Alleviation of Iron Corrosion in Chloride Solution by N,N′-bis[2-Methoxynaphthylidene]amino]oxamide as a Corrosion Inhibitor
Abstract
:1. Introduction
2. Experimental Materials and Methods
3. Results and Discussion
3.1. Chemistry and Characterization of the Inhibitor
3.2. Potentiodynamic Cyclic Polarization (PCP)
3.3. Potentiostatic Current versus Time (PCT) Measurements
3.4. Surface Examination
3.5. EIS Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sherif, E.-S.M.; Erasmus, R.M.; Comins, J.D. In situ Raman spectroscopy and electrochemical techniques for studying corrosion and corrosion inhibition of iron in sodium chloride solutions. Electrochim. Acta 2010, 55, 3657–3663. [Google Scholar] [CrossRef]
- Yao, J.L.; Ren, B.; Huang, Z.F.; Cao, P.G.; Gub, R.A.; Tian, Z.-Q. Extending surface Raman spectroscopy to transition metals for practical applications IV. A study on corrosion inhibition of benzotriazole on bare Fe electrodes. Electrochim. Acta 2003, 48, 1263–1271. [Google Scholar] [CrossRef]
- Sherif, E.-S.M. Effects of 5-(3-aminophenyl)-tetrazole on the inhibition of unalloyed iron corrosion in aerated 3.5% sodium chloride solutions as a corrosion inhibitor. Mater. Chem. Phys. 2011, 129, 961–967. [Google Scholar] [CrossRef]
- Melendres, C.A.; Camillone, N., III; Tipton, T. Laser Raman spectroelectrochemical studies of anodic corrosion and film formation on iron in phosphate solutions. Electrochim. Acta 1989, 34, 281–286. [Google Scholar] [CrossRef]
- Sherif, E.-S.M. Corrosion and corrosion inhibition of pure iron in neutral chloride solutions by 1,1’-thiocarbonyldiimidazole. Int. J. Electrochem. Sci. 2011, 6, 3077–3092. [Google Scholar]
- Khaled, K.F.; Abdel-Rehim, S.S.; Sakr, G.B. On the corrosion inhibition of iron in hydrochloric acid solutions, Part I: Electrochemical DC and AC studies. Arab. J. Chem. 2012, 5, 213–218. [Google Scholar] [CrossRef] [Green Version]
- Amin, M.A.; Khaled, K.F.; Mohsen, Q.; Arida, H.A. A study of the inhibition of iron corrosion in HCl solutions by some amino acids. Corros. Sci. 2010, 5, 1684–1695. [Google Scholar] [CrossRef]
- Shainy, K.M.; Rugmini Ammal, P.; Unni, K.N.; Sailas, B.; Abraham, J. Surface Interaction and Corrosion Inhibition of Mild Steel in Hydrochloric Acid Using Pyoverdine, an Eco-Friendly Biomolecule. J. Bio. Tribo. Corros. 2016, 2, 20. [Google Scholar] [CrossRef] [Green Version]
- Lakshminarayanan, V.; Kannan, R.; Rajagopalan, S.R. Cyclic voltammetric behavior of certain copper-azole systems using carbon paste electrodes. J. Electroanal. Chem. 1994, 364, 79–86. [Google Scholar] [CrossRef]
- Sherif, E.-S.M. Effects of 2-amino-5-(ethylthio)-1,3,4-thiadiazole on copper corrosion as a corrosion inhibitor in 3% NaCl solutions. J. Appl. Surf. Sci. 2006, 252, 8615–8622. [Google Scholar] [CrossRef]
- Andreeva, D.; Shchukin, D.; Mohwald, H. Corrosion Inhibiting Coating for Active Corrosion Protection of Metal Surfaces, Comprising a Sandwich-like Inhibitor Complex. WO Patent 046915, 16 April 2009. [Google Scholar]
- May, M.; Khalifa, K.; Ali, B. Corrosion Inhibition of Mild Steel by Using Carbimazole/Zn+ System in NaCl Medium. Amer. J. Mech. Mater. Eng. 2019, 3, 70–77. [Google Scholar] [CrossRef]
- Asatyas, S.; Wahyuningrum, D.; Bundjali, B. Adsorption Mechanism of 4-(4,5-diphenyl-1H-imidazole)-N,N-dimethylbenzenamine as a Corrosion Inhibitor Towards Carbon Steel in 1% NaCl Solution. Inter. J. Sci. Basic Appl. Res. 2020, 53, 175–182. [Google Scholar]
