Graphene Oxide Decorated Ce2S3 Nanocomposite for Efficient Photocatalytic Degradation of Tetracycline
Abstract
1. Introduction
2. Results and Discussion
3. Experimental
3.1. Materials and Reagents
3.2. Preparation of Pure GO
3.3. Synthesis of Ce2S3-RGO Hybrid
3.4. Preparation of Tetracycline Antibiotics
3.5. Characterizations
3.6. Photocatalytic Performance Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gong, Y.; Ding, Y.; Tang, Q.; Lian, F.; Bai, C.; Xie, R.; Xie, H.; Zhao, X. Plasmonic Ag nanoparticles decorated MIL-101(Fe) for enhanced photocatalytic degradation of bisphenol A with peroxymonosulfate under visible-light irradiation. Chin. Chem. Lett. 2024, 35, 1001–8417. [Google Scholar] [CrossRef]
- Liu, Z.-G.; Wei, Y.; Xie, L.; Chen, H.-Q.; Wang, J.; Yang, K.; Zou, L.-X.; Deng, T.; Lu, K.-Q. Decorating CdS with cobaltous hydroxide and graphene dual cocatalyst for photocatalytic hydrogen production coupled selective benzyl alcohol oxidation. Mol. Catal. 2024, 553, 113738. [Google Scholar] [CrossRef]
- Jin, Y.; Zhang, J.; Wang, S.; Wang, X.; Fang, M.; Zuo, Q.; Kong, M.; Liu, Z.; Tan, X. Stress modulation on photodegradation of tetracycline by Sn-doped BiOBr. J. Environ. Chem. Eng. 2022, 10, 107675. [Google Scholar] [CrossRef]
- Luo, J.; Ning, X.; Zhan, L.; Zhou, X. Facile construction of a fascinating Z-scheme AgI/Zn3V2O8 photocatalyst for the photocatalytic degradation of tetracycline under visible light irradiation. Sep. Purif. Technol. 2021, 255, 117691. [Google Scholar] [CrossRef]
- Abdelfatah, A.M.; Fawzy, M.; El-Khouly, M.E.; Eltaweil, A.S. Efficient adsorptive removal of tetracycline from aqueous solution using phytosynthesized nano-zero valent iron. J. Saudi Chem. Soc. 2021, 25, 101365. [Google Scholar] [CrossRef]
- Ahmad, F.; Zhu, D.; Sun, J. Environmental fate of tetracycline antibiotics: Degradation pathway mechanisms, challenges, and perspectives. Environ. Sci. Eur. 2021, 33, 64. [Google Scholar] [CrossRef]
- Rameshwar, S.S.; Sivaprakash, B.; Rajamohan, N.; Mohamed, B.A.; Vo, D.-V.N. Remediation of tetracycline pollution using MXene and nano-zero-valent iron materials: A review. Environ. Chem. Lett. 2023, 21, 2995–3022. [Google Scholar] [CrossRef]
- Zhang, Q.; Cheng, J.; Xin, Q. Effects of tetracycline on developmental toxicity and molecular responses in zebrafish (Danio rerio) embryos. Ecotoxicology 2015, 24, 707–719. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Liu, Y.; Tan, P.; Lu, Y.; Ding, Q.; Pan, J. Anchoring TiO2@CsPbBr3 on g-C3N4 nanosheet for enhanced photocatalytic degradation activity of tetracycline hydrochloride. Diam. Relat. Mater. 2023, 133, 0925–9635. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, Y.; Jiang, H.; Chen, J.; Liu, Y.; Liang, Q.; Zhou, M.; Li, Z.; Zhou, Y. Combined Effects of Octahedron NH2-UiO-66 and Flowerlike ZnIn2S4 Microspheres for Photocatalytic Dye Degradation and Hydrogen Evolution under Visible Light. J. Phys. Chem. C 2019, 123, 18037–18049. [Google Scholar] [CrossRef]
