, 10600–10617. [Google Scholar] [CrossRef] [Green Version]
- Drew, M.G.B.; Rice, D.A.; Timewell, C.W. Crystal and Molecular Structure of Triaquazinc(II) Thiodiglycolate Monohydrate. J. Chem. Soc. Dalton Trans. 1975, 144–148. [Google Scholar] [CrossRef]
- Baggio, R.; Perec, M.; Garland, M.T. Aqua(2,2’-Bipyridyl-N,N’)(Thiodiacetato-O,O’,S)Zinc(II) Tetrahydrate. Acta Crystallogr. C 1996, 52, 2457–2460. [Google Scholar] [CrossRef]
- Arıcı, M.; Yeşilel, O.Z.; Acar, E.; Dege, N. Synthesis, Characterization and Properties of Nicotinamide and Isonicotinamide Complexes with Diverse Dicarboxylic Acids. Polyhedron 2017, 127, 293–301. [Google Scholar] [CrossRef]
- Pan, T.-T.; Xu, D.-J. Tris(1H-Benzimidazole-κ N3)(Thiodiacetato-κ3O,S,O′)Cadmium(II) Dihydrate. Acta Crystallogr. Sect. E Struct. Rep. Online 2005, 61, m1735–m1737. [Google Scholar] [CrossRef] [Green Version]
- Grirrane, A.; Pastor, A.; Álvarez, E.; Galindo, A. Magnesium Dicarboxylates: First Structurally Characterized Oxydiacetate and Thiodiacetate Magnesium Complexes. Inorg. Chem. Commun. 2005, 8, 453–456. [Google Scholar] [CrossRef]
- Shan, X.; Ellern, A.; Guzei, I.A.; Espenson, J.H. Syntheses and Oxidation of Methyloxorhenium(V) Complexes with Tridentate Ligands. Inorg. Chem. 2003, 42, 2362–2367. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, L.; Grirrane, A.; Moyano, R.; Álvarez, E.; Pastor, A.; Galindo, A. Comparison of the Coordination Capabilities of Thiodiacetate and Oxydiacetate Ligands through the X-Ray Characterization and DFT Studies of [V(O)(Tda)(Phen)]·4H2O and [V(O)(Oda)(Phen)]·1.5H2O. Polyhedron 2010, 29, 3028–3035. [Google Scholar] [CrossRef]
- Zangl, A.; Klüfers, P.; Schaniel, D.; Woike, T. Photoinduced Linkage Isomerism of {RuNO}6 Complexes with Bioligands and Related Chelators. Dalton Trans. 2009, 1034–1045. [Google Scholar] [CrossRef] [PubMed]
- Marek, J.; Trávníček, Z.; Kopel, P. Diaquabis(1,10-Phenanthroline-κ2 N,N ′)Manganese(II) Thiodiglycolate Bis(1,10-Phenanthroline-κ2 N,N′)(Thiodiglycolato-κ2 O,O′)Manganese(II) Tridecahydrate. Acta Crystallogr. C 2003, 59, m429–m431. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Shan, Y.; Gu, X.; Ni, L.; Zhang, W. Assembly and Photocatalysis of Three Novel Metal–Organic Frameworks Tuned by Metal Polymeric Motifs. J. Coord. Chem. 2015, 68, 2014–2028. [Google Scholar] [CrossRef]
- Baggio, R.; Garland, M.T.; Manzur, J.; Peña, O.; Perec, M.; Spodine, E.; Vega, A. A Dinuclear Copper(II) Complex Involving Monoatomic O-Carboxylate Bridging and Cu–S(Thioether) Bonds: [Cu(Tda)(Phen)]2·H2tda (Tda=thiodiacetate, Phen=phenanthroline). Inorg. Chim. Acta 1999, 286, 74–79. [Google Scholar] [CrossRef]
- Ahmad, M.S.; Khalid, M.; Khan, M.S.; Shahid, M.; Ahmad, M.; Monika; Ansari, A.; Ashafaq, M. Exploring Catecholase Activity in Dinuclear Mn(II) and Cu(II) Complexes: An Experimental and Theoretical Approach. New J. Chem. 2020, 44, 7998–8009. [Google Scholar] [CrossRef]