- Fontana, M.G. Corrosion Engineering, 3rd ed.; McGraw-Hill: New York, NY, USA, 1986. [Google Scholar]
- Zhang, S.; Tao, Z.; Li, W.; Hou, B. The effect of some triazole derivatives as inhibitors for the corrosion of mild steel in 1M hydrochloric acid. Appl. Surf. Sci. 2009, 255, 6757–6763. [Google Scholar] [CrossRef]
- Sherif, E.M.; Park, S.-M. Effects of 1,4-naphthoquinone on aluminum corrosion in 0.50 M sodium chloride solutions. Electrochim. Acta 2006, 51, 1313–1321. [Google Scholar] [CrossRef]
- Sliem, M.H.; Radwan, A.B.; Mohamed, F.S.; Alnuaimi, N.A.; Abdullah, A.M. An efficient green ionic liquid for the corrosion inhibition of reinforcement steel in neutral and alkaline highly saline simulated concrete pore solutions. Sci. Rep. 2020, 10, 14565. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, K.; Sliem, M.H.; Shakoor, R.A.; Radwan, A.B.; Kahraman, R.; Umer, M.A.; Manzoor, U.; Abdullah, A.M. Electrochemical and thermodynamic study on the corrosion performance of API X120 steel in 3.5% NaCl solution. Sci. Rep. 2020, 10, 4314. [Google Scholar] [CrossRef]
- Gao, X.; Liu, S.; Lu, H.; Gao, F.; Ma, H. Corrosion inhibition of iron in acidic solutions by monoalkyl phosphate esters with different chain lengths. Ind. Eng. Chem. Res. 2015, 54, 1941–1952. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, F.; Liu, Y.; Wu, S.; Li, W.; Sun, W.; Guod, D.; Jiang, J. Molecule adsorption and corrosion mechanism of steel under protection of inhibitor in a simulated concrete solution with 3.5% NaCl. RSC Adv. 2018, 8, 20648. [Google Scholar] [CrossRef] [Green Version]
- Lai, Y.; Gao, Y.; Jin, Y.; Wen, L. Study of methionine as green corrosion inhibitor for TWIP steel in neutral chloride solution. Mater. Res. Exp. 2021, 8, 046533. [Google Scholar] [CrossRef]
- ArockiaSelvi, J.; Kamaraj, P.; Arthanareeswari, M.; PushpaMalini, T.; Mohanapriya, S.; Subasree, N. Effect of cetylpyridinium chloride on corrosion inhibition of mild steel in chloride environment. Mater. Today 2019, 14, 264–270. [Google Scholar] [CrossRef]
- Fontana, M.G.; Staehle, K.W. Advances in Corrosion Science and Technology; Plenum: New York, NY, USA, 1970; Volume 1. [Google Scholar]
- Ahmed, A.H. N,N′-bis[2-hydroxynaphthylidene]/[2-methoxybenzylidene]amino]oxamides and their divalent manganese complexes: Isolation, spectral characterization, morphology, antibacterial and cytotoxicity against leukemia cells. Open Chem. 2020, 18, 426–437. [Google Scholar] [CrossRef]
- Ahmed, A.H.; Hassan, A.M.; Gumaa, H.A.; Mohamed, B.H.; Eraky, A.M. Nickel(II)-oxaloyldihydrazone complexes: Characterization, indirect band gap energy and antimicrobial evaluation. Cogent Chem. 2016, 2, 1142820. [Google Scholar] [CrossRef]
- Ahmed, A.H.; Hassan, A.M.; Gumaa, H.A.; Mohamed, B.H.; Eraky, A.M.; Omran, A.A. Copper(II)-oxaloyldihydrazone complexes: Physico-chemical studies, energy band gap and inhibition evaluation of free oxaloyldihydrazones toward the corrosion of copper metal in acidic medium. Arab. J. Chem. 2019, 12, 4287–4302. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.H.; Hassan, A.M.; Gumaa, H.A.; Mohamed, B.H.; Eraky, A.M. Physicochemical studies on some selected oxaloyldihydrazones and their novel palladium(II) complexes along with using oxaloyldihydrazones as corrosion resistants. Inorg. Nano-Met. Chem. 2017, 47, 1652–1663. [Google Scholar] [CrossRef]