- Feng, C.; Wang, Y.; Lu, Z.; Liang, Q.; Zhang, Y.; Li, Z.; Xu, S. Nanoflower Ni5P4 coupled with GCNQDs as Schottky junction photocatalyst for the efficient degradation of norfloxacin. Sep. Purif. Technol. 2022, 282, 1383–5866. [Google Scholar] [CrossRef]
- Wan, S.; Xu, J.; Cao, S.; Yu, J. Promoting intramolecular charge transfer of graphitic carbon nitride by donor–acceptor modulation for visible-light photocatalytic H2 evolution. Interdiscip. Mater. 2022, 1, 294–308. [Google Scholar] [CrossRef]
- Kandhasamy, N.; Murugadoss, G.; Kannappan, T.; Kirubaharan, K.; Manavalan, R.K.; Gopal, R. Cerium-based metal sulfide derived nanocomposite-embedded RGO as an efficient catalyst for photocatalytic application. Environ. Sci. Pollut. 2022, 30, 29711–29726. [Google Scholar] [CrossRef]
- Liu, L.; Gao, Y.; Zhang, H.; Kosinov, N.; Hensen, E.J.M. Ni and ZrO2 promotion of In2O3 for CO2 hydrogenation to methanol. Appl. Catal. B-Environ. 2024, 356, 0926–3373. [Google Scholar] [CrossRef]
- Liang, J.; Yu, H.; Shi, J.; Li, B.; Wu, L.; Wang, M. Dislocated Bilayer MOF Enables High-Selectivity Photocatalytic Reduction of CO2 to CO. Adv. Mater. 2023, 35, e2209814. [Google Scholar] [CrossRef]
- Ni, J.; Liu, D.; Wang, W.; Wang, A.; Jia, J.; Tian, J.; Xing, Z. Hierarchical defect-rich flower-like BiOBr/Ag nanoparticles/ultrathin g-C3N4 with transfer channels plasmonic Z-scheme heterojunction photocatalyst for accelerated visible-light-driven photothermal-photocatalytic oxytetracycline degradation. Chem. Eng. J. 2021, 419, 1385–8947. [Google Scholar] [CrossRef]
- Pan, T.; Chen, D.; Xu, W.; Fang, J.; Wu, S.; Liu, Z.; Wu, K.; Fang, Z. Anionic polyacrylamide-assisted construction of thin 2D-2D WO3/g-C3N4 Step-scheme heterojunction for enhanced tetracycline degradation under visible light irradiation. J. Hazard. Mater. 2020, 393, 122366. [Google Scholar] [CrossRef]
- Wu, M.; Li, L.; Liu, N.; Wang, D.; Xue, Y.; Tang, L. Molybdenum disulfide (MoS2) as a co-catalyst for photocatalytic degradation of organic contaminants: A review. Process Saf. Environ. 2018, 118, 40–58. [Google Scholar] [CrossRef]
- Wang, D.; Jia, F.; Wang, H.; Chen, F.; Fang, Y.; Dong, W.; Zeng, G.; Li, X.; Yang, Q.; Yuan, X. Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs. J. Colloid Interface Sci. 2018, 519, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Mao, W.-X.; Zhang, W.; Chi, Z.-X.; Lu, R.-W.; Cao, A.-M.; Wan, L.-J. Core–shell structured Ce2S3@ZnO and its potential as a pigment. J. Mater. Chem. A 2015, 3, 2176–2180. [Google Scholar] [CrossRef]
- Luo, J.; Chen, J.; Guo, R.; Qiu, Y.; Li, W.; Zhou, X.; Ning, X.; Zhan, L. Rational construction of direct Z-scheme LaMnO3/g-C3N4 hybrid for improved visible-light photocatalytic tetracycline degradation. Sep. Purif. Technol. 2019, 211, 882–894. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, P.; Li, M.; Wu, M.; Jin, B.; Luo, J.; Chen, M.; Zhou, X.; Zhang, Y.; Zhou, X. Synergistic effect of phosphorus doping and MoS2 co-catalysts on g-C3N4 photocatalysts for enhanced solar water splitting. J. Mater. Sci. Technol. 2023, 158, 171–179. [Google Scholar] [CrossRef]
