Enhanced Electrolysis of CO2 with Metal–Oxide Interfaces in Perovskite Cathode in Solid Oxide Electrolysis Cell
Abstract
1. Introduction
2. Results and Discussion
3. Experimental
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shindell, D.; Smith, C.J. Climate and Air-Quality Benefits of a Realistic Phase-out of Fossil Fuels. Nature 2019, 573, 408–411. [Google Scholar] [CrossRef] [PubMed]
- Zou, C.; Xiong, B.; Xue, H.; Zheng, D.; Ge, Z.; Wang, Y.; Jiang, L.; Pan, S.; Wu, S. The Role of New Energy in Carbon Neutral. Pet. Explor. Dev. 2021, 48, 480–491. [Google Scholar] [CrossRef]
- Meinshausen, M.; Meinshausen, N.; Hare, W.; Raper, S.C.B.; Frieler, K.; Knutti, R.; Frame, D.J.; Allen, M.R. Greenhouse-Gas Emission Targets for Limiting Global Warming to 2 °C. Nature 2009, 458, 1158–1162. [Google Scholar] [CrossRef]
- Manzone, M.; Calvo, A. Woodchip Transportation: Climatic and Congestion Influence on Productivity, Energy and CO2 Emission of Agricultural and Industrial Convoys. Renew. Energy 2017, 108, 250–259. [Google Scholar] [CrossRef]
- Wuebbles, D.J.; Sanyal, S. Air Quality in a Cleaner Energy World. Curr. Pollut. Rep. 2015, 1, 117–129. [Google Scholar] [CrossRef]
- Najjar, Y.S.H. Gaseous Pollutants Formation and Their Harmful Effects on Health and Environment. Innov. Energy Policies 2011, 1, 1–9. [Google Scholar] [CrossRef]
- Su, X.; Xu, J.; Liang, B.; Duan, H.; Hou, B.; Huang, Y. Catalytic Carbon Dioxide Hydrogenation to Methane: A Review of Recent Studies. J. Energy Chem. 2016, 25, 553–565. [Google Scholar] [CrossRef]
- Olah, G.A.; Goeppert, A.; Prakash, G.K.S. Chemical Recycling of Carbon Dioxide to Methanol and Dimethyl Ether: From Greenhouse Gas to Renewable, Environmentally Carbon Neutral Fuels and Synthetic Hydrocarbons. J. Org. Chem. 2009, 74, 487–498. [Google Scholar] [CrossRef]
- Genovese, C.; Ampelli, C.; Perathoner, S.; Centi, G. Electrocatalytic Conversion of CO2 to Liquid Fuels Using Nanocarbon-Based Electrodes. J. Energy Chem. 2013, 22, 202–213. [Google Scholar] [CrossRef]
- Liang, S.; Altaf, N.; Huang, L.; Gao, Y.; Wang, Q. Electrolytic Cell Design for Electrochemical CO2 Reduction. J. CO2 Util. 2020, 35, 90–105. [Google Scholar] [CrossRef]
- Wu, D.; Jiao, F.; Lu, Q. Progress and Understanding of CO2/CO Electroreduction in Flow Electrolyzers. ACS Catal. 2022, 12, 12993–13020. [Google Scholar] [CrossRef]
- Weekes, D.M.; Salvatore, D.A.; Reyes, A.; Huang, A.; Berlinguette, C.P. Electrolytic CO2 Reduction in a Flow Cell. Acc. Chem. Res. 2018, 51, 910–918. [Google Scholar] [CrossRef]
- Tufa, R.A.; Chanda, D.; Ma, M.; Aili, D.; Demissie, T.B.; Vaes, J.; Li, Q.; Liu, S.; Pant, D. Towards Highly Efficient Electrochemical CO2 Reduction: Cell Designs, Membranes and Electrocatalysts. Appl. Energy 2020, 277, 115557. [Google Scholar] [CrossRef]
- Fu, X.Z.; Melnik, J.; Low, Q.X.; Luo, J.L.; Chuang, K.T.; Sanger, A.R.; Yang, Q.M. Surface Modified Ni Foam as Current Collector for Syngas Solid Oxide Fuel Cells with Perovskite Anode Catalyst. Int. J. Hydrog. Energy 2010, 35, 11180–11187. [Google Scholar] [CrossRef]