- Kopel, P.; Trávníček, Z.; Marek, J.; Korabik, M.; Mrozinski, J. Syntheses and Properties of Binuclear Copper(II) Mixed-Ligand Complexes Involving Thiodiglycolic Acid. Polyhedron 2003, 22, 411–418. [Google Scholar] [CrossRef]
- Grirrane, A.; Pastor, A.; Galindo, A.; del Río, D.; Orlandini, A.; Mealli, C.; Ienco, A.; Caneschi, A.; Fernández Sanz, J. Supramolecular Interactions as Determining Factors of the Geometry of Metallic Building Blocks: Tetracarboxylate Dimanganese Species. Angew. Chem. Int. Ed. 2005, 44, 3429–3432. [Google Scholar] [CrossRef] [PubMed]
- Neuman, N.I.; Burna, E.; Baggio, R.; Passeggi, M.C.G.; Rizzi, A.C.; Brondino, C.D. Transition from Isolated to Interacting Copper(II) Pairs in Extended Lattices Evaluated by Single Crystal EPR Spectroscopy. Inorg. Chem. Front. 2015, 2, 837–845. [Google Scholar] [CrossRef]
- Grirrane, A.; Pastor, A.; Álvarez, E.; Mealli, C.; Ienco, A.; Galindo, A. Novel Results on Thiodiacetate Zinc(II) Complexes: Synthesis and Structure of [Zn(Tda)(Phen)]2·5H2O. Inorg. Chem. Commun. 2006, 9, 160–163. [Google Scholar] [CrossRef]
- Sun, D.; Xu, M.-Z.; Liu, S.-S.; Yuan, S.; Lu, H.-F.; Feng, S.-Y.; Sun, D.-F. Eight Zn(II) Coordination Networks Based on Flexible 1,4-Di(1H-Imidazol-1-Yl)Butane and Different Dicarboxylates: Crystal Structures, Water Clusters, and Topologies. Dalton Trans. 2013, 42, 12324. [Google Scholar] [CrossRef]
- Packiaraj, S.; Kanchana, P.; Pushpaveni, A.; Puschmann, H.; Govindarajan, S. Different Coordination Geometries of Lighter Lanthanates Driven by the Symmetry of Guanidines as Charge Compensators. New J. Chem. 2019, 43, 979–991. [Google Scholar] [CrossRef]
- Malmborg, T.; Oskarsson, Å.; Rømming, C.; Gronowitz, S.; Koskikallio, J.; Swahn, C.-G. Structural Studies on the Rare Earth Carboxylates. 22. The Crystal Structure of Tetra-Aquo-Thiodiacetatoneodymium(III) Chloride. Acta Chem. Scand. 1973, 27, 2923–2929. [Google Scholar] [CrossRef]
- Kepert, C.J.; Skelton, B.W.; White, A.H. Structural Systematics of Rare Earth Complexes. XXI Polymeric Sodium Bis(Thiodiglycolato)Neodymiate(III). Aust. J. Chem. 1999, 52, 617. [Google Scholar] [CrossRef]
- Ghadermazi, M.; Olmstead, M.M.; Rostami, S.; Attar Gharamaleki, J. Poly[[Piperazine-1,4-Dium [Diaquatetrakis(μ-Sulfanediyldiacetato)Dicerate(III)]] Trihydrate]. Acta Crystallogr. Sect. E Struct. Rep. Online 2011, 67, m291–m292. [Google Scholar] [CrossRef] [Green Version]
- Hou, X.; Li, D.; Wang, X.; Wang, J.; Ren, Y.; Zhang, M. Syntheses, Structures and Luminescence Properties of Ln-Coordination Polymers Based on Flexible Thiodiacetic Acid Ligand. Chin. J. Chem. 2009, 27, 1481–1486. [Google Scholar] [CrossRef]
- Wen, H.-R.; Dong, P.-P.; Liang, F.-Y.; Liu, S.-J.; Xie, X.-R.; Tang, Y.-Z. A Family of 2D Lanthanide Complexes Based on Flexible Thiodiacetic Acid with Magnetocaloric or Ferromagnetic Properties. Inorg. Chim. Acta 2017, 455, 190–196. [Google Scholar] [CrossRef]
- Wang, H.-S.; Bao, W.-J.; Ren, S.-B.; Chen, M.; Wang, K.; Xia, X.-H. Fluorescent Sulfur-Tagged Europium(III) Coordination Polymers for Monitoring Reactive Oxygen Species. Anal. Chem. 2015, 87, 6828–6833. [Google Scholar] [CrossRef] [PubMed]
