Effect of the Composition of Mixed Recycled Aggregates on Physical–Mechanical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Program and Statistical Analysis
3. Results and Discussion
3.1. ANOVA Test Results—First Stage
3.2. Results of Multiple Regression Analysis—Second Stage
4. Conclusions
- Concrete and masonry mortar particles show statistically significant differences in each of the six physical–mechanical properties studied (dry density, saturated and surface dried density, apparent density, water absorption, Los Angeles coefficient and Aggregate Crushing Value).
- Masonry mortar presented lower densities, higher water absorption and worse mechanical properties than concrete and ceramic particles. Therefore, the differentiation between concrete and masonry mortar particles are highly recommended for better characterization of RA, which is not taken into consideration in the actual RA composition Standard (UNE-EN 933-11:2009), used by most researchers to classify RA from CDW.
- The proportions of the main RA constituents (unbound natural aggregates, ceramic particles, concrete and masonry mortar) have a strong dependence on the six physical–mechanical properties studied.
- The dry density, saturated and surface dried density, water absorption, and aggregate crushing value of RA can be predicted from their main constituents using multiple linear regression models with a coefficient of determination greater than 0.8.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Acronyms
RA | Recycled Aggregate |
CDW | Construction Demolition Waste |
EU | European Union |
RCA | Recycled Concrete Aggregate |
MRA | Mixed Recycles Aggregate |
CRA | Concrete Recycled Aggregate |
CerRA | Ceramic Recycled Aggregate |
WA | Water Absorption |
LA | Los Angeles test |
CNA | Crushed Natural Aggregate |
drd | Density oven-dried particle density |
dSSD | Saturated and surface dried particle density |
da | Apparent particle density |
ACV | Aggregate Crushing Value |
SD | Standard Deviation |
Rc | Concrete particles |
Ru | Unbound aggregate |
Ra | Asphalt particles |
Rb | Ceramic particles |
Rc1 | Concrete |
Rc2 | Masonry mortar |
Xg | Gypsum particles |
X | Impurities such as wood, glass, plastics, metals… |
FL | Floating particles |
LSD | Least Significant Difference |
References
- Persistence Market Research (PMR). Global Market Study on Construction Aggregates: Crushed Stone Product Type Segment Projected to Register High Value and Volume CAGR during 2017–2025; PMR: New York, NY, USA, 2017; p. 235. [Google Scholar]
- Yeheyis, M.; Hewage, K.; Alam, M.S.; Eskicioglu, C.; Sadiq, R. An overview of construction and demolition waste management in Canada: A lifecycle analysis approach to sustainability. Clean Technol. Environ. Policy 2013, 15, 81–91. [Google Scholar] [CrossRef]
- Directive, E.C. 98/EC of the European Parliament and of the Council, on waste and repealing certain Directives. Off. J. Eur. Union 2008, 312, 3–30. [Google Scholar]
- Tam, V.W.Y.; Soomro, M.; Evangelista, A.C.J. A review of recycled aggregate in concrete applications (2000–2017). Constr. Build. Mater. 2018, 172, 272–292. [Google Scholar] [CrossRef]
- Saez, P.V.; del Río Merino, M.; Porras Amores, C.; de San Antonio Gonzalez, A. European legislation and implementation measures in the management of construction and demolition waste. Open Constr. Build. Technol. J. 2011, 5, 156–161. [Google Scholar] [CrossRef] [Green Version]
- European Union. Waste Statistics, Eurostat, 2018. 2020, pp. 1–12. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php/Municipal_waste_statistics (accessed on 17 October 2021).
- Service, B.I. Final Report; Task 2: Service Contract on Management of Construction and Demolition Waste; Office des Publications de l’Union Européenne: Luxembourg, 2011; Available online: https://op.europa.eu/en/publication-detail/-/publication/0c9ecefc-d07a-492e-a7e1-6d355b16dde4 (accessed on 29 November 2021).