- Dong, C.; Jiang, F.; Yang, L.; Wang, C.; Xie, K. Enhancing Electrocatalytic Reforming of CO2/CH4 with in Situ Exsolved Metal-Oxide Interfaces in a Solid Oxide Electrolysis Cell. Sep. Purif. Technol. 2022, 299, 121714. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, X.; Xie, K.; Wang, G.; Bao, X. High-Temperature CO2 Electrolysis in Solid Oxide Electrolysis Cells: Developments, Challenges, and Prospects. Adv. Mater. 2019, 31, 1902033. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, W.; Wang, Z.; Ren, C.; Wang, Y.; Ding, M.; Liu, T. Efficient Electrochemical CO2 Reduction Reaction on a Robust Perovskite Type Cathode with In-Situ Exsolved Fe-Ru Alloy Nanocatalysts. Sep. Purif. Technol. 2023, 304, 122287. [Google Scholar] [CrossRef]
- Song, Y.; Zhou, S.; Dong, Q.; Li, Y.; Zhang, X.; Ta, N.; Liu, Z.; Zhao, J.; Yang, F.; Wang, G.; et al. Oxygen Evolution Reaction over the Au/YSZ Interface at High Temperature. Angew. Chem.-Int. Ed. 2019, 58, 4617–4621. [Google Scholar] [CrossRef]
- Li, W.; Luo, J.L. High-Temperature Electrochemical Devices Based on Dense Ceramic Membranes for CO2 Conversion and Utilization. Electrochem. Energy Rev. 2021, 4, 518–544. [Google Scholar] [CrossRef]
- Ye, L.; Xie, K. High-Temperature Electrocatalysis and Key Materials in Solid Oxide Electrolysis Cells. J. Energy Chem. 2021, 54, 736–745. [Google Scholar] [CrossRef]
- Xu, S.; Li, S.; Yao, W.; Dong, D.; Xie, K. Direct Electrolysis of CO2 Using an Oxygen-Ion Conducting Solid Oxide Electrolyzer Based on La0.75Sr0.25Cr 0.5Mn0.5O3−δ Electrode. J. Power Sources 2013, 230, 115–121. [Google Scholar] [CrossRef]
- Zhang, X.; Ye, L.; Hu, J.; Li, J.; Jiang, W.; Tseng, C.J.; Xie, K. Perovskite LSCM Impregnated with Vanadium Pentoxide for High Temperature Carbon Dioxide Electrolysis. Electrochim. Acta 2016, 212, 32–40. [Google Scholar] [CrossRef]
- Zhang, X.; Song, Y.; Guan, F.; Zhou, Y.; Lv, H.; Wang, G.; Bao, X. Enhancing Electrocatalytic CO2 Reduction in Solid Oxide Electrolysis Cell with Ce0.9Mn0.1O2−δ Nanoparticles-Modified LSCM-GDC Cathode. J. Catal. 2018, 359, 8–16. [Google Scholar] [CrossRef]
- Gunduz, S.; Deka, D.J.; Ozkan, U.S. Advances in High-Temperature Electrocatalytic Reduction of CO2 and H2O, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; Volume 62, ISBN 9780128150887. [Google Scholar]
- Yang, X.; Sun, W.; Ma, M.; Xu, C.; Ren, R.; Qiao, J.; Wang, Z.; Li, Z.; Zhen, S.; Sun, K. Achieving Highly Efficient Carbon Dioxide Electrolysis by in Situ Construction of the Heterostructure. ACS Appl. Mater. Interfaces 2021, 13, 20060–20069. [Google Scholar] [CrossRef]
- Tsekouras, G.; Neagu, D.; Irvine, J.T.S. Step-Change in High Temperature Steam Electrolysis Performance of Perovskite Oxide Cathodes with Exsolution of B-Site Dopants. Energy Environ. Sci. 2013, 6, 256–266. [Google Scholar] [CrossRef]
- Kwon, O.; Joo, S.; Choi, S.; Sengodan, S.; Kim, G. Review on Exsolution and Its Driving Forces in Perovskites. J. Phys. Energy 2020, 2, 032001. [Google Scholar] [CrossRef]
- Liu, H.; Yu, J. Catalytic Performance of Cu-Ni/La0.75Sr0.25Cr0.5Mn0.5O3−δ for Dry Methane Reforming. Int. J. Energy Res. 2022, 46, 10522–10534. [Google Scholar] [CrossRef]
- Wei, H.; Xie, K.; Zhang, J.; Zhang, Y.; Wang, Y.; Qin, Y.; Cui, J.; Yan, J.; Wu, Y. In Situ Growth of NixCu1−x Alloy Nanocatalysts on Redox-Reversible Rutile (Nb,Ti)O4 towards High-Temperature Carbon Dioxide Electrolysis. Sci. Rep. 2014, 4, 5156. [Google Scholar] [CrossRef]
- Naghash, A.R.; Etsell, T.H.; Xu, S. XRD and XPS Study of Cu-Ni Interactions on Reduced Copper-Nickel-Aluminum Oxide Solid Solution Catalysts. Chem. Mater. 2006, 18, 2480–2488. [Google Scholar] [CrossRef]
- Wang, Y.; Li, W.; Ma, L.; Li, W.; Liu, X. Degradation of Solid Oxide Electrolysis Cells: Phenomena, Mechanisms, and Emerging Mitigation Strategies—A Review. J. Mater. Sci. Technol. 2020, 55, 35–55. [Google Scholar] [CrossRef]