- Hosseinabadi, F.; Ghadermazi, M.; Taran, M.; Derikvand, Z. Synthesis, Crystal Structure, Spectroscopic, Thermal Analyses and Biological Properties of Novel F-Block Coordination Polymers Containing 2,2′-Thiodiacetic Acid and Piperazine. Inorg. Chim. Acta 2016, 443, 186–197. [Google Scholar] [CrossRef]
- Zhang, Y.-Z.; Li, J.-R.; Gao, S.; Kou, H.-Z.; Sun, H.-L.; Wang, Z.-M. Two-Dimensional Rare Earth Coordination Polymers Involving Different Coordination Modes of Thiodiglycolic Acid. Inorg. Chem. Commun. 2002, 5, 28–31. [Google Scholar] [CrossRef]
- Gans, P. GLEE, a New Computer Program for Glass Electrode Calibration. Talanta 2000, 51, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Petit, L.D.; Powell, K.J. Stability Constants Database, SC-Database for Windows 1997; Academic Software: Lokeren, Belgium, 1997. [Google Scholar]
- Klungness, G.D.; Byrne, R.H. Comparative Hydrolysis Behavior of the Rare Earths and Yttrium: The Influence of Temperature and Ionic Strength. Polyhedron 2000, 19, 99–107. [Google Scholar] [CrossRef]
- Martínez, S.; Igoa, F.; Carrera, I.; Seoane, G.; Veiga, N.; De Camargo, A.S.S.; Kremer, C.; Torres, J. A Zn(II) Luminescent Complex with a Schiff Base Ligand: Solution, Computational and Solid State Studies. J. Coord. Chem. 2018, 71, 874–889. [Google Scholar] [CrossRef]
- CrysAlisPro, Version 2021; Rigaku Oxford Diffraction: Oxford, UK, 2021.
- Sheldrick, G.M. SHELXT–Integrated Space-Group and Crystal-Structure Determination. Acta Crystallographica. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Spek, A.L. Structure Validation in Chemical Crystallography. Acta Crystallogr. D Biol. Crystallogr. 2009, 65, 148–155. [Google Scholar] [CrossRef] [Green Version]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Bessen, N.P.; Popov, I.A.; Heathman, C.R.; Grimes, T.S.; Zalupski, P.R.; Moreau, L.M.; Smith, K.F.; Booth, C.H.; Abergel, R.J.; Batista, E.R.; et al. Complexation of Lanthanides and Heavy Actinides with Aqueous Sulfur-Donating Ligands. Inorg. Chem. 2021, 60, 6125–6134. [Google Scholar] [CrossRef] [PubMed]
- Thakur, P.; Pathak, P.N.; Gedris, T.; Choppin, G.R. Complexation of Eu(III), Am(III) and Cm(III) with Dicarboxylates: Thermodynamics and Structural Aspects of the Binary and Ternary Complexes. J. Solut. Chem. 2009, 38, 265–287. [Google Scholar] [CrossRef]
- Torres, J.; Peluffo, F.; Domínguez, S.; Mederos, A.; Arrieta, J.M.; Castiglioni, J.; Lloret, F.; Kremer, C. 2,2′-Oxydiacetato-Bridged Complexes Containing Sm(III) and Bivalent Cations. Synthesis, Structure, Magnetic Properties and Chemical Speciation. J. Mol. Struct. 2006, 825, 60–69. [Google Scholar] [CrossRef]
- Grenthe, I.; Tobiasson, I.; Theander, O.; Hatanaka, A.; Munch-Petersen, J. Thermodynamic Properties of Rare Earth Complexes. I. Stability Constants for the Rare Earth Diglycolate Complexes. Acta Chem. Scand. 1963, 17, 2101–2112. [Google Scholar] [CrossRef] [Green Version]