- Phutthimethakul, L.; Kumpueng, P.; Supakata, N. Use of flue gas desulfurization gypsum, construction and demolition waste, and oil palm waste trunks to produce concrete bricks. Crystals 2020, 10, 709. [Google Scholar] [CrossRef]
- Makul, N.; Fediuk, R.; Amran, M.; Zeyad, A.M.; Klyuev, S.; Chulkova, I.; Azevedo, A. Design Strategy for Recycled Aggregate Concrete: A Review of Status and Future Perspectives. Crystals 2021, 11, 695. [Google Scholar] [CrossRef]
- Barbudo, A.; Ayuso, J.; Lozano, A.; Cabrera, M.; López-Uceda, A. Recommendations for the management of construction and demolition waste in treatment plants. Environ. Sci. Pollut. Res. 2020, 27, 125–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiménez, J.R. Recycled aggregates (RAs) for roads. In Handbook of Recycled Concrete and Demolition Waste; Woodhead Publishing: Sawston, UK, 2013; pp. 351–377. [Google Scholar] [CrossRef]
- Barbudo, A.; Jiménez, J.R.; Ayuso, J.; Galvín, A.P.; Agrela, F. Catalogue of Pavements with Recycled Aggregates from Construction and Demolition Waste. Proceedings 2018, 2, 1282. [Google Scholar] [CrossRef] [Green Version]
- Rilem, T.C. 121-DRG. Specifications for concrete with recycled aggregates. Mater. Struct. 1994, 27, 557–559. [Google Scholar]
- Agrela, F.; Sánchez De Juan, M.; Ayuso, J.; Geraldes, V.L.; Jiménez, J.R. Limiting properties in the characterisation of mixed recycled aggregates for use in the manufacture of concrete. Constr. Build. Mater. 2011, 25, 3950–3955. [Google Scholar] [CrossRef] [Green Version]
- Asociación Española de Gestores de RCD, GEAR. Guía española de áridos Reciclados procedentes de residuos de construcción y demolición (RCD); Asociación Española de Gestores de RCD: Madrid, Spain, 2012. [Google Scholar]
- Silva, R.V.; De Brito, J.; Dhir, R.K. Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production. Constr. Build. Mater. 2014, 65, 201–217. [Google Scholar] [CrossRef]
- Shi, C.; Li, Y.; Zhang, J.; Li, W.; Chong, L.; Xie, Z. Performance enhancement of recycled concrete aggregate–A review. J. Clean. Prod. 2016, 112, 466–472. [Google Scholar] [CrossRef]
- Vengadesh Marshall Raman, J.; Ramasamy, V. Various treatment techniques involved to enhance the recycled coarse aggregate in concrete: A review. Mater. Today Proc. 2020, 45, 6356–6363. [Google Scholar] [CrossRef]
- Bravo, M.; De Brito, J.; Pontes, J.; Evangelista, L. Durability performance of concrete with recycled aggregates from construction and demolition waste plants. Constr. Build. Mater. 2015, 77, 357–369. [Google Scholar] [CrossRef]
- Makul, N.; Fediuk, R.; Amran, M.; Zeyad, A.M.; Murali, G.; Vatin, N.; Vasilev, Y. Use of Recycled Concrete Aggregates in Production of Green Cement-Based Concrete Composites: A Review. Crystals 2021, 11, 232. [Google Scholar] [CrossRef]
- McNeil, K.; Kang, T.H.K. Recycled Concrete Aggregates: A Review. Int. J. Concr. Struct. Mater. 2013, 7, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Bravo, M.; Santos Silva, A.; de Brito, J.; Evangelista, L. Microstructure of Concrete with Aggregates from Construction and Demolition Waste Recycling Plants. Microsc. Microanal. 2016, 22, 149–167. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Tian, Y.; Lu, X.; Jiang, J.; Qi, L.; Zhang, M. Effect of Recycled Aggregate Carrying Sulfate Corrosion Media on Drying and Autogenous Shrinkage of Mortar. Crystals 2021, 11, 1211. [Google Scholar] [CrossRef]
- Poon, C.S.; Shui, Z.H.; Lam, L. Effect of microstructure of ITZ on compressive strength of concrete prepared with recycled aggregates. Constr. Build. Mater. 2004, 18, 461–468. [Google Scholar] [CrossRef]
- Feng, C.; Cui, B.; Ge, H.; Huang, Y.; Zhang, W.; Zhu, J. Reinforcement of Recycled Aggregate by Microbial-Induced Mineralization and Deposition of Calcium Carbonate—Influencing Factors, Mechanism and Effect of Reinforcement. Crystals 2021, 11, 887. [Google Scholar] [CrossRef]
- Abdulla, N.A. Effect of recycled coarse aggregate type on concrete. J. Mater. Civ. Eng. 2015, 27, 4014273. [Google Scholar] [CrossRef]
- Sánchez de Juan, M.S.; Gutiérrez, P.A. Study on the influence of attached mortar content on the properties of recycled concrete aggregate. Constr. Build. Mater. 2009, 23, 872–877. [Google Scholar] [CrossRef]
- Silva, R.V.; De Brito, J.; Dhir, R.K. Performance of cementitious renderings and masonry mortars containing recycled aggregates from construction and demolition wastes. Constr. Build. Mater. 2016, 105, 400–415. [Google Scholar] [CrossRef]
- Verian, K.P.; Ashraf, W.; Cao, Y. Properties of recycled concrete aggregate and their influence in new concrete production. Resour. Conserv. Recycl. 2018, 133, 30–49. [Google Scholar] [CrossRef]
- Martín-Morales, M.; Zamorano, M.; Ruiz-Moyano, A.; Valverde-Espinosa, I. Characterization of recycled aggregates construction and demolition waste for concrete production following the Spanish Structural Concrete Code EHE-08. Constr. Build. Mater. 2011, 25, 742–748. [Google Scholar] [CrossRef]
- Poon, C.S.; Chan, D. Feasible use of recycled concrete aggregates and crushed clay brick as unbound road sub-base. Constr. Build. Mater. 2006, 20, 578–585. [Google Scholar] [CrossRef]
- Liu, G.; Jin, X.; Rose, A.; Cui, Y.; Glover, C.J. Application of density gradient column to flexible pavement materials: Aggregate characteristics and asphalt absorption. Constr. Build. Mater. 2014, 72, 182–188. [Google Scholar] [CrossRef]
- Artoni, R.; Cazacliu, B.; Hamard, E.; Cothenet, A.; Parhanos, R.S. Resistance to fragmentation of recycled concrete aggregates. Mater. Struct. 2017, 50, 11. [Google Scholar] [CrossRef] [Green Version]
- Kapoor, K.; Bohroo, A.U.R. Study on the influence of attached mortar content on the properties of recycled concrete aggregate. Sustain. Eng. 2019, 337–347. [Google Scholar] [CrossRef]
- Etxeberria, M.; Marí, A.R.; Vázquez, E. Recycled aggregate concrete as structural material. Mater. Struct. Constr. 2007, 40, 529–541. [Google Scholar] [CrossRef]
- Yang, J.; Du, Q.; Bao, Y. Concrete with recycled concrete aggregate and crushed clay bricks. Constr. Build. Mater. 2011, 25, 1935–1945. [Google Scholar] [CrossRef]
- Diagne, M.; Tinjum, J.M.; Nokkaew, K. The effects of recycled clay brick content on the engineering properties, weathering durability, and resilient modulus of recycled concrete aggregate. Transp. Geotech. 2015, 3, 15–23. [Google Scholar] [CrossRef]
- Vegas, I.; Ibañez, J.A.; Lisbona, A.; Sáez De Cortazar, A.; Frías, M. Pre-normative research on the use of mixed recycled aggregates in unbound road sections. Constr. Build. Mater. 2011, 25, 2674–2682. [Google Scholar] [CrossRef]
- Nagataki, S.; Gokce, A.; Saeki, T.; Hisada, M. Assessment of recycling process induced damage sensitivity of recycled concrete aggregates. Cem. Concr. Res. 2004, 34, 965–971. [Google Scholar] [CrossRef]
- Dhir, R.K.; de Brito, J.; Silva, R.V.; Lye, C.Q. Sustainable Construction Materials: Recycled Aggregates; Woodhead Publishing: Sawston, UK, 2019. [Google Scholar]
- Chicco, D.; Warrens, M.J.; Jurman, G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput. Sci. 2021, 7, e623. [Google Scholar] [CrossRef]
- Kim, S.; Kim, H. A new metric of absolute percentage error for intermittent demand forecasts. Int. J. Forecast. 2016, 32, 669–679. [Google Scholar] [CrossRef]
- Ostertagová, E. Modelling using polynomial regression. Procedia Eng. 2012, 48, 500–506. [Google Scholar] [CrossRef] [Green Version]
Classification Proposed by | |||||||
---|---|---|---|---|---|---|---|
Jiménez [11] | Barbudo et al. [12] | ||||||
Components | RCA | MRA | RMCA | Unclassified RA | ZAR Horm | ZARM I | ZARM II |
Rc + Ru + Ra | - | ≥70% | ≥70% | - | - | ≥70% | ≥70% |
Rc + Ru | ≥90% | - | - | - | ≥90% | ≥55% | ≥55% |
Rb | ≤10% | ≤30% | ≥30% | - | - | - | |
Ra | ≤5% | ≤15% | ≤15% | - | - | - | |
X + Xg | ≤1% | ≤1.5% | ≤1.5% | ≥1.5% | <1% | <1% | <2% |
Xg | ≤0.5% | ≤1% | ≤1% | ≥1% | |||
FL | ≤0.2% | ≤0.5% | ≤0.5% | ≥0.5% | <1 cm3/Kg | <1 cm3/Kg | <2 cm3/Kg |
Max | Min | Mean | SD | |
---|---|---|---|---|
da (kg/m3) | 2752 | 2431 | 2631 | 69 |
drd (kg/m3) | 2685 | 1729 | 2216 | 246 |
dssd (kg/m3) | 2697 | 2061 | 2368 | 169 |
WA (%) | 0.5 | 19.2 | 7.5 | 4.3 |
LA (%) | 68 | 18 | 35 | 11.2 |
ACV (%) | 15 | 47 | 30 | 7.5 |
F-Ratio | p-Value | |
---|---|---|
Apparent particle density (dap) | 9.32 | 1 × 10−4 |
Oven-dried particle density (drd) | 62.05 | 1 × 10−4 |
Saturated and surface dried particle density (dssd) | 43.77 | 1 × 10−4 |
Water absorption (WA) | 194.30 | 1 × 10−4 |
Los Angeles coefficient (LA) | 124.91 | 1 × 10−4 |
Aggregate Crushing Value (ACV) | 47.33 | 1 × 10−4 |
p-Value | R2 | RMSE | BIAS | MAPE | |
---|---|---|---|---|---|
dap | 2.5 × 10−3 | 0.412 | 31.3480 | −2.7 × 10−13 | 0.9463 |
drd | 7.8 × 10−15 | 0.904 | 41.0175 | −2.1 × 10−13 | 1.3464 |
dssd | 5.5 × 10−14 | 0.891 | 30.1595 | 2.9 × 10−13 | 0.9340 |
WA | 2.5 × 10−14 | 0.896 | 0.8112 | 1.9 × 10−15 | 8.5779 |
LA | 3.9 × 10−5 | 0.656 | 2.7697 | −1.1 × 10−14 | 6.0302 |
ACV | 1.1 × 10−8 | 0.860 | 1.9313 | −1.3 × 10−14 | 4.9150 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Uceda, A.; Fernández-Ledesma, E.; Salas-Morera, L.; Jiménez, J.R.; Suescum-Morales, D. Effect of the Composition of Mixed Recycled Aggregates on Physical–Mechanical Properties. Crystals 2021, 11, 1518. https://doi.org/10.3390/cryst11121518
López-Uceda A, Fernández-Ledesma E, Salas-Morera L, Jiménez JR, Suescum-Morales D. Effect of the Composition of Mixed Recycled Aggregates on Physical–Mechanical Properties. Crystals. 2021; 11(12):1518. https://doi.org/10.3390/cryst11121518
Chicago/Turabian StyleLópez-Uceda, Antonio, Enrique Fernández-Ledesma, Lorenzo Salas-Morera, José Ramón Jiménez, and David Suescum-Morales. 2021. "Effect of the Composition of Mixed Recycled Aggregates on Physical–Mechanical Properties" Crystals 11, no. 12: 1518. https://doi.org/10.3390/cryst11121518
APA StyleLópez-Uceda, A., Fernández-Ledesma, E., Salas-Morera, L., Jiménez, J. R., & Suescum-Morales, D. (2021). Effect of the Composition of Mixed Recycled Aggregates on Physical–Mechanical Properties. Crystals, 11(12), 1518. https://doi.org/10.3390/cryst11121518