α-NiS/g-C3N4 Nanocomposites for Photocatalytic Hydrogen Evolution and Degradation of Tetracycline Hydrochloride
Abstract
1. Introduction
2. Results and Discussion
2.1. Synthesis, Structure, and Morphology
2.2. Optical and Photoelectrochemical Properties
2.3. Evaluation of Photocatalytic Performance
2.3.1. Photocatalytic H2 Generation and Stability of α-NiS/g-C3N4 Nanocomposites
2.3.2. Photocatalytic TC Degradation
2.4. Proposed Photocatalytic Mechanism
3. Materials and Methods
3.1. Chemicals
3.2. Photocatalyst Preparation
3.2.1. Synthesis of g-C3N4
3.2.2. Synthesis of α-NiS/g-C3N4 Photocatalysts
3.3. Characterizations
3.4. Evaluation of Photoelectrochemical Performance
3.5. Evaluation of Photocatalytic Performance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Q.; Zhang, L.; Liu, J.; Zhou, J.; Jiao, Y.; Xiao, X.; Zhao, C.; Zhou, Y.; Ye, S.; Jiang, B.; et al. Porous Carbon Nitride Thin Strip: Precise Carbon Doping Regulating Delocalized Π-Electron Induces Elevated Photocatalytic Hydrogen Evolution. Small 2021, 17, 2006622. [Google Scholar] [CrossRef]
- Jang, D.; Choi, S.; Kwon, N.H.; Jang, K.Y.; Lee, S.; Lee, T.W.; Hwang, S.J.; Kim, H.; Kim, J.; Park, S. Water-Assisted Formation of Amine-Bridged Carbon Nitride: A Structural Insight into the Photocatalytic Performance for H2 Evolution under Visible Light. Appl. Catal. B Environ 2022, 310, 121313. [Google Scholar] [CrossRef]
- Ding, J.; Tang, Q.; Fu, Y.; Zhang, Y.; Hu, J.; Li, T.; Zhong, Q.; Fan, M.; Kung, H.H. Core-Shell Covalently Linked Graphitic Carbon Nitride-Melamine-Resorcinol-Formaldehyde Microsphere Polymers for Efficient Photocatalytic CO2 Reduction to Methanol. J. Am. Chem. Soc. 2022, 144, 9576–9585. [Google Scholar] [CrossRef]
- Lee, S.; Shin, E.Y.; Jang, D.; Choi, S.; Park, H.; Kim, J.; Park, S. Production of Mesoporous Carbon Nitrides and Their Photocatalytic Properties for Degradation of Organic Pollutants. Bull. Korean Chem. Soc. 2022, 43, 1124–1129. [Google Scholar] [CrossRef]
- Huang, H.; Zhao, J.; Weng, B.; Lai, F.; Zhang, M.; Hofkens, J.; Roeffaers, M.B.J.; Steele, J.A.; Long, J. Site-Sensitive Selective CO2 Photoreductionto CO over Gold Nanoparticles. Angew. Chem. Int. Ed. 2022, 61, e202204563. [Google Scholar] [CrossRef]
- Li, J.; Lv, X.; Weng, B.; Roeffaers, M.B.J.; Jia, H. Engineering light propagation for synergetic photo- and thermocatalysis toward volatile organic compounds elimination. Chem. Eng. J. 2023, 461, 142022. [Google Scholar] [CrossRef]
- Meng, S.; Chen, C.; Gu, X.; Wu, H.; Meng, Q.; Zhang, J.; Chen, S.; Fu, X.; Liu, D.; Lei, W. Efficient photocatalytic H2 evolution, CO2 reduction and N2 fixation coupled with organic synthesis by cocatalyst and vacancies engineering. Appl. Catal. B Environ. 2021, 285, 119789. [Google Scholar] [CrossRef]
- Liu, H.; Xu, C.; Li, D.; Jiang, H. Photocatalytic Hydrogen Production Coupled with Selective Benzylamine Oxidation over MOF Composites. Angew. Chem. Int. Ed. 2018, 57, 5379–5383. [Google Scholar] [CrossRef]