- Grenthe, I.; Gårdhammar, G.; Søtofte, I.; Beronius, P.; Engebretsen, J.E.; Ehrenberg, L. Thermodynamic Properties of Rare Earth Complexes. X. Complex Formation in Aqueous Solution of Eu(III) and Iminodiacetic Acid. Acta Chem. Scand. 1971, 25, 1401–1407. [Google Scholar] [CrossRef] [Green Version]
- Chung, D.Y.; Lee, E.H.; Kimura, T. Laser-Induced Luminescence Study of Samarium(III) Thiodiglycolate Complexes. Bull. Korean Chem. Soc. 2003, 24, 1396–1398. [Google Scholar]
- Lis, S.; Choppin, G.R. Luminescence Study of Europium(III) Complexes with Several Dicarboxylic Acids in Aqueous Solution. J. Alloys Compd. 1995, 225, 257–260. [Google Scholar] [CrossRef]
- Dellien, I.; Grenthe, I.; Hessler, G. Thermodynamic Properties of Rare Earth Complexes XVIII. Free Energy, Enthalpy and Entropy Changes for the Formation of Some Lanthanoid Thiodiacetate and Hydrogen Thiodiacetate Complexes. Acta Chem. Scandinava 1973, 27, 2431–2440. [Google Scholar] [CrossRef] [Green Version]
- Puentes, R.; Torres, J.; Kremer, C.; Cano, J.; Lloret, F.; Capucci, D.; Bacchi, A. Mononuclear and Polynuclear Complexes Ligated by an Iminodiacetic Acid Derivative: Synthesis, Structure, Solution Studies and Magnetic Properties. Dalton Trans. 2016, 45, 5356–5373. [Google Scholar] [CrossRef]
- Casanova, D.; Llunell, M.; Alemany, P.; Alvarez, S. The Rich Stereochemistry of Eight-Vertex Polyhedra: A Continuous Shape Measures Study. Chem.-Eur. J. 2005, 11, 1479–1494. [Google Scholar] [CrossRef]
- Llunell, M.; Casanova, D.; Cirera, J.; Alemany, P.; Alvarez, S. SHAPE, Version 1.1; Universitat de Barcelona: Barcelona, Spain, 2003.
- Bünzli, J.-C.G. On the Design of Highly Luminescent Lanthanide Complexes. Coord. Chem. Rev. 2015, 293–294, 19–47. [Google Scholar] [CrossRef]
- Thomsen, M.S.; Nawrocki, P.R.; Kofod, N.; Sørensen, T.J. Seven Europium(III) Complexes in Solution–The Importance of Reporting Data When Investigating Luminescence Spectra and Electronic Structure. Eur. J. Inorg. Chem. 2022, 2022, e202200334. [Google Scholar] [CrossRef]
- Binnemans, K. Interpretation of Europium(III) Spectra. Coord. Chem. Rev. 2015, 295, 1–45. [Google Scholar] [CrossRef]
Compound | 1 | 2 |
---|---|---|
Formula | C12H28O20S3Sm2 | C12H28O20S3Eu2 |
Dcalc./g cm−3 | 2.231 | 2.250 |
μ/mm−1 | 4.715 | 5.042 |
Formula Weight | 889.22 | 892.44 |
Colour | colorless | colorless |
Shape | block-shaped | irregular-shaped |
Size/mm3 | 0.17 × 0.09 × 0.07 | 0.07 × 0.06 × 0.04 |
T/K | 293(2) | 293(2) |
Crystal System | triclinic | triclinic |
Space Group | P-1 | P-1 |
a/Å | 9.0767(3) | 9.0706(3) |
b/Å | 12.1931(4) | 12.1653(3) |
c/Å | 13.3940(4) | 13.3578(5) |
a/° | 63.274(3) | 63.364(3) |
b/° | 88.730(2) | 88.684(3) |
g/° | 88.545(2) | 88.508(3) |
V/Å3 | 1323.47(8) | 1317.01(8) |
Z | 2 | 2 |
Z′ | 1 | 1 |
Wavelength/Å | 0.71073 | 0.71073 |
Radiation type | Mo Ka | Mo Ka |
θmin/° | 1.702 | 1.706 |
θmax/° | 28.282 | 32.043 |
Measured Refl’s. | 13,613 | 17,246 |
Indep’t Refl’s | 6556 | 8441 |
Refl’s I ≥ 2 σ(I) | 5914 | 6900 |
Rint | 0.0189 | 0.0276 |
Parameters | 414 | 407 |
Restraints | 0 | 0 |