- Wan, J.; Zhu, J.H.; Goodenough, J.B. La0.75Sr0.25Cr0.5Mn0.5O3−δ + Cu Composite Anode Running on H2 and CH4 Fuels. Solid State Ionics 2006, 177, 1211–1217. [Google Scholar] [CrossRef]
- Cao, T.; Kwon, O.; Gorte, R.J.; Vohs, J.M. Metal Exsolution to Enhance the Catalytic Activity of Electrodes in Solid Oxide Fuel Cells. Nanomaterials 2020, 10, 2445. [Google Scholar] [CrossRef]
- Qian, B.; Liu, C.; Wang, S.; Yin, B.; Zheng, Y.; Ge, L.; Chen, H.; Zhang, C. Ca-Doped La0.75Sr0.25Cr0.5Mn0.5O3 Cathode with Enhanced CO2 Electrocatalytic Performance for High-Temperature Solid Oxide Electrolysis Cells. Int. J. Hydrog. Energy 2021, 46, 33349–33359. [Google Scholar] [CrossRef]
- Xing, R.; Wang, Y.; Zhu, Y.; Liu, S.; Jin, C. Co-Electrolysis of Steam and CO2 in a Solid Oxide Electrolysis Cell with La0.75Sr0.25Cr0.5Mn0.5O3−δ -Cu Ceramic Composite Electrode. J. Power Sources 2015, 274, 260–264. [Google Scholar] [CrossRef]
- Ruan, C.; Xie, K. A Redox-Stable Chromate Cathode Decorated with in Situ Grown Nickel Nanocatalyst for Efficient Carbon Dioxide Electrolysis. Catal. Sci. Technol. 2015, 5, 1929–1940. [Google Scholar] [CrossRef]
- Qian, B.; Wang, S.; Zheng, Y.; Ni, Q.; Chen, H.; Ge, L.; Yang, J. Ca-Fe Co-Doped La0.75Sr0.25Cr0.5Mn0.5O3 Cathodes with High Electrocatalytic Activity for Direct CO2 Electrolysis in Solid Oxide Electrolysis Cells. J. CO2 Util. 2023, 67, 102305. [Google Scholar] [CrossRef]
- Nechache, A.; Cassir, M.; Ringuedé, A. Solid Oxide Electrolysis Cell Analysis by Means of Electrochemical Impedance Spectroscopy: A Review. J. Power Sources 2014, 258, 164–181. [Google Scholar] [CrossRef]
- Wang, W.; Zhu, C.; Xie, K.; Gan, L. High Performance, Coking-Resistant and Sulfur-Tolerant Anode for Solid Oxide Fuel Cell. J. Power Sources 2018, 406, 1–6. [Google Scholar] [CrossRef]
- Liu, M.; Wang, S.; Chen, T.; Yuan, C.; Zhou, Y.; Wang, S.; Huang, J. Performance of the Nano-Structured Cu-Ni (Alloy)-CeO2 Anode for Solid Oxide Fuel Cells. J. Power Sources 2015, 274, 730–735. [Google Scholar] [CrossRef]







| Dopant | Electrolyte | Working Conditions | Current Density | Reference |
|---|---|---|---|---|
| NiCu | LSGM | 850 °C, 1.6 V | 0.68 A cm−2 | This work |
| Ce0.9Mn0.1O2−δ | YSZ | 800 °C, 1.8 V | 0.52 A cm−2 | [23] |
| Ca | SSZ | 800 °C, 1.2 V | 0.27 A cm−2 | [34] |
| Cu | LSGM | 750 °C, 1.65 V | 1.82 A cm−2 | [35] |
| Ni | YSZ | 800 °C, 2 V | 0.33 A cm−2 | [36] |
| CaFe | SSZ | 800 °C, 1.6 V | 0.6 A cm−2 | [37] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, G.; Xu, Y.; Xie, K. Enhanced Electrolysis of CO2 with Metal–Oxide Interfaces in Perovskite Cathode in Solid Oxide Electrolysis Cell. Catalysts 2022, 12, 1607. https://doi.org/10.3390/catal12121607
Ma G, Xu Y, Xie K. Enhanced Electrolysis of CO2 with Metal–Oxide Interfaces in Perovskite Cathode in Solid Oxide Electrolysis Cell. Catalysts. 2022; 12(12):1607. https://doi.org/10.3390/catal12121607
Chicago/Turabian StyleMa, Guoliang, Yihong Xu, and Kui Xie. 2022. "Enhanced Electrolysis of CO2 with Metal–Oxide Interfaces in Perovskite Cathode in Solid Oxide Electrolysis Cell" Catalysts 12, no. 12: 1607. https://doi.org/10.3390/catal12121607
APA StyleMa, G., Xu, Y., & Xie, K. (2022). Enhanced Electrolysis of CO2 with Metal–Oxide Interfaces in Perovskite Cathode in Solid Oxide Electrolysis Cell. Catalysts, 12(12), 1607. https://doi.org/10.3390/catal12121607