- Zou, Y.; Yang, B.; Liu, Y.; Ren, Y.; Ma, J.; Zhou, X.; Cheng, X.; Deng, Y. Controllable Interface-Induced Co-Assembly toward Highly Ordered Mesoporous Pt@TiO2/g-C3N4 Heterojunctions with Enhanced Photocatalytic Performance. Adv. Funct. Mater. 2018, 28, 1806214. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Tan, L.; Cui, Z.; Jing, D.; Yang, X.; Liang, Y.; Li, Z.; Zhu, S.; Zheng, Y.; et al. Eradicating Multidrug-Resistant Bacteria Rapidly Using a Multi Functional g-C3N4@Bi2S3 Nanorod Heterojunction with or without Antibiotics. Adv. Funct. Mater. 2019, 29, 1900946. [Google Scholar] [CrossRef]
- Zada, A.; Humayun, M.; Raziq, F.; Zhang, X.; Qu, Y.; Bai, L.; Qin, C.; Jing, L.; Fu, H. Exceptional Visible-Light-Driven Cocatalyst-Free Photocatalytic Activity of g-C3N4 by Well Designed Nanocomposites with Plasmonic Au and SnO2. Adv. Energy Mater. 2016, 6, 1601190. [Google Scholar] [CrossRef]
- Feng, C.; Tang, L.; Deng, Y.; Wang, J.; Luo, J.; Liu, Y.; Ouyang, X.; Yang, H.; Yu, J.; Wang, J. Synthesis of Leaf-Vein-Like g-C3N4 with Tunable Band Structures and Charge Transfer Properties for Selective Photocatalytic H2O2 Evolution. Adv. Funct. Mater. 2020, 30, 2001922. [Google Scholar] [CrossRef]
- Wang, H.; Lin, Q.; Yin, L.; Yang, Y.; Qiu, Y.; Lu, C.; Yang, H. Biomimetic Design of Hollow Flower-Like g-C3N4@PDA Organic Framework Nanospheres for Realizing an Efficient Photoreactivity. Small 2019, 15, 1900011. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, L.; Zhao, X.; Zhao, Y.; Tan, H.; Zhao, X.; Ma, Y.; Zhao, Z.; Song, S.; Wang, Y.; et al. Leaf-Mosaic-Inspired Vine-Like Graphitic Carbon Nitride Showing High Light Absorption and Efficient Photocatalytic Hydrogen Evolution. Adv. Energy Mater. 2018, 8, 1801139. [Google Scholar] [CrossRef]
- Yu, H.; Shang, L.; Bian, T.; Shi, R.; Waterhouse, G.I.N.; Zhao, Y.; Zhou, C.; Wu, L.Z.; Tung, C.H.; Zhang, T. Nitrogen-Doped Porous Carbon Nanosheets Templated from g-C3N4 as Metal-Free Electrocatalysts for Efficient Oxygen Reduction Reaction. Adv. Mater. 2016, 28, 5080–5086. [Google Scholar] [CrossRef] [PubMed]
- Hua, S.; Qu, D.; An, L.; Jiang, W.; Wen, Y.; Wang, X.; Sun, Z. Highly Efficient P-Type Cu3P/n-Type g-C3N4 Photocatalyst through Z-Scheme Charge Transfer Route. Appl. Catal. B Environ 2019, 240, 253–261. [Google Scholar] [CrossRef]
- Luo, H.; Liu, Y.; Dimitrov, S.D.; Steier, L.; Guo, S.; Li, X.; Feng, J.; Xie, F.; Fang, Y.; Sapelkin, A.; et al. Pt Single-Atoms Supported on Nitrogen-Doped Carbon Dots for Highly Efficient Photocatalytic Hydrogen Generation. J. Mater. Chem. A 2020, 8, 14690–14696. [Google Scholar] [CrossRef]
- Wen, J.; Li, X.; Li, H.; Ma, S.; He, K.; Xu, Y.; Fang, Y.; Liu, W.; Gao, Q. Enhanced Visible-Light H2 Evolution of g-C3N4 Photocatalysts via the Synergetic Effect of Amorphous NiS and Cheap Metal-Free Carbon Black Nanoparticles as Co-Catalysts. Appl. Surf. Sci. 2015, 358, 204–212. [Google Scholar] [CrossRef]