Largest Peak | 0.687 | 0.951 |
Deepest Hole | −0.822 | −0.920 |
GooF | 1.055 | 1.035 |
R1 (all data) a | 0.0267 | 0.0449 |
R1 a | 0.0227 | 0.0323 |
wR2 (all data) b | 0.0538 | 0.0653 |
wR2b | 0.0518 | 0.0605 |
Equilibrium | log10 K | σ |
---|---|---|
tda2− + H+ → Htda- | 4.23(1) | 1.3 |
tda2− + 2H+ → H2tda | 7.28(2) | |
Sm3+ + tda2− → [Sm(tda)]+ | 2.94(4) | 0.7 |
Sm3+ + 2tda2− → [Sm(tda)2]− | 5.16(6) | |
Sm3+ + H+ + tda2− → [Sm(Htda)]2+ | 6.28(5) | |
Eu3+ + tda2− → [Eu(tda)]+ | 3.06(1) | 0.4 |
Eu3+ + 2tda2− → [Eu(tda)2]− | 5.96(5) | |
Eu3+ + H+ + tda2− → [Eu(Htda)]2+ | 5.7(2) | |
oda | Ref. | |
Sm3+ + oda2− → [Sm(oda)]+ | 5.64 | [75] |
Sm3+ + 2oda2− → [Sm(oda)2]− | 9.62 | [75] |
Eu3+ + oda2− → [Eu(oda)]+ | 5.53 | [76] |
Eu3+ + 2oda2− → [Eu(oda)2]− | 10.04 | [76] |
ida | ||
Sm3+ + ida2− → [Sm(ida)]+ | 5.914 | [14] |
Sm3+ + 2ida2− → [Sm(ida)2]− | 10.230 | [14] |
Eu3+ + ida2− → [Eu(ida)]+ | 6.48 | [77] |
Eu3+ + 2ida2− → [Eu(ida)2]− | 11.65 | [77] |
1 | 2 | ||||||
---|---|---|---|---|---|---|---|
Sm1-O9 | 2.392(2) | Sm2-O7 iii | 2.596(2) | Eu1-O10 i | 2.414(3) | Eu2-O11 iv | 2.580(2) |
Sm1-O9 i | 2.585(2) | Sm2-O7 iv | 2.410(2) | Eu1-O6 i | 2.378(2) | Eu2-O8 ii | 2.392(3) |
Sm1-O6 i | 2.428(2) | Sm2-O8 iii | 2.552(2) | Eu1-O9 | 2.387(3) | Eu2-O11 | 2.394(2) |
Sm1-O10 i | 2.545(3) | Sm2-O11 | 2.400(2) | Eu1-O5 | 2.539(3) | Eu2-O7 iii | 2.405(3) |
Sm1-O1 | 2.376(2) | Sm2-O12 ii | 2.413(2) | Eu1-O1 | 2.362(3) | Eu2-O12 ii | 2.544(3) |
Sm1-O5 | 2.396(2) | Sm2-O2W | 2.433(3) | Eu1-O3 | 2.361(3) | Eu2-O5W | 2.420(3) |
Sm1-O3 | 2.376(2) | Sm2-O3W | 2.438(2) | Eu1-O6 | 2.570(3) | Eu2-O2W | 2.444(3) |
Sm1-O1W | 2.427(3) | Sm2-O5W | 2.456(2) | Eu1-O1W | 2.423(3) | Eu2-O4W | 2.503(3) |
Sm1-S1 | 3.130(1) | Sm2-O4W | 2.520(3) | Eu1-S1 | 3.126(1) | Eu2-O3W | 2.427(3) |
i 1 − x, −y, 1 − z; ii −x, 1 − y, −z; iii 1 − x, 1 − y, −z; iv −1 + x, +y, +z | i 1 − x, 2 − y, 1 − z; ii −x, 2 − y, 1 − z; iii x, −1 + y, 1 + z; iv −x, 1 − y, 2 − z |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres, J.; González-Platas, J.; Kremer, C. Lanthanide(III) Complexes with Thiodiacetato Ligand: Chemical Speciation, Synthesis, Crystal Structure, and Solid-State Luminescence. Crystals 2023, 13, 56. https://doi.org/10.3390/cryst13010056
Torres J, González-Platas J, Kremer C. Lanthanide(III) Complexes with Thiodiacetato Ligand: Chemical Speciation, Synthesis, Crystal Structure, and Solid-State Luminescence. Crystals. 2023; 13(1):56. https://doi.org/10.3390/cryst13010056
Chicago/Turabian StyleTorres, Julia, Javier González-Platas, and Carlos Kremer. 2023. "Lanthanide(III) Complexes with Thiodiacetato Ligand: Chemical Speciation, Synthesis, Crystal Structure, and Solid-State Luminescence" Crystals 13, no. 1: 56. https://doi.org/10.3390/cryst13010056
APA StyleTorres, J., González-Platas, J., & Kremer, C. (2023). Lanthanide(III) Complexes with Thiodiacetato Ligand: Chemical Speciation, Synthesis, Crystal Structure, and Solid-State Luminescence. Crystals, 13(1), 56. https://doi.org/10.3390/cryst13010056