- Huang, G.; Ye, W.; Lv, C.; Butenko, D.S.; Yang, C.; Zhang, G.; Lu, P.; Xu, Y.; Zhang, S.; Wang, H.; et al. Hierarchical red phosphorus incorporated TiO2 hollow sphere heterojunctions toward superior photocatalytic hydrogen production. J. Mater. Sci. Technol. 2022, 108, 18–25. [Google Scholar] [CrossRef]
- Wang, H.; Li, H.; Chen, Z.; Li, J.; Li, X.; Huo, P.; Wang, Q. TiO2 modified g-C3N4 with enhanced photocatalytic CO2 reduction performance. Solid State Sci. 2020, 100, 1293–2558. [Google Scholar] [CrossRef]
- Khodadadi, M.; Ehrampoush, M.H.; Ghaneian, M.T.; Allahresani, A.; Mahvi, A.H. Synthesis and characterizations of FeNi3 @SiO2 @TiO2 nanocomposite and its application in photo- catalytic degradation of tetracycline in simulated wastewater. J. Mol. Liq. 2018, 255, 224–232. [Google Scholar] [CrossRef]
- Huang, Y.; Guo, Z.; Liu, H.; Zhang, S.; Wang, P.; Lu, J.; Tong, Y. Heterojunction architecture of N-doped WO3 nanobundles with Ce2S3 nanodots hybridized on a carbon textile enables a highly efficient flexible photocatalyst. Adv. Funct. Mater. 2019, 29, 1903490. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, C.; Qiu, L.; Gao, M.; Tian, F.; Liu, Y.; Yang, W.; Yu, Y. Concentrating photoelectrons on sulfur sites of ZnxCd1–xS to active H–OH bond of absorbed water boosts photocatalytic hydrogen generation. Surf. Interfaces 2022, 34, 102312. [Google Scholar] [CrossRef]
- Xu, F.; Meng, K.; Cao, S.; Jiang, C.; Chen, T.; Xu, J.; Yu, J. Step-by-step mechanism insights into the TiO2/Ce2S3 S-scheme photocatalyst for enhanced aniline production with water as a proton source. ACS Catal. 2021, 12, 164–172. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, H.; Fu, X.; Hu, Y. Preparation, characterization, and photocatalytic performance of Ce2S3 for nitrobenzene reduction. Appl. Surf. Sci. 2013, 275, 335–341. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, M.; Qiu, L.; Huang, Y.; Yang, W.; Li, H.; Yu, Y.; Li, J. Heterojunction architecture of Ce2S3 nanocubes with ZnxCd1-xS photocatalyst enables efficient hydrogen evolution. Sep. Purif. Technol. 2023, 324, 124634. [Google Scholar] [CrossRef]
- Yan, Y.Q.; Wu, Y.Z.; Wu, Y.H.; Weng, Z.L.; Liu, S.J.; Liu, Z.G.; Lu, K.Q.; Han, B. Recent advances of CeO2-based composite materials for photocatalytic applications. ChemSusChem 2024, 17, e202301778. [Google Scholar] [CrossRef]
- Tang, J.; Gao, G.; Luo, W.; Dai, Q.; Wang, Y.; Elzilal, H.A.; Abo-Dief, H.M.; Algadi, H.; Zhang, J. Z-scheme metal organic framework@graphene oxide composite photocatalysts with enhanced photocatalytic degradation of tetracycline. Adv. Compos. Hybrid Mater. 2023, 6, 190. [Google Scholar] [CrossRef]
- Liao, H.; Zhou, Y.; Chen, Z.; Sharshir, S.; Osman, S.M.; Wang, C.; An, M.; Yamauchi, Y.; Asakura, Y.; Yuan, Z. Harnessing the synergistic power of Ce2S3/TiO2 s-scheme heterojunctions for profound C–O bond cleavage in lignin model compounds. ACS Catal. 2024, 14, 5539–5549. [Google Scholar] [CrossRef]