- Guo, H.; Ke, Y.; Wang, D.; Lin, K.; Shen, R.; Chen, J.; Weng, W. Efficient Adsorption and Photocatalytic Degradation of Congo Red onto Hydrothermally Synthesized NiS Nanoparticles. J. Nanopart. Res. 2013, 15, 1475. [Google Scholar] [CrossRef]
- Zhu, C.; Jiang, Z.; Wei, W.; Chen, L.; Liu, D.; Qian, K.; Lü, X.; Xie, J. Fabrication of Noble-Metal-Free NiS2/g-C3N4 Hybrid Photocatalysts with Visible Light-Responsive Photocatalytic Activities. Res. Chem. Intermed. 2016, 42, 6483–6499. [Google Scholar] [CrossRef]
- Hou, Y.; Laursen, A.B.; Zhang, J.; Zhang, G.; Zhu, Y.; Wang, X.; Dahl, S.; Chorkendorff, I. Layered Nanojunctions for Hydrogen-Evolution Catalysis. Angew. Chem. Int. Edit. 2013, 125, 3709–3713. [Google Scholar] [CrossRef]
- Wen, M.Q.; Xiong, T.; Zang, Z.G.; Wei, W.; Tang, X.S.; Dong, F. Synthesis of MoS2/g-C3N4 Nanocomposites with Enhanced Visible-Light Photocatalytic Activity for the Removal of Nitric Oxide (NO). Opt. Express 2016, 24, 10205. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Xiao, P.; Wang, P.; Yu, J. Amorphous molybdenum sulfide as highly efficient electron-cocatalyst for enhanced photocatalytic H2 evolution. Appl. Catal. B Environ. 2016, 193, 217–225. [Google Scholar] [CrossRef]
- Jiang, D.; Chen, L.; Xie, J.; Chen, M. Ag2S/g-C3N4 Composite Photocatalysts for Efficient Pt-Free Hydrogen Production. The Co-Catalyst Function of Ag/Ag2S Formed by Simultaneous Photodeposition. Dalton Trans. 2014, 43, 4878–4885. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Luo, W.; Mo, Y.; Yu, H.; Cheng, B. In Situ Photodeposition of Amorphous CoSx on the TiO2 towards Hydrogen Evolution. Appl. Surf. Sci. 2018, 430, 448–456. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, H.; Cui, G.; Dong, Y.; Wang, G.; Jiang, P.; Wu, X.; Zhao, N. A Photochemical Synthesis Route to Typical Transition Metal Sulfides as Highly Efficient Cocatalyst for Hydrogen Evolution: From the Case of NiS/g-C3N4. Appl. Catal. B Environ. 2018, 225, 284–290. [Google Scholar] [CrossRef]
- Kadi, M.W.; Mohamed, R.M.; Ismail, A.A.; Bahnemann, D.W. Decoration of Mesoporous Graphite-like C3N4 Nanosheets by NiS Nanoparticle-Driven Visible Light for Hydrogen Evolution. Appl. Nanosci. 2018, 8, 1587–1596. [Google Scholar] [CrossRef]
- Wang, M.; Cheng, J.; Wang, X.; Hong, X.; Fan, J.; Yu, H. Sulfur-Mediated Photodeposition Synthesis of NiS Cocatalyst for Boosting H2-Evolution Performance of g-C3N4 Photocatalyst. Chin. J. Catal. 2021, 42, 37–45. [Google Scholar] [CrossRef]
- Samaniego-Benitez, J.E.; Jimenez-Rangel, K.; Lartundo-Rojas, L.; García-García, A.; Mantilla, A. Enhanced Photocatalytic H2 Production over g-C3N4/NiS Hybrid Photocatalyst. Mater. Lett. 2021, 290, 129476. [Google Scholar] [CrossRef]
- Yang, J.; Guo, J.; He, J. Precise Recognition of Zn(II) Ions by a Finely Designed Pair of α-NiS and β-NiS Nanostructures: A Sandwich Mode Recognition Approach. J. Environ. Chem. Eng. 2021, 9, 106837. [Google Scholar] [CrossRef]