- Ahmed, A.H.; Hassan, A.M.; Gumaa, H.A.; Mohamed, B.H.; Eraky, A.M. Mn2+-complexes of N,O-dihydrazone: Structural studies, indirect band gap energy and corrosion inhibition on aluminum in acidic medium. J. Chil. Chem. Soc. 2018, 63, 4159–4168. [Google Scholar] [CrossRef] [Green Version]
- Sherif, E.-S.M.; Ahmed, A.H. Synthesizing new hydrazone derivatives and studying their effects on the inhibition of copper corrosion in sodium chloride solutions. Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 2010, 40, 365–372. [Google Scholar] [CrossRef]
- Ahmed, A.H.; Sherif, E.-S.M.; Abdo, H.S.; Gad, E.S. Ethanedihydrazide as a Corrosion Inhibitor for Iron in 3.5% NaCl Solutions. ACS Omega 2021, 6, 14525–14532. [Google Scholar] [CrossRef] [PubMed]
- Sherif, E.-S.M.; Ahmed, A.H.; Abdo, H.S.; DefAllah, M.N. Impediment of Iron Corrosion by N,N0-bis[2-hydroxynaphthylidene]amino]oxamide in 3.5% NaCl solution. Crystals 2021, 11, 1263. [Google Scholar] [CrossRef]
- Khalil, K.A.; Sherif, E.-S.M.; Almajid, A.A. Corrosion passivation in Simulated Body Fluid of Magnesium/Hydroxyapatite Nanocomposites Sintered by High Frequency Induction Heating. Int. J. Electrochem. Sci. 2011, 6, 6184–6199. [Google Scholar]
- Sherif, E.-S.M.; Latief, F.H.; Abdo, H.S.; Alharthi, N.H. Electrochemical and Spectroscopic Study on the Corrosion of Ti–5Al and Ti–5Al–5Cu in Chloride Solutions. Met. Mater. Inter. 2019, 25, 1511–1520. [Google Scholar] [CrossRef]
- Sherif, E.-S.M.; Potgieter, J.H.; Comins, J.D.; Cornish, L.; Olubambi, P.A.; Machio, C.N. The beneficial effect of ruthenium additions on the passivation of duplex stainless steel corrosion in sodium chloride solutions. Corros. Sci. 2009, 51, 1364–1371. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, S.; Li, Y.; Li, S.; Wang, L. A study of the inhibition of iron corrosion by imidazole and its derivatives self-assembled films. Corros. Sci. 2009, 51, 291–300. [Google Scholar] [CrossRef]
- Li, W.; Nobe, K.; Pearlstein, A.J. Potential/current oscillations and anodic film characteristics of iron in concentrated chloride solutions. Corros. Sci. 1990, 31, 615–620. [Google Scholar] [CrossRef]
- Amin, M.A.; Abd El-Rehim, S.S.; El-Sherbini, E.E.; Bayoumi, R.S. The inhibition of low carbon steel corrosion in hydrochloric acid solutions by succinic acid part I. weight loss, polarization, EIS, PZC, EDX and ESM studies. Electrochim. Acta 2007, 52, 3588–3599. [Google Scholar] [CrossRef]
- Feliu, S., Jr. Electrochemical Impedance Spectroscopy for the Measurement of the Corrosion Rate of Magnesium Alloys: Brief Review and Challenges. Metals 2020, 10, 775. [Google Scholar] [CrossRef]
- Kuriakose, N.; Kakkassery, J.T.; Raphael, V.P.; Shanmughan, S.K. Electrochemical Impedance Spectroscopy and Potentiodynamic Polarization Analysis on Anticorrosive Activity of Thiophene-2-Carbaldehyde Derivative in Acid Medium. Ind. J. Mater. Sci. 2014, 2014, 124065. [Google Scholar] [CrossRef] [Green Version]
- Sherif, E.M.; Park, S.-M. Inhibition of copper corrosion in 3.0% NaCl by N-phenyl-1,4-phenylenediamine. J. Electrochem. Soc. 2005, 152, 428–433. [Google Scholar] [CrossRef] [Green Version]
- Dagdag, O.; Berisha, A.; Mehmeti, V.; Haldhar, R.; Berdimurodov, E.; Hamed, O.; Jodeh, S.; Lgaz, H.; Sherif, E.S.; Ebenso, E.E. Epoxy coating as effective anti-corrosive polymeric material for aluminum alloys: Formulation, electrochemical and computational approaches. J. Mol. Liq. 2021, 117886. [Google Scholar] [CrossRef]
- Sherif, E.M.; Park, S.-M. Inhibition of copper corrosion in acidic pickling solutions by N-phenyl-1,4-phenylenediamine. Electrochim. Acta 2006, 51, 4665–4673. [Google Scholar] [CrossRef]