- Wu, Y.-H.; Yan, Y.-Q.; Wei, Y.; Wang, J.; Li, A.; Huang, W.-Y.; Zhang, J.-L.; Yang, K.; Lu, K.-Q. Decorating ZnIn2S4 with earth-abundant Co9S8 and Ni2P dual cocatalysts for boosting photocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2024, 78, 452–459. [Google Scholar] [CrossRef]
- Cao, Y.; Cui, K.; Chen, Y.; Cui, M.; Li, G.; Li, D.; Yang, X. Efficient degradation of tetracycline by H2O2 catalyzed by FeOCl: A wide range of pH values from 3 to 7. Solid State Sci. 2021, 113, 106548. [Google Scholar] [CrossRef]
- Kuang, X.; Fu, M.; Kang, H.; Lu, P.; Bai, J.; Yang, Y.; Gao, S. A BiOIO3/BiOBr n-n heterojunction was constructed to enhance the photocatalytic degradation of TC. Opt. Mater. 2023, 138, 113690. [Google Scholar] [CrossRef]
- Gao, X.; Niu, J.; Wang, Y.; Ji, Y.; Zhang, Y. Solar photocatalytic abatement of tetracycline over phosphate oxoanion decorated Bi2WO6/polyimide composites. J. Hazard. Mater. 2021, 403, 123860. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, X.; Liu, J.; Bai, J.; Liang, H. Construction of a novel BiOI/Bi2S3/PAN visible light response catalyst with efficient degradation activity for TC. Inorg. Chem. Commun. 2024, 166, 112617. [Google Scholar] [CrossRef]
- Zhu, T.; Jiang, J.; Wang, J.; Zhang, Z.; Zhang, J.; Chang, J. Fe/Co redox and surficial hydroxyl potentiation in the FeCo2O4 enhanced Co3O4/persulfate process for TC degradation. J. Environ. Manag. 2022, 313, 114855. [Google Scholar] [CrossRef]
- Xie, Q.; Huang, H.; Zhang, C.; Zheng, X.; Shi, H. Manipulating spin-polarization of Co-doped ZnFe2O4 for photocatalytic TC degradation. J. Phys. D Appl. Phys. 2024, 57, 165104. [Google Scholar] [CrossRef]
- Zhou, X.; Xi, H.; Li, C.; Dong, H.; Wang, X.; Zhao, Q.; Zhang, J.; Yang, J. Ultrasmall Ag species decorated on α-Fe2O3 nanorods toward high-efficient photocatalytic degrading tetracycline hydrochloride in water. J. Chin. Chem. Soc. 2021, 68, 1013–1019. [Google Scholar] [CrossRef]
- Wang, X.-K.; Liu, J.; Zhang, L.; Dong, L.-Z.; Li, S.-L.; Kan, Y.-H.; Li, D.-S.; Lan, Y.-Q. Monometallic catalytic models hosted in stable metal–organic frameworks for tunable CO2 photoreduction. ACS Catal. 2019, 9, 1726–1732. [Google Scholar] [CrossRef]
- Kim, S.K.; Pukird, S.; Chaiyo, P.; Inchidjui, P.; Bae, G.; Jung, H.-K.; Lee, S.S.; An, K.-S. Superb pseudocapacitance observed from eco-friendly multi-dimensional quaternary composite electrode based on Ce and Cu oxides and sulfides. Ceram. Int. 2019, 45, 11114–11118. [Google Scholar] [CrossRef]
- Gong, Y.; Xu, Z.; Wu, J.; Zhong, J.; Ma, D. Enhanced photocatalytic hydrogen production performance of g-C3N4 with rich carbon vacancies. Appl. Surf. Sci. 2024, 657, 159790. [Google Scholar] [CrossRef]
- Mao, J.; Mei, B.; Li, J.; Yang, S.; Sun, F.; Lu, S.; Chen, W.; Song, F.; Jiang, Z. Unraveling the dynamic structural evolution of phthalocyanine catalysts during CO2 electroreduction. Chin. J. Struct. Chem. 2022, 41, 2210082–2210088. [Google Scholar] [CrossRef]