- Surendran, S.; Vijaya Sankar, K.; John Berchmans, L.; Kalai Selvan, R. Polyol Synthesis of α-NiS Particles and Its Physico-Chemical Properties. Mater. Sci. Semicond. Process. 2015, 33, 16–23. [Google Scholar] [CrossRef]
- Shen, R.; Zhang, L.; Chen, X.; Jaroniec, M.; Li, N.; Li, X. Integrating 2D/2D CdS/α-Fe2O3 Ultrathin Bilayer Z-Scheme Heterojunction with Metallic β-NiS Nanosheet-Based Ohmic-Junction for Efficient Photocatalytic H2 Evolution. Appl. Catal. B Environ 2020, 266, 118619. [Google Scholar] [CrossRef]
- Shen, L.; Qi, S.; Jin, Y.; Li, C.; Cheng, J.; Wang, H.; Ma, H.; Li, L. α-NiS-β-NiS Growth on Cd0.5Zn0.5S Formed Schottky Heterojunctions for Enhanced Photocatalytic Hydrogen Production. New J. Chem. 2022, 46, 17469–17478. [Google Scholar] [CrossRef]
- Bi, Z.; Guo, R.; Ji, X.; Hu, X.; Wang, J.; Chen, X.; Pan, W. Direct Z-Scheme CoS/g-C3N4 Heterojunction with NiS Co-Catalyst for Efficient Photocatalytic Hydrogen Generation. Int. J. Hydrogen Energ. 2022, 47, 34430–34443. [Google Scholar] [CrossRef]
- She, X.; Wu, J.; Zhong, J.; Xu, H.; Yang, Y.; Vajtai, R.; Lou, J.; Liu, Y.; Du, D.; Li, H.; et al. Oxygenated Monolayer Carbon Nitride for Excellent Photocatalytic Hydrogen Evolution and External Quantum Efficiency. Nano Energy 2016, 27, 138–146. [Google Scholar] [CrossRef]
- Zhang, X.; Xie, X.; Wang, H.; Zhang, J.; Pan, B.; Xie, Y. Enhanced Photoresponsive Ultrathin Graphitic-Phase C3N4 Nanosheets for Bioimaging. J. Am. Chem. Soc. 2013, 135, 18–21. [Google Scholar] [CrossRef]
- Saeed, M.; Haq Aul Muneer, M.; Ahmad, A.; Bokhari, T.H.; Sadi, Q. Synthesis and characterization of Bi2O3 and Ag-Bi2O3 and evaluation of their photocatalytic activities towards photodegradation of crystal violet dye. Phys. Scr. 2021, 96, 125707. [Google Scholar] [CrossRef]
- Mo, Z.; Xu, H.; Chen, Z.; She, X.; Song, Y.; Lian, J.; Zhu, X.; Yan, P.; Lei, Y.; Yuan, S.; et al. Construction of MnO2/Monolayer g-C3N4 with Mn Vacancies for Z-Scheme Overall Water Splitting. Appl. Catal. B Environ. 2019, 241, 452–460. [Google Scholar] [CrossRef]
- Xu, Y.; Du, C.; Zhou, C.; Yang, S. Ternary Noble-Metal-Free Heterostructured NiS-CuS-C3N4 with near-Infrared Response for Enhanced Photocatalytic Hydrogen Evolution. Int. J. Hydrogen Energy 2020, 45, 4084–4094. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, K.; Sun, R.; Ma, J. Biorefinery-Assisted Ultra-High Hydrogen Evolution via Metal-Free Black Phosphorus Sensitized Carbon Nitride Photocatalysis. Chem. Eng. J. 2022, 446, 137128. [Google Scholar] [CrossRef]
- Qi, Z.; Chen, J.; Zhou, W.; Li, Y.; Li, X.; Zhang, S.; Fan, J.; Lv, K. Synergistic Effects of Holey Nanosheet and Sulfur-Doping on the Photocatalytic Activity of Carbon Nitride towards NO Removal. Chemosphere 2023, 316, 137813. [Google Scholar] [CrossRef] [PubMed]
- Gan, S.; Deng, M.; Hou, D.; Huang, L.; Qiao, X.; Li, D. An Amorphous NiSx Film as a Robust Cocatalyst for Boosting Photocatalytic Hydrogen Generation over Ultrafine ZnCdS Nanoparticles. Mater. Adv. 2021, 2, 3881–3891. [Google Scholar] [CrossRef]