- Mashuga, M.E.; Olasunkanmi, L.O.; Lgaz, H.; Sherif, E.S.; Ebenso, E.E. Aminomethylpyridazine isomers as corrosion inhibitors for mild steel in 1 M HCl: Electrochemical, DFT and Monte Carlo simulation studies. J. Mol. Liq. 2021, 117882. [Google Scholar] [CrossRef]
- Sherif, E.M.; Park, S.-M. Effects of 2-amino-5-ethylthio-1,3,4-thiadiazole on copper corrosion as a corrosion inhibitor in aerated acidic pickling solutions. Electrochim. Acta 2006, 51, 6556–6562. [Google Scholar] [CrossRef]
Solution | βc/ mV·dec−1 | ECorr/ mV | βa/ mV·dec−1 | jCorr/ µA·cm−2 | RP/ kΩ·cm2 | RCorr/ mmpy | IE % |
---|---|---|---|---|---|---|---|
3.5% NaCl + 0.0 M MAO (1 h) | 82 | −947 | 114 | 3.23 | 639.01 | 0.0823 | -- |
3.5% NaCl + 1 × 10−4 M MAO (1 h) | 75 | −835 | 95 | 0.60 | 3037.1 | 0.0070 | 81.25 |
3.5% NaCl + 5 × 10−4 M MAO (1 h) | 69 | −830 | 98 | 0.40 | 4401.2 | 0.0047 | 87.50 |
3.5% NaCl + 1 × 10−3 M MAO (1 h) | 65 | −755 | 100 | 0.16 | 17,127.8 | 0.0012 | 94.18 |
3.5% NaCl + 0.0 M MAO (48 h) | 71 | −941 | 108 | 2.55 | 715.35 | 0.0302 | -- |
3.5% NaCl + 1 × 10−4 M MAO (48 h) | 70 | −935 | 90 | 1.22 | 1426.6 | 0.0139 | 53.84 |
3.5% NaCl + 5 × 10−4 M MAO (48 h) | 68 | −930 | 85 | 0.60 | 2737.5 | 0.0070 | 76.92 |
3.5% NaCl + 1 × 10−3 M MAO (48 h) | 65 | −885 | 95 | 0.28 | 6712.0 | 0.0029 | 88.23 |
Compound/Solution | MAO | AMTA [1] | APT [3] | HAO [31] | EH [30] |
---|---|---|---|---|---|
IE for Iron in 5 × 10−4 M + 3.5% NaCl | 94.18% | 70.70% | 38.00% | 84.36% | 79.91% |
Solution | Impedance Data | |||||||
---|---|---|---|---|---|---|---|---|
RS/ Ω cm2 | Q1 | RP1/ Ω cm2 | Q2 | RP2/ Ω cm2 | IE/% | |||
YQ/F cm−2 | n | YQ/F cm−2 | n | |||||
3.5% NaCl + 0.0 M MAO (1 h) | 14.2 | 0.0823 | 0.88 | 133 | 0.0602 | 0.59 | 1232 | - |
3.5% NaCl + 5 × 10−5 M MAO (1 h) | 17.3 | 0.0615 | 1.0 | 279 | 0.0442 | 0.60 | 5884 | 79.06 |
3.5% NaCl + 1 × 10−4 M MAO (1 h) | 19.4 | 0.0243 | 0.97 | 398 | 0.0375 | 0.64 | 6892 | 82.12 |
3.5% NaCl + 5 × 10−5 M MAO (1 h) | 21.3 | 0.0181 | 1.0 | 456 | 0.0273 | 0.77 | 7763 | 84.12 |
3.5% NaCl + 0.0 M MAO (48 h) | 16.8 | 0.0739 | 1.0 | 96 | 0.0475 | 0.61 | 1003 | - |
3.5% NaCl + 5 × 10−5 M MAO (48 h) | 18.1 | 0.0548 | 1.0 | 236 | 0.0300 | 0.61 | 2856 | 64.88 |
3.5% NaCl + 1 × 10−4 M MAO (48 h) | 19.8 | 0.0310 | 1.0 | 302 | 0.0281 | 0.68 | 3631 | 72.37 |
3.5% NaCl + 5 × 10−5 M MAO (48 h) | 22.7 | 0.0277 | 0.97 | 409 | 0.0209 | 0.77 | 4365 | 77.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sherif, E.-S.M.; Ahmed, A.H. Alleviation of Iron Corrosion in Chloride Solution by N,N′-bis[2-Methoxynaphthylidene]amino]oxamide as a Corrosion Inhibitor. Crystals 2021, 11, 1516. https://doi.org/10.3390/cryst11121516
Sherif E-SM, Ahmed AH. Alleviation of Iron Corrosion in Chloride Solution by N,N′-bis[2-Methoxynaphthylidene]amino]oxamide as a Corrosion Inhibitor. Crystals. 2021; 11(12):1516. https://doi.org/10.3390/cryst11121516
Chicago/Turabian StyleSherif, El-Sayed M., and Ayman H. Ahmed. 2021. "Alleviation of Iron Corrosion in Chloride Solution by N,N′-bis[2-Methoxynaphthylidene]amino]oxamide as a Corrosion Inhibitor" Crystals 11, no. 12: 1516. https://doi.org/10.3390/cryst11121516
APA StyleSherif, E.-S. M., & Ahmed, A. H. (2021). Alleviation of Iron Corrosion in Chloride Solution by N,N′-bis[2-Methoxynaphthylidene]amino]oxamide as a Corrosion Inhibitor. Crystals, 11(12), 1516. https://doi.org/10.3390/cryst11121516