- Liu, C.; Dai, H.; Tan, C.; Pan, Q.; Hu, F.; Peng, X. Photo-Fenton degradation of tetracycline over Z-scheme Fe-g-C3N4/Bi2WO6 heterojunctions: Mechanism insight, degradation pathways and DFT calculation. Appl. Catal. B 2022, 310, 121326. [Google Scholar] [CrossRef]
- Feng, C.; Rong, J.; Zhang, Y.; Zheng, X.; Li, X.; Xu, S.; Li, Z. An S-scheme CeO2/ foveolate g-C3N4 composite with horseradish peroxidase activity for photo-enzyme synergistic catalytic degradation of phenanthrene. Appl. Catal. B 2023, 337, 123005. [Google Scholar] [CrossRef]
- Zhou, C.; Lai, C.; Huang, D.; Zeng, G.; Zhang, C.; Cheng, M.; Hu, L.; Wan, J.; Xiong, W.; Wen, M.; et al. Highly porous carbon nitride by supramolecular preassembly of monomers for photocatalytic removal of sulfamethazine under visible light driven. Appl. Catal. B 2018, 220, 202–210. [Google Scholar] [CrossRef]
- Wang, H.; Liu, J.; Xiao, X.; Meng, H.; Wu, J.; Guo, C.; Zheng, M.; Wang, X.; Guo, S.; Jiang, B. Engineering of SnO2/TiO2 heterojunction compact interface with efficient charge transfer pathway for photocatalytic hydrogen evolution. Chin. Chem. Lett. 2023, 34, 1001–8417. [Google Scholar] [CrossRef]
- Zhu, Z.; Xing, X.; Qi, Q.; Shen, W.; Wu, H.; Li, D.; Li, B.; Liang, J.; Tang, X.; Zhao, J.; et al. Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chin. J. Struct. 2023, 42, 100194. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, X.; Rong, J.; Feng, C.; Liu, C.; Wang, Y.; Li, Z.; Xu, S. Construction of Z-scheme SbVO4/g-C3N4 heterojunction with efficient photocatalytic degradation performance. Solid State Sci. 2024, 155, 107639. [Google Scholar] [CrossRef]
Photocatalysts | TC Degradation | Concentration (mg/L) | Light Sources | Reference |
---|---|---|---|---|
10%BiOIO3/BiOBr | 74.91% | 20 | 12 W LED lamp | [36] |
PO43−-Bi2WO6/PI | 65.1% | 20 | 150 W Xe lamp | [37] |
BiOI/Bi2S3/PAN | 84.49% | 10 | 300 W Xe lamp (λ ≥ 420 nm) | [38] |
FeCo2O4/Co3O4 | 87.85% | 50 | 300 W Xe lamp (λ ≥ 420 nm) | [39] |
ZnFe1.2Co0.8O4 | 70% | 20 | 300 W Xe lamp (λ ≥ 420 nm) | [40] |
Ag/α-Fe2O3-5 | 73.9% | 10 | 300 W Xe lamp | [41] |
Ce2S3-5%RGO | 76% | 5 | 350 W Xe lamp | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Zuo, Z.; Yang, K.; Lu, K. Graphene Oxide Decorated Ce2S3 Nanocomposite for Efficient Photocatalytic Degradation of Tetracycline. Catalysts 2025, 15, 21. https://doi.org/10.3390/catal15010021
Liu Z, Zuo Z, Yang K, Lu K. Graphene Oxide Decorated Ce2S3 Nanocomposite for Efficient Photocatalytic Degradation of Tetracycline. Catalysts. 2025; 15(1):21. https://doi.org/10.3390/catal15010021
Chicago/Turabian StyleLiu, Zengguang, Zeyu Zuo, Kai Yang, and Kangqiang Lu. 2025. "Graphene Oxide Decorated Ce2S3 Nanocomposite for Efficient Photocatalytic Degradation of Tetracycline" Catalysts 15, no. 1: 21. https://doi.org/10.3390/catal15010021
APA StyleLiu, Z., Zuo, Z., Yang, K., & Lu, K. (2025). Graphene Oxide Decorated Ce2S3 Nanocomposite for Efficient Photocatalytic Degradation of Tetracycline. Catalysts, 15(1), 21. https://doi.org/10.3390/catal15010021