- Zhang, K.; Mou, Z.; Cao, S.; Wu, S.; Xu, X.; Li, C. Well-Designed NiS/CdS Nanoparticles Heterojunction for Efficient Visible-Light Photocatalytic H2 Evolution. Int. J. Hydrogen Energy 2022, 47, 12605–12614. [Google Scholar] [CrossRef]
- Xu, J.; Qi, Y.; Wang, L. In Situ Derived Ni2P/Ni Encapsulated in Carbon/g-C3N4 Hybrids from Metal-Organic Frameworks/g-C3N4 for Efficient Photocatalytic Hydrogen Evolution. Appl. Catal. B Environ 2019, 246, 72–81. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, C.; Ma, H.; Li, G.; Chen, L.; Sun, Y.; Chen, Z.; Fang, P.; Fu, Q.; Pan, C. Synthesis of Flower-Liked Twin Crystal Ternary Ni/NiS/Zn0.2Cd0.8S Catalyst for Highly Efficient Hydrogen Production. Chem. Eng. J. 2021, 406, 126878. [Google Scholar] [CrossRef]
- Yasin, M.; Saeed, M.; Muneer, M.; Usman, M.; Haq A ul Sadia, M.; Altaf, M. Development of Bi2O3-ZnO heterostructure for enhanced photodegradation of rhodamine B and reactive yellow dyes. Surf. Interfaces 2022, 30, 101846. [Google Scholar] [CrossRef]
- Saeed, M.; Khan, I.; Adeel, M.; Akram, N.; Muneer, M. Synthesis of a CoO-ZnO photocatalyst for enhanced visible-light assisted photodegradation of methylene blue. New J. Chem. 2022, 46, 2224. [Google Scholar] [CrossRef]
- Nong, J.; Jin, Y.; Tan, J.; Ma, H.; Lian, Y. Construction of NiCo-LDH/g-C3N4 Heterojunctions as Efficient Photocatalysts for Enhanced Degradation of Tetracycline Hydrochloride and Hydrogen Evolution. New J. Chem. 2022, 46, 22830–22840. [Google Scholar] [CrossRef]
- Wang, W.; Niu, Q.; Zeng, G.; Zhang, C.; Huang, D.; Shao, B.; Zhou, C.; Yang, Y.; Liu, Y.; Guo, H.; et al. 1D porous tubular g-C3N4 capture black phosphorus quantum dots as 1D/0D metal-free photocatalysts for oxytetracycline hydrochloride degradation and hexavalent chromium reduction. Appl. Catal. B Environ. 2020, 273, 119051. [Google Scholar] [CrossRef]
- Zhou, G.; Zhou, Z.; Xia, Y.; Yin, W.; Hou, J.; Zhu, X.; Yi, J.; Wang, S.; Ning, X.; Wang, X. Synchronous synthesis of S-doped carbon nitride/nickel sulfide photocatalysts for efficient dye degradation and hydrogen evolution. Appl. Surf. Sci. 2023, 608, 154974. [Google Scholar] [CrossRef]
- Wang, R.; Yang, P.; Wang, S.; Wang, X. Distorted Carbon Nitride Nanosheets with Activated n ⟶ Π* Transition and Preferred Textural Properties for Photocatalytic CO2 Reduction. J. Catal. 2021, 402, 166–176. [Google Scholar] [CrossRef]
- Su, B.; Huang, H.; Ding, Z.; Roeffaers, M.B.J.; Wang, S.; Long, J. S-Scheme CoTiO3/Cd9.51Zn0.49S10 Heterostructures for Visible-Light Driven Photocatalytic CO2 Reduction. J. Mater. Sci. Technol. 2022, 124, 164–170. [Google Scholar] [CrossRef]
- Gao, X.; Zeng, D.; Yang, J.; Ong, W.-J.; Fujita, T.; He, X.; Liu, J.; Wei, Y. Ultrathin Ni(OH)2 Nanosheets Decorated with Zn0.5Cd0.5S Nanoparticles as 2D/0D Heterojunctions for Highly Enhanced Visible Light-Driven Photocatalytic Hydrogen Evolution. Chin. J. Catal. 2021, 42, 1137–1146. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, X.; Lv, H.; Cao, Y.; Ren, H. Boosting the photocatalytic hydrogen evolution activity of g-C3N4 nanosheets by Cu2(OH)2CO3-modification and dye-sensitization. Dalton T. 2019, 48, 1217–1225. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Li, X.; Luo, H.; Su, B.; Ma, J. Facile Synthesis of Ni-Based Layered Double Hydroxides with Superior Photocatalytic Performance for Tetracycline Antibiotic Degradation. J. Solid State Chem. 2022, 307, 122827. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.; Xiao, Z.; Liu, S.; Hu, J.; Long, X.; Wu, L.; Sun, C.; Chen, K.; Jiao, F. Construction of Z-Scheme Heterojunction of (BiO)2CO3/ZnFe-LDH for Enhanced Photocatalytic Degradation of Tetracycline. J. Alloys Compd. 2022, 900, 163450. [Google Scholar] [CrossRef]
- Feng, X.; Li, X.; Su, B.; Ma, J. Hydrothermal Construction of Flower-like g-C3N4/NiZnAl-LDH S-Scheme Heterojunction with Oxygen Vacancies for Enhanced Visible-Light Triggered Photocatalytic Performance. J. Alloys Compd. 2022, 922, 166098. [Google Scholar] [CrossRef]
- Liu, H.Y.; Niu, C.G.; Guo, H.; Liang, C.; Huang, D.W.; Zhang, L.; Yang, Y.Y.; Li, L. In Suit Constructing 2D/1D MgIn2S4/CdS Heterojunction System with Enhanced Photocatalytic Activity towards Treatment of Wastewater and H2 Production. J. Colloid Interface Sci. 2020, 576, 264–279. [Google Scholar] [CrossRef]
- Liu, H.Y.; Niu, C.G.; Guo, H.; Huang, D.W.; Liang, C.; Yang, Y.Y.; Tang, N.; Zhang, X.G. Integrating the Z-Scheme Heterojunction and Hot Electrons Injection into a Plasmonic-Based Zn2In2S5/W18O49 Composite Induced Improved Molecular Oxygen Activation for Photocatalytic Degradation and Antibacterial Performance. J. Colloid Interface Sci. 2022, 610, 953–969. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, H.; Wang, C.; Shen, L.; Wang, H.; Lian, Y.; Zhang, H.; Ma, H.; Zhang, Y.; Zhang, J.Z. α-NiS/g-C3N4 Nanocomposites for Photocatalytic Hydrogen Evolution and Degradation of Tetracycline Hydrochloride. Catalysts 2023, 13, 983. https://doi.org/10.3390/catal13060983
Qi H, Wang C, Shen L, Wang H, Lian Y, Zhang H, Ma H, Zhang Y, Zhang JZ. α-NiS/g-C3N4 Nanocomposites for Photocatalytic Hydrogen Evolution and Degradation of Tetracycline Hydrochloride. Catalysts. 2023; 13(6):983. https://doi.org/10.3390/catal13060983
Chicago/Turabian StyleQi, Huajin, Chenyu Wang, Luping Shen, Hongmei Wang, Yuan Lian, Huanxia Zhang, Hongxia Ma, Yong Zhang, and Jin Zhong Zhang. 2023. "α-NiS/g-C3N4 Nanocomposites for Photocatalytic Hydrogen Evolution and Degradation of Tetracycline Hydrochloride" Catalysts 13, no. 6: 983. https://doi.org/10.3390/catal13060983
APA StyleQi, H., Wang, C., Shen, L., Wang, H., Lian, Y., Zhang, H., Ma, H., Zhang, Y., & Zhang, J. Z. (2023). α-NiS/g-C3N4 Nanocomposites for Photocatalytic Hydrogen Evolution and Degradation of Tetracycline Hydrochloride. Catalysts, 13(6), 983. https://doi.org/10.3390/catal